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Abstract
Single nucleotide polymorphism in OPRM1 gene is associated with hedonic and reinforcing consequences of opioids. Risk and
protective alleles may vary in different populations. One hundred healthy controls and 100 opioids (predominantly heroin)
addicts from Pakistani origin were genotyped for A118G (N40D) polymorphism in OPRM1. Structural and functional impact
of the polymorphism on encoded protein was predicted by in silico analysis. Results show significant association between
homozygous GG genotype and opioid addiction in Pakistani population (p value = 0.016). In silico analysis by SIFT (TI =
0.61), PolyPhen (PISC = 0.227), PANTHER (subPSEC = −1.7171), and SNP effect predicted this SNP benign for encoded
protein. Superimposing wild-type and mutated proteins by MODELLER shows no change (RMSD = 0.1) in extracellular ligand
binding domain of μ-opioid receptor. However, Haploreg and RegulomeDB predicted OPRM1 gene repression by chromatin
condensation and increased binding affinity of RXRA transcription factor that may reduce protein translation and hence the
number of available receptors to bind with drugs, which may trigger underlying mechanisms for opioids addiction. Thus, this
study outlines causal relationship between opioids addiction and genetic predisposition in Pakistani population.
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Abbreviations
SNP Single nucleotide polymorphism
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GC content Guanine cytosine content
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Introduction

Drug addiction, characterized by repetitive and compulsive use
of drugs to attain euphoria (Deroche-Gamonet et al. 2004),

predisposes the addict to tolerance and elevate the risk of with-
drawal symptoms upon reducing the intake of drug (Volkow
and Li 2004). Persistent drug abuse triggers neurological
changes leading to psychological and physical dependence,
craving, and relapse (Camí and Farré 2003). Deregulation of
endogenous opioid and dopamine systemsmediate the hedonic
and reinforcing consequences of addictive drugs (Camí and
Farré 2003). It burdens an individual with the high costs asso-
ciated with medical treatment, injuries, drug-related complica-
tions, crimes, incarceration, and time lost from work and social
welfare programs.

Multiple factors including pharmacological and physico-
chemical properties of drugs, psychiatric discords, risk-
seeking and novelty-seeking traits, and stressed life and dom-
inantly genetic makeup may provoke an individual to abuse
drugs (Crabbe 2002; FARRÉ and CAMÍ 1991; Helmus et al.
2001). A study evidenced higher incidence of alcohol addic-
tion in individuals born to alcohol addict parents despite being
adopted and raised by non-addict parents (Schuckit and Smith
2001). Genetic polymorphism in endogenous opioid system is
associated with drug abuse (Kosten et al. 1986). Single nucle-
otide polymorphism (SNP) in OPRM1 gene encoding μ-
opioid receptor is significantly associated with opioid depen-
dence and heterogeneous response to various ligands
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including β-endorphin, enkephalins, morphine, heroin, meth-
adone, cocaine, and alcohol (Nestler 2001; Uhl et al. 1999). A
missense SNP rs1799971 (A118G) located in exon 1
(Asn40Asp) has been extensively studied for its association
with substance dependence in Caucasian (Bergen et al. 1997),
European American, African American (Crowley et al. 2003),
German (Mistry et al. 2014), and Japanese (Gelernter et al.
1999) populations.

A118G polymorphism removes a highly conserved N-
glycosylation site in protein’s extracellular domain (Bergen
et al. 1997) that may hamper pain perception in chronic dis-
eases (Fillingim et al. 2005; Janicki et al. 2006), reduce re-
sponse towards analgesic drugs (Oertel et al. 2009; Oertel et
al. 2006), and tend to increase administration of opioids
(Chou et al. 2006; Sia et al. 2008).Another missense SNP
C17T in exon 1 (Ala6Val) (Zhang et al. 2007) was signifi-
cantly linked with heroin addiction (Rommelspacher et al.
2001). Several rare variants such as Ser147Cys in exon 2 and
Ile292Val in exon 3 ofOPRM1 gene have also been reported
but their functional significance is not elucidated (Bergen et
al. 1997).Moreover,OPRM1SNPs in intron 1 are associated
with euphoric response to heroin in Chinese population
(Zhang et al. 2007) and cocaine and opioid drugs’ depen-
dence in European Americans (Zhang et al. 2006). Another
study documented combined association of SNPA118G and
SNP C1031G in intron 2 ofOPRM1 gene with heroin addic-
tion (Szeto et al. 2001).

In Pakistan, drug abusers have raised from 4.1 million to
6.45 million. A recent report documented opioid abuse in
5.8% population aged 15–64 years in past 12 months
(Organization 1992). It is imperative to identify genetic pre-
disposition to opioid addiction in Pakistani population. The
present study determines the association of drug addiction
with SNPA118G inOPRM1 gene in Pakistan. It also predicts
implications of single nucleotide polymorphism on encoded
protein structure and function, allele-specific transcription fac-
tor interactions, and chromatin structure to elucidate molecu-
lar mechanism underlying A118G association with drug ad-
diction. The aim of the current study is to identify genetic
predisposition to opioids addiction in Pakistani population
that may enable us to take pre-emptive and preventive mea-
sure to reduce prevalence of opioids addiction in genetically
vulnerable individuals. Moreover, it may also enable us to
retrieve novel molecular and genetic targets to design safe
and effective treatment for opioids addicts.

Material and Methods

Blood samples from 100 healthy individuals (mean age
33.58 years) without history of psychotic disorder, drug
abuse, and dependence and 100 opioid addicts (predomi-
nantly heroin; mean age 34.35 years) undergoing

detoxification therapy at rehabili tat ion centers of
Faisalabad and Lahore, Pakistan, were collected with the
consent of test subjects and according to human ethical pro-
tocols provided by Declaration of Helsinki (World Medical
Association 2001). Drug addicts were selected based on
criteria for drug dependence described in diagnostic and sta-
tistical manual of mental disorders (American Psychiatric
Association 2013). Structured questionnaires were used to
gather demographic data, medical history, family history,
and socioeconomic status of the individuals.

Collection of Blood Samples

Blood samples were collected in EDTA impregnated
vacutainers (3 ml, 13 × 75 mm, Ayset, Turkey) and stored at
4 °C until further analysis.

DNA Extraction and Amplification

DNAwas extracted by phenol chloroform method (Bell et al.
1981). Briefly, 750 μl blood was mixed with an equal volume
of solution A [0.32 M sucrose, 10 mM Tris (pH 7.5), 5 mM
MgCl2, 1% Triton X-100], incubated (25 °C, 30–40 min), and
centrifuged (13,000 rpm, 1 min) to separate cell pellets. The
cell pellets were re-suspended in 400 μl of solution A, centri-
fuged and again re-suspended in 400 μl of solution B [10 mM
Tris (pH 7.5), 400 mM NaCl and 2 mM EDTA (pH 8)] along
with 12 μl 2%SDS and 5 μl proteinase-K solutions. After
incubation (37 °C, overnight) and centrifugation
(13,000 rpm, 10 min), the aqueous phase was mixed with an
equal volume of solution D [chloroform: isoamyl] and centri-
fuged again. Upper aqueous phase was mixed with an equal
volume of chilled isopropanol and 55 μl 3 M sodium acetate
solution (pH 6). Precipitated DNAwas washed with 200 μl of
70% ethanol and dissolved in 200μl of TE buffer [10mMTris
(pH 7.5), 1 mM EDTA (pH 8)].

Amplification of desired segment of OPRM1 gene was
carried by previously reported PCRprimers. Forward primer
5′- CGGTTCCTGGGTCAACTTGTCCCACTTAGATC
GC-3 ′ and reverse primer 5 ′-AGCCTTGGGAGTTA
GGTGTCTC-3 ′ (Ginosar et al. 2009). The primers
(Integrated DNATechnology, USA) were sized between 22
and 24 bases with a Tm of 69–71 °C and a GC content of 40–
60%. DNA templates were added to a reaction mixture con-
taining 1.25 μl of each primer (5 pmoles), 2.5 μl buffer (Bio
Basic Inc., Canada), 2 μl MgSO4 (Bio Basic Inc., Canada),
0.3 mM dNTPs, and 0.04 units/μl of taq polymerase (Bio
Basic Inc., Canada). The following PCR profile was used:
denaturation for 5 min at 94 °C, 35 cycles for 1 min at 94 °C,
1 min at primer-specific annealing temperature (58 °C), and
2min at 72 °C followedby final incubation at 72 °C for 4min.
Once amplified, the fragments were purified with
GeneJET™ PCR Purification Kit (Fermentas, USA) and
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confirmed by 1% agarose gel electrophoresis using 50 bp
ladder DNA molecular weight marker (Fermentas,
Lithuania) (Ginosar et al. 2009).

SNP Genotyping

SNP genotyping was done by restriction fragment length
polymorphism (RFLP) and confirmed by sequencing.
Purified DNA samples from control and experimental groups
were digested with restriction enzyme Bsh 12361 (BstU1,
#ER0921, 10 units/μl, Fermentas, Lithuania) and analyzed
by Agilent Bioanalyzer 2100 (Agilent, USA) according to
manufacturer’s instructions. Twenty-five samples from each
group were randomly selected and sent for sequencing to
Eurofins MWG Operon (Huntsville, AL). Sequencing was
performed by dideoxy chain termination method (Sanger et
al. 1977) using ABI 3730XL sequencer.

Statistical Analysis

Genotype and SNP association with opioid (predominantly
heroin) addiction was analyzed by chi square test supple-
mented by power analysis and determination of odd ratios
(OD). Statistical analysis was done using statistical software
R version 3.0.1.

In silico Analysis of SNPs

In silico analysis of OPRM1 SNP rs1799971 was done to
predict its impact on encoded protein’s structure and function.
SIFT (http://sift.bii.a-star.edu.sg/) predicts the phenotypic
effect of mutation on protein structure, based on sequence
homology and physical properties of amino acids (Ng and
Henikoff 2003) and calculates tolerance index (TI) that is
classified as intolerant (0.00–0.05), potentially intolerant (0.
051–0.10), and tolerant (0.201–1.00). The higher the TI, the
lesser the functional impact of mutation. Query was submitted
as SNP Id with default settings (3.00 median conservation
score, remove sequences > 90% identical to query sequence)
and selecting SWISS-PROT and TrEMBL databases. Risk
associated with amino acid substitution (AAS) was predicted
by PolyPhen (Ramensky 2002). PolyPhen (http://coot.embl.
de/PolyPhen/) predicts effect of AAS based on evolutionary
conservations, physiochemical differences, and substitution
vicinity to structural features of protein. Query was
submitted as protein sequence (FASTA) along with substitut-
ed amino acids and their position.

SNPeffect (http://snpeffect.switchlab.org/) (Reumers et
al. 2006) annotate the variant by algorithms like TANGO
(predicts aggregation regions), WALTZ (for amylogenic re-
gion prediction), and FoldX (analyzes effect on structure
stability) [34]. PANTHER (http://www.pantherdb.org/
tools/csnpScoreForm.jsp) (Reumers et al. 2006) uses

hidden Markov model (HMM)-based statistical methods
to predict deleterious variants by calculating substitution
position-specific evolutionary conservation (subPSEC)
score ranging between 0 (neutral) and − 10 (most likely to
be deleterious). Pdeleterious determined the probability of
given variant to cause a deleterious effect (Mi et al. 2013).
The higher the value of Pdeleterious score, the severe the im-
pact of a variant on protein function. Protein sequence was
used as input for SNP prediction.

To visualize the impact of mutation, A118G SNP was
mapped on 3D structure ofOPRM1. Since, the crystal struc-
ture of human OPRM1 is not determined; therefore, we
used 3D structure of Mus musculus OPRM1 for
homology-based prediction. The protein template (PDB
ID: 4DKL) was selected from basic local alignment search
tool (BLAST) with highest sequence identity and smallest
distance on the phylogenetic tree. MODELLER (Martí-
Renom et al. 2000) was used for prediction of 3D structure
of OPRM1. RMSD between the mutant and wild-type pro-
tein structure was calculated to check the effect of mutation
on stability of protein structure.

In addition, we used RegulomeDB (Boyle et al. 2012) and
HaploregV2 (Ward and Kellis 2012) to determine the effect of
OPRM1 SNP on chromatin structure and allele-specific tran-
scription factor binding. HaploregV2 (http://www.
broadinstitute.org/mammals/haploreg/haploreg.php)
discovers variants present on haplotype blocks and explores
their regulatory nature and linkage with disease associated loci
(Ward and Kellis 2012). We used European and American
population groups to retrieve the SNPs present in LD with
our lead SNP. RegulomeDB (http://regulomedb.org) utilized
CHIP-seq data and chromatin state information across many
cell types as well as expression quantitative trait loci (eQTL)
information for functional annotation of variants (Boyle et al.
2012). This data was retrieved by using SNP Ids.
RegulomeDB scores the variants based on predicted potential
effects caused by the variant residing in a functionally impor-
tant region of the genome. The lower the score, the higher is
the effects on protein binding and expression of target gene
(Boyle et al. 2012).

Table 1 Genotype and allele frequencies in control group and drug
addicts

Groups Genotype Allele frequency

A/A A/G G/G A G

Control (N = 100) 79 13 8 171 (0.86) 29 (0.14)

79% 13% 8% 85.5% 14.5%

Addicts (N = 100) 71 07 22 149 (0.74) 51 (0.26)

71% 7% 22% 74.5% 25.5%

Wild-type allele = A, mutated allele = G, heterozygous genotype = A/G,
homozygous genotype = A/A, G/G,
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Results

Association of OPRM1 SNP with Opioid Addiction

Genotyping of OPRM1 SNP rs1799971 by RFLP and se-
quencingmethods show significant association of A118G var-
iant with addiction in Pakistani population. Among 35 fe-
males and 165 males, homozygous genotype A/Awas found
with highest frequency in both control and experimental
groups while heterozygous genotype A/G was more frequent
in control group (Table 1).Moreover, frequency ofmutated G-
allele was higher in addicts as compared to control group
(Table 1) indicating a higher risk for the opioids addiction.

The genotypic and allelic frequencies of A118G variant
(Figs. 1 and 2) depict significant association of opioid

addiction with GG genotype in addicts (Table 2). Genotype
distribution in control group and drug dependents was not in
Hardy-Weinberg equilibrium (p < 0.05). The +118AA geno-
type was taken as reference due to its higher frequency in
control group. Power analysis of these results is significant
for the strength of performed tests (Table 2).

Functional Annotation of rs1799971

In silico analysis of SNP rs1799971 by SIFT and PolyPhen
characterized mutation N40D as tolerant and benign (sensitiv-
ity, 0.91, specificity = 0.88) respectively to protein structure.
Similar effect was predicted by PANTHER. Furthermore,
physicochemical properties of mutated protein analyzed by
SNPeffect predicted change neither in protein aggregation

Fig. 1 Sequence chromatogram for sample C9. Sequencing of OPRM1 gene in the DNA samples from control group was performed using ABI 3730XL
sequencer. Arrow mark represents wild-type nucleotide A at position 118 in exon 1 of OPRM1 gene

Fig. 2 Sequence chromatogram for sample D10. Sequencing of OPRM1 gene in the DNA samples from opioid addicts was performed using ABI
3730XL sequencer. Arrow mark represents mutated nucleotide G at position 118 in exon 1 of OPRM1 gene
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nor amyloid propensity (Table 3). FoldX did not provide out-
put due to unavailability of OPRM1 protein 3D structure.

3D structure ofOPRM1 protein extracellular domain was
predicted byMODELLER using energy score ofmodels and
ERRATscore (Fig. 3a).No changewas observed in the struc-
tural domains of protein (RMSD = 0.1) after superimposing
the native and mutated protein models and inducing muta-
tion at corresponding position (N40D) by PyMOL viewer
(Fig. 3b).

Furthermore, Regulome DB score 4 shows minimal bind-
ing evidence (Table 3) while the chromatin is condensed in
different cell types (Table 4) indicating reduced expression of
OPRM1 gene in drug addicts by A118G polymorphism.
Haploreg V2 shows no other SNP in LD with rs1799971.
Moreover, A to G polymorphism creates canonical motif
BAGARGGCG^ for retinoid X receptor alpha (RXRA),
whereas affinity of hypermethylated in cancer 1 (Hic 1) tran-
scription factor is reduced due to loss of its motif
BNBBRTGCCAMCCNRHH^ (Table 3). These modifications
repress transcription of OPRM1 gene.

Discussion

Drug addiction is a developmental and neurological disorder
influenced by genetic, behavioral, and environmental factors
(Deroche-Gamonet et al. 2004; Volkow and Li 2004; FARRÉ
and CAMÍ 1991; Crabbe 2002; Camí and Farré 2003; Helmus
et al. 2001). In present study, we found significant association
of SNP rs1799971 (A118G) with opioid addiction in Pakistan.
We also predicted that A118G polymorphism does not change
encoded protein structure; rather, it may repress OPRM1 tran-
scription and number of available receptors to bind with drugs
by chromatin condensation and allele-specific transcription
factor binding.

Results of this study reveal that frequency of mutated G-
allele in our study is higher than Caucasian, European
American, African American, German, and Swedish popula-
tions (Crowley et al. 2003; Barr et al. 2001; Gelernter et al.
1999; Bart et al. 2004; Bart et al. 2005; Hernandez-Avila et al.
2003), while it is lower as compared to Japanese, Chinese,
Malay, Korean, Taiwanese, and Indian Asian populations

Table 2 Distribution of A118G
polymorphism in OPRM1 gene
between control group and drug
addicts

Groups Genotypic frequency Allelic frequency HW χ2 value (p)

AA A/G G/G AG+GG A G

Control 79 13 8 21 171 (0.86) 29 (0.14) 22.62 (< 0.001)

Addicts 71 07 22 29 149 (0.74) 51 (0.26) 67.54 (< 0.001)

Odds ratio 1 0.60 3.06 1.54 0.49 2.02 –
95% CI – 0.23–1.59 1.28–7.31 0.81–2.95 0.30–0.82 1.21–3.34

χ2 – 0.64 5.77 1.31 – – –
P – 0.419 0.016 0.253

RR – – – – 0.73 1.37 –

P 0.7175 – 0.8074

HW χ2 Hardy-Weinberg chi square, CI confidence interval, p p value, RR relative risk

Table 3 Phenotypic and
functional annotation of A118G
polymorphism

dbSNP ID rs1799971 PANTHER SNPeffect

Ch:Position (hg19) 6: 154360797 subPSEC − 1.7171 dTANGO 2.28

Function Missense P deleterious 0.21706 Prediction No effect on the
aggregation tendency

Allele A/G P substituted 0.05496 dWALTZ − 0.47
AAS N40D NIC 1.1 Prediction No effect on the

amyloid propensity

LD (r2) 1 SIFT

RegulomeDB score 4 TI 0.61

eQTL --- Prediction Tolerated

Regulatory motifs altered LOD score PolyPhen

Ref Alt PSIC 0.227

Hic1 11.1 1.9 Prediction Benign
RXRA 1 13

AAS amino acid substitution, NIC number of independent counts, PSIC position-specific independent counts,
subPSEC substitution position-specific evolutionary conservation, TI tolerance index, Ref reference allele, Alt
alternative allele; (—) indicates data no found
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(Kim et al. 2004; Li et al. 2000; Loh el et al. 2004; Nagaya et
al. 2012; Nishizawa et al. 2006; Tan et al. 2003). This SNP is
also associated with reduced effectiveness of morphine as an
analgesic (Janicki et al. 2006). Nevertheless, a study has also
reported no association of A118G polymorphism with drug
addiction (Coller et al. 2009). This indicates that there is var-
iability in implications of OPRM1 gene polymorphism on
drug addiction among different populations. Several factors
contribute to false positive results in studies; for example,
utilization of subjects belonging to mixed populations with
craving for various substances (Bond et al. 1998) and small
samples size (Nagaya et al. 2012). However, strong power
analysis in our study supports significance of relationship be-
tween A118G polymorphism and opioids addiction. SNPs
also affect pharmacological response of drugs. Studies have
documented better response of opioid antagonist naloxone
with good hypothalamic-pituitary-adrenal (HPA) axis activity
in individual carrying 118G-allele (Hernandez-Avila et al.
2003; Wand et al. 2002).

We adopted most commonly used computational tools
(Hou and Zhao 2013) for predicting the impact of A118G
polymorphism in opioids addicts individuals. A recent review
discussed the merits and demerits of these computational tools
in detail (Nishizaki and Boyle 2017).

Computational analysis predicted A118G mutation non-
damaging to extracellular domain of encoded protein indicat-
ing that it may not affect ligand binding affinity for μ-opioid
receptor. Our results are in accordance with a previous study
(Beyer et al. 2004), which reported unaltered binding affinity

of morphine, morphine-6-glucuronide, and β-endorphin for
both wild-type and mutated (N40D) μ-opioid receptors and
demonstrated reduced expression of mutated receptors. This
indicates that A118G mutation in OPRM1 gene declined the
expression of μ-opioid receptor in drug addicts decreasing the
number of receptors available to interact with drugs. This is
proved in our study by in silico analysis that A118G polymor-
phism causes chromatin condensation ultimately reducing
transcription of OPRM1 gene. Moreover, the absence of a
ligand RXRA forms heterodimer with retinoic acid receptor
alpha (RARA) associating with transcription co-repressor
complex that causes chromatin condensation and transcrip-
tional repression (Kastner et al. 1995; Mangelsdorf and
Evans 1995). It is previously reported that RXRA-RARA
complex repress transcription of multidrug resistance-
associated protein (MRP3) (Chen et al. 2007). This shows that
in the presence of opioids, RXR-RAR complex will activate
μ-opioid receptor to attain hedonic effects while it modulate
drug-seeking behavior and compulsive drug administration by
repressing OPRM1 gene in the absence of ligand.

Our study demonstrates significant association of opioid
addiction with A118G polymorphism in Pakistani population.
This SNP repressOPRM1 transcription by chromatin conden-
sation and altering regulatory motifs in an allele-specific man-
ner. This corresponds to reduced μ-opioid receptor expression
decreasing the number of receptors available to interact with
drugs in opioid addicts. This study provides significant causal
relationship between opioid addiction and genetic
predisposition.

Fig. 3 3D structure of
extracellular domain of OPRM1
gene. a Mapped mutation D40, b
Superimposed structures of wild-
type N40 (cynic) and mutated
D40 (green) protein

Table 4 Effect of A118G
polymorphism on chromatin
structure

Method Location (hg19) Histone mark Cell type Chromatin

ChIP-seq chr6:153264243..154539751 H3k09me3 Nhdfad Condense

ChIP-seq chr6:154360700..154360850 H3k27me3 Hre Condense

ChIP-seq chr6:154360660..154360810 H3k27me3 Monocd14ro1746 Condense

ChIP-seq chr6:154096836..154450021 H3k09me3 Nha Condense

ChIP-seq chr6:154110822..154537276 H3k27me3 Gm12878 Condense

ChIP-seq chr6:154279593..154423747 H3k9me3 K562 Condense
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