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Identification of prognostic 
signature of non–small cell lung 
cancer based on TCGA methylation 
data
Yifan Wang1,2,3,9, Ying Wang4,9, Ying Wang1,5,6 & Yongjun Zhang1,7,8 ✉

Non–small lung cancer (NSCLC) is a common malignant disease with very poor outcome. Accurate 
prediction of prognosis can better guide patient risk stratification and treatment decision making, 
and could optimize the outcome. Utilizing clinical and methylation/expression data in The Cancer 
Genome Atlas (TCGA), we conducted comprehensive evaluation of early-stage NSCLC to identify a 
methylation signature for survival prediction. 349 qualified cases of NSCLC with curative surgery were 
included and further grouped into the training and validation cohorts. We identified 4000 methylation 
loci with prognostic influence on univariate and multivariate regression analysis in the training 
cohort. KEGG pathway analysis was conducted to identify the key pathway. Hierarchical clustering 
and WGCNA co-expression analysis was performed to classify the sample phenotype and molecular 
subtypes. Hub 5′-C-phosphate-G-3′ (CpG) loci were identified by network analysis and then further 
applied for the construction of the prognostic signature. The predictive power of the prognostic model 
was further validated in the validation cohort. Based on clustering analysis, we identified 6 clinical 
molecular subtypes, which were associated with different clinical characteristics and overall survival; 
clusters 4 and 6 demonstrated the best and worst outcomes. We identified 17 hub CpG loci, and their 
weighted combination was used for the establishment of a prognostic model (RiskScore). The RiskScore 
significantly correlated with post-surgical outcome; patients with a higher RiskScore have worse overall 
survival in both the training and validation cohorts (P < 0.01). We developed a novel methylation 
signature that can reliably predict prognosis for patients with NSCLC.

With its increasing prevalence, lung cancer has emerged as the main cause of cancer-related deaths in the general 
population in recent years1. Constituting nearly 83% of lung-originated malignancies, non–small cell lung cancer 
(NSCLC) has a better prognosis than small cell lung cancer, which has consistently dismal outcomes2. Despite 
the favorable prognosis of patients with early-stage NSCLC who undergo curative surgical treatment, up to 40% 
of these patients would eventually relapse with metastatic disease. The prognosis for these patients remains very 
poor even with the numerous therapeutic options, including surgery, chemotherapy, target therapy, immuno-
therapy, etc., for NSCLC3. Conventional staging alone is inadequate for prognostic prediction and guidance of 
treatment decision making. This, there is an urgent need for a novel strategy for risk stratification in NSCLC.

DNA methylation can epigenetically modify genomic expression, and has long been associated with the 
development and progression of NSCLC as well as several other cancers4. It 2005, Schmiemann et al. detected 
the abnormal methylation status of RASSF1A, APC, and p16 (INK4a) in patients with lung cancer; therefore, 
they proposed the use of methylation detection for early diagnosis of lung cancer5. Thereafter, studies on the 
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relationship between lung cancer and gene methylation have increasingly been undertaken. For example, meth-
ylation of the MGMT gene promoter was associated with loss or decrease of MGMT expression in lung cancer 
tissues6. Similarly, SHOX2 can be used not only as a marker for early detection of lung cancer, but also as an 
independent predictor of prognosis for NSCLC5. Gene methylation of both SHOX2 and RASSF1A displays high 
sensitivity not only for the detection of different cancer stages, but also in the identification of different types of 
lung cancer (e.g., squamous cell carcinoma, small cell lung cancer)7,8. Furthermore, the sensitivity of these gene 
methylation studies increased when the combined methylation of RASSF1A and PCDHGB6 (92%) was evalu-
ated, compared to that of only HOXA9 (80%)9. In addition, the combined detection of SHOX2 and PTGER4 
gene methylation can improve specificity from 73% to 90%10. Overall, the evidence in the literature rationalizes 
the combination of a series of methylation loci as a prognostic signature for NSCLC. Owing to the recent rapid 
advances in liquid biopsy, methylation is one of the most popular markers detected in liquid biopsy; it has been 
shown to be a valid marker for early detection and classification of lung cancer11–14.

The Cancer Genome Atlas (TCGA) – a landmark cancer genomics program and the largest database of cancer 
– comprises molecular characterizations of over 20,000 primary cancer as well as matched normal samples span-
ning 33 cancer types. The TCGA program has generated, analyzed, and made available genomic sequence, expres-
sion, methylation as well as corresponding survival data, which makes it a perfect source for the identification of 
novel genomic/epigenomic markers with prognostic significance15. On the basis of the TCGA methylation spec-
trum of NSCLC, we sought to develop a prognostic model that integrates the most important methylation loci 
with their prognostic significance. By this study, we aimed to gain more insights into NSCLC survival prediction.

Materials and Methods
Data collection.  We included all cases of non–small cell lung cancer with epigenomic and genomic data as 
well as clinical data available on TCGA (The Cancer Genome Atlas). We collected clinical information on age, sex, 
race, history, type of diagnosis, and tumor stage of NSCLC from the TCGA database, on the website of National 
Cancer Institute (https://cancergenome.nih.gov/). We used the TCGA GDC API to download the latest clinical 
follow-up information, 450k methylation data, and the TCGA RNA-Sequence data of NSCLC. All data were 
collected on November 13, 2018. Subsequently, we collected follow-up information of 504 cases, RNA-Seq data of 
551 cases, and Illumina Infinium HumanMethylation450 data of 415 cases.

Data preprocessing.  For further analysis, we included a total of 349 cases with available clinical, methyla-
tion, and mRNA sequence data that had follow-up time of more than 30 days. Samples of 5′-C-phosphate-G-3′ 
(CpG) sites with NA (not available) value of more than 70% were removed; meanwhile, we removed the CpG sites 
with cross-reactivity on the basis of the discovery of cross-reactive probes and polymorphic CpGs in the Illumina 
Infinium HumanMethylation450 microarray, as reported previously16. The KNN method in R package (imputeR: 
A General Multivariate Imputation Framework) was used to impute the deletion value to the methylation spec-
trum, and to further exclude unstable genome methylation sites – the CpGs and single-nucleotide sites on the sex 
chromosome. Finally, we obtained 208,022 methylation sites.

Sample grouping.  We randomly divided 349 samples into training (n = 174) and validation (n = 175) sets 
that were matched for age distribution, clinical staging, follow-up time, and mortality rate (Table 1). None of the 
included patients had received any adjuvant chemotherapy or radiotherapy. We carried out identification of prog-
nostic methylation loci, hierarchical analysis, pathway analysis, weighted correlation network analysis (WGCNA) 
co-expression analysis, and construction of a prognostic model in the training cohort. In the validation cohort, we 
undertook validation of the predictive power of the prognostic model.

Statistical analysis.  Most of the statistical analysis was undertaken on SPSS software (version 19.0, IBM 
Corp., Armonk, NY, USA). Specific analysis was carried out by R language 3.1.4 (http://www. r-project.org) in 
Rpackage.

Identification of prognostically significant methylation loci.  A univariate Cox proportional hazard regression 
model was developed on the training set, considering all the methylation sites of the whole genome as well as clin-
icopathological parameters, such as age, gender, and T, N, and clinical stages. Further multivariate Cox propor-
tional hazard regression will be carried out on variables with significant influence on overall survival in univariate 
analysis. All analyses were implemented by the coxph function in Rpackage. P-value less than 0.05 was considered 
indicative of statistical significance.

Hierarchical clustering.  We conducted unsupervised hierarchical clustering for the methylation levels of the 
methylation loci that were found to be independent prognostic parameters on multivariate analysis. The similar-
ity distance between samples was used to calculate the Euclidean distance. The optimal clustering number was 
determined by the cumulative distribution function (CDF; Fig. 1A). A double sampling plan was adopted, with 
80% of samples sampled each time and repeated a 100 times. Figure 1 shows that the stability of the result can be 
achieved when the number of clusters (K) is up to 6, and this was selected as the cluster number for further anal-
ysis. Clustering analysis was carried out with the Consensus Cluster Plus of R software package (P-value <0.05 
was considered statistically significant).

KEGG pathway analysis.  We included all prognostically significant methylation loci to the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) function enrichment analysis, which was conducted by the clusterProfiler pack-
age in R software. KEGG pathways with P-values <0.05 were identified as statistically significant.
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WGCNA co-expression analysis.  We conducted the WGCNA co-expression analysis in the R software package 
WGCNA, and applied the WGCNA co-expression algorithm to explore the co-expression of CpG sites among 
all prognostically significant methylation loci. Then, we calculated the distance between each CpG site using 
the Pearson correlation coefficient, and constructed a weighted co-expression network. The analysis showed the 
co-expression network conforms to a scale-free network – that is, the log log(k) of the node with connection 
degree k negatively correlates with the log log(P(k)) of the probability of the node; the correlation coefficient is 
greater than 0.8. To ensure the network is scale-free, we selected beta = 7 (Fig. 2A,B). First, the expression matrix 
was transformed into an adjacency matrix, and, subsequently, into a topological matrix (TOM). Based on the 
TOM, we used the average-linkage hierarchical clustering method to cluster genes; thereafter, we followed the 
standard of mixed dynamic shear tree, and set the minimum number of genes in each long non-coding RNA 
(lncRNA) network module to 30. After we determined the gene modules by a dynamic shearing method, the 
eigengenes of each module were calculated in turn. Then, we undertook cluster analysis on the modules; the 

Training 
cohort

Validation 
cohort

P value (Chi-
square)

Gender
Male 129 129

0.9282
Female 45 46

Age (year)

40–49 7 7

0.7341

50–59 24 26

60–69 53 63

70–79 79 66

80–84 8 11

Not Available 3 2

T

T1 18 13

0.5684

T1a 9 11

T1b 17 18

T2 38 46

T2a 43 35

T2b 17 15

T3 29 28

T4 3 9

N

N0 112 111

0.4453
N1 44 50

N2 17 11

NX 1 3

M

M0 138 135

0.5505

M1 0 1

M1a 0 1

M1b 0 1

MX 36 37

smoking
smoked 156 153

0.5138
Not Available 18 22

Table 1.  Basic clinical information of Training cohort and Validation cohort.

Figure 1.  (A) Curve of cumulative distribution function (CDF), (B) CDF delta area curve of consensus 
clustering, with the x axis representing the category k, and the y axis denoting the relative change in area under 
CDF curve of category k when compared with category k − 1.
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modules with proximity were merged into new modules (height = 0.25, deepSplit = 2, and minModuleSize = 
30).

Results
Identification of methylation sites with prognostic influence.  To identify the methylation loci or 
clinical parameters associated with overall survival, we conducted a univariate cox proportional hazard regres-
sion analysis of the training cohort. We obtained 9201 loci with significant prognostic impact (P < 0.05); the top 
20 of these loci are shown in Table 2. Among the clinical parameters, including age, gender, T stage, N stage, 
and clinical stage, only the T stage and clinical stage were found to be significantly associated with prognosis 
(P = 0.0002197 and 0.005511, respectively).

Thus, we further applied the T stage, N stage, and pre-identified 9201 methylation loci in a multivariate Cox 
proportional risk regression analysis to screen out independent prognostic markers. 4000 methylation sites were 
found to be independently correlated with overall survival in NSCLC.

Hierarchical cluster analysis of prognosis-associated loci.  The unsupervised hierarchical clustering 
of the 4000 prognosis-associated loci separated all 174 samples in the training cohort into six categories (Fig. 3A). 
The heatmap analysis (Fig. 3B) showed most of the methylation sites manifested low abundance. However, sam-
ples of the 6 categories manifested different methylation patterns (Fig. 3B).

Furthermore, we analyzed clinicopathological features of the 6 molecular subtypes in regard to distribution 
of: T, N, and clinical stages; age; and difference in overall survival. We observed significant prognostic differences 
among the 6 molecular subtypes (p = 4e-5; Fig. 4A); the best prognosis was achieved in Cluster 4, and the worst in 
Cluster 6. The clinicopathological parameters had different distribution patterns among the 6 clusters. In general, 
patients in Cluster 6 tended to have a later clinical stage, larger tumor size, and more lymph node metastases; 

Figure 2.  (A,B) Network topology analysis for different soft-thresholding powers; (C) gene dendrogram and 
module colors; and (D) correlation between gene module and characteristic clusters.

https://doi.org/10.1038/s41598-020-65479-y
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however, they were younger (details in Fig. 4B–E). These results validate the use of molecular subtypes to classify 
patients who have different outcomes in addition to their clinical features.

Pathway analysis of prognosis-associated loci.  All the 4000 methylation loci that manifested prognos-
tic influence were detected on annotation and pathway analysis. All of these 4000 methylation loci were mapped 
to 3482 genes. As demonstrated on the KEGG function enrichment analysis, the 3482 genes were mainly enriched 
in multiple signaling and cancer pathways, such as the MAPK signaling pathway, VEGF signaling pathway, 

CpGs P-value HR Low 95%CI
High 
95%CI

cg15804782 4.86E − 07 8.59E + 14 1.31E + 09 5.64E + 20

cg05767633 7.58E − 07 8.45E + 18 2.67E + 11 2.67E + 26

cg09038676 8.63E − 07 3166428 8152.608 1.23E + 09

cg01097611 1.12E − 06 1.44E + 10 1177287 1.77E + 14

cg21348997 1.55E − 06 1.52E + 12 16342722 1.42E + 17

cg04216397 2.59E − 06 1.27E + 20 5.29E + 11 3.07E + 28

cg06894812 4.25E − 06 2.23E + 12 12164167 4.08E + 17

cg05324014 4.45E − 06 6.32E-07 1.42E − 09 0.000281

cg27628312 7.92E − 06 3.82E + 18 2.69E + 10 5.42E + 26

cg09110402 9.79E − 06 85.08886 11.87047 609.9263

cg02726924 1.12E − 05 3.09E + 19 6.19E + 10 1.54E + 28

cg22294241 2.43E − 05 654985 1305.684 3.29E + 08

cg26820911 2.46E − 05 1.88E + 11 1086987 3.26E + 16

cg00191629 2.59E − 05 3545.787 78.70704 159739.3

cg06742044 2.86E − 05 2.62E + 10 345090.2 1.99E + 15

cg17074000 3.11E − 05 82.28059 10.32936 655.4223

cg10070969 3.29E − 05 108264.7 455.2979 25744130

cg03862040 3.48E − 05 7.86E + 31 6.22E + 16 9.94E + 46

cg02442412 3.51E − 05 18951994 6766.073 5.31E + 10

cg26944011 3.68E − 05 7.62E + 09 154362.6 3.76E + 14

Table 2.  Top 20 methylation loci with significant prognostic influence.

Figure 3.  (A) Clustering heatmap in the case of consensus k = 6; (B) methylation heatmap of 4000 methylation 
loci in the training cohort.

https://doi.org/10.1038/s41598-020-65479-y
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central carbon metabolism in cancer, transcriptional dysregulation in cancer, and so on; these are known to be 
closely related to tumorigenesis and development (Fig. 5A).

To further explore the expression profile of the 3482 genes identified in our study, we obtained the mRNA 
sequence profile of these genes from the TCGA database for training cohort. The mRNA expression profile was 
available for only 2747 genes, and these were applied in the heatmap analysis for 174 samples in the training 
cohort. As shown in Fig. 5B, samples of different methylation clusters demonstrated similar mRNA expression 
patterns, thereby suggesting that the DNA methylation levels and gene expression of these genes are consistent.

Classification of molecular subtypes.  From the WGCNA co-expression analysis, we obtained 13 mod-
ules (Fig. 2C). All methylation loci that could not be aggregated into other modules were assembled as the gray 
module. As shown in Table 3, 1833 CpG were allocated to 12 modules. As clusters 1, 5, and 6 contained few sam-
ples, we only selected clusters 2, 3, and 4 as the three main categories of the samples, and their correlation with 
each module was analyzed by the Pearson correlation analysis. Cluster3 positively correlated with most modules, 
whereas Cluster4 demonstrated a negative correlation with the majority of modules (Fig. 2D).

Figure 4.  (A) Prognostic differences among 6 models; (B) proportion of different T stages in 6 models; (C) The 
proportion of different N stages in 6 models; (D) The proportion of different clinical stages in 6 models; and E. 
age distribution in 6 models.

Figure 5.  (A) KEGG pathway enrichment analysis of 4000 methylation with prognostic significance; (B) 
expression profile of 2747 genes corresponding to 4000 methylation with prognostic significance.

https://doi.org/10.1038/s41598-020-65479-y
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Hub CpG loci screening.  The blue, tan, green, black, and turquoise modules showed significant correlation 
with both Cluster3 and Cluster4, we selected the methylation sites in these modules and calculated their cor-
relation with the corresponding modules (MM) as well as with the Cluster3 phenotype (GS). We identified the 
hub CpG loci by MM > 0.9 and GS > 0.2 (Fig. 6A). There were 17 CpG loci in total, and most were in the black 
module. Table 4 shows detailed annotation information of the 17 CpG loci. These CpG sites were annotated 
on 16 genes, and 14 CpG sites were located on the gene promoter CpG island. Furthermore, we analyzed the 
methylation correlation among the 17 CpG loci by hierarchical clustering analysis. In Fig. 6B, we show where the 
correlation between the genes in each module is the highest and lowest.

Establishment and validation of prognostic model.  From the 17 hub CpG loci, we constructed a prog-
nostic signature that was a weighted combination of these prognostic markers. We selected the methylation spec-
tra of these 17 CpG sites, and determined the modification abundance of each CpG site in each sample. We used 
multifactor regression to analyze the 17 CpG loci and established a RiskScore model: According to the modified 
abundance of the 4000 CpG sites we obtained, we weighted the correlation coefficients of genes as the elements in 
the co-expression matrix by using the principles of the WGCNA co-expression algorithm. The weight-selection 
criterion was to used for the subduction of the connection between the genes contained in each gene network 
without a scale network distribution. Thus, the logarithm (log (I)) of the number of connected nodes is negatively 
correlated with the log (p(I)) of the probability of the occurrence of this node. Then, we determined the value of 
the weighted coefficient, and a risk score model was established on the basis of multivariate regression analysis 
with the formula:

=
. × + . × + . × +
. × − . × + . × −
. × + . × − . × +

. × − . × + . × −
. × − . × + . × −

. × + . ×

RiskScore
cg cg cg
cg cg cg
cg cg cg

cg cg cg
cg cg cg

cg cg

6 81 25191850 17 73 21231789 0 5 14831838
6 92 00919016 10 15 07436991 2 4 26682866
14 78 01244124 3 07 19584875 3 09 09272849
4 29 02606808 9 02 18901116 0 81 06061966
40 77 26752263 2 33 23466060 3 91 16581536
9 42 19940437 71 2 06706183

For each score, we calculated the risk score for each sample, and observed the expression patterns of CpG 
corresponding to different risk scores and their relationship with the overall survival. Together with the gradual 
increase of the RiskScore, the methylation level of the samples at the 17 CpG sites increased gradually, whereas 
the overall survival showed a decreasing trend (Fig. 7A). The median value of the RiskScore was used as the cutoff 
value to classify the samples into high-risk (RiskScore> median) and low-risk (RiskScore <median) groups. The 
high-risk group had a significantly worse overall survival than the low-risk group (P = 0.00178; Fig. 7B).

We applied the same RiskScore model to the validation cohort and evaluated its predictive power with regard 
to prognosis. The correlation of the RiskScore with methylation pattern and overall survival in the validation 
cohort was similar to that in the training cohort (Fig. 8A). Moreover, patients with a RiskScore larger than the 
median value had significantly worse prognosis than those with a lower RiskScore (P < 0.001; Fig. 8B). We 
inferred that the prognostic model constructed by the methylation spectrum of these 17 CpG sites can reliably 
predict prognosis for patients with NSCLC.

Discussion
Despite considerable research efforts into NSCLC in the past decade, there is no significant improvement in the 
overall survival of patients with NSCLC, especially those with early-stage NSCLC. The identification of high-risk 
early-stage NSCLC and early implementation of an enhanced therapeutic regimen is the key to improve the cure 
rate for NSCLC. Risk-stratification tools can better guide clinical decision making for early-stage lung cancer that 
is at high risk of relapse and, in these cases, multimodality treatment should be considered. The conventional 

Module CpG count

Brown 187

Green 144

Greenish yellow 62

Magenta 93

Pink 99

Purple 71

Red 117

Tan 35

Turquoise 570

Yellow 145

Black 111

Blue 199

Table 3.  Number of CpG loci in each module.

https://doi.org/10.1038/s41598-020-65479-y
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staging and grading systems cannot fully identify patients with NSCLC who are at high risk of relapse, especially 
early-stage patients who have a risk of recurrence after curative surgery.

With the clinical and genomic/epigenomic data we extracted from the TCGA database of patients with 
NSCLC who underwent curative surgery, we sought to establish a risk-stratification model on the basis of meth-
ylation markers. Subsequently, we identified 17 methylation loci with significant prognostic influence and used 
them to construct the prognostic model; the prediction power of this model was confirmed in the validation 
dataset. The results proved the methylation-based prognostic signature was a valid marker for risk stratification 
in early-stage NSCLC.

The rapid development of the high-throughput genomic/epigenomic detection technology facilitated further 
molecular insights into subgroup characteristics, from the perspective of gene mutation, gene expression, DNA 
methylation, and protein expression profiles, of patients with NSCLC. Genome-wide data have made it feasible to 
screen for core prognostic molecules, and the combination of these conveys stronger predictive power in terms 
of diagnosis or prognosis when compared with the predictive power of a single marker. Several of the previous 
studies have focus on mRNA expression data to develop prognostic signatures for all types of malignant dis-
eases, including lung cancer. Microarray and RNA sequence analyses have produced tons of tumor RNA expres-
sion signatures that are associated with clinical outcomes in NSCLC17–23. However, none of these prognostic 

Figure 6.  (A) Association between hub CpG loci and different modules; (B) association between hub CpG loci 
and characteristic clusters.

CpG Chrom Start End GeneSymbol
Feature_
Type MM GS Module

cg02606808 chr5 72107675 72107676 MAP1B Island 0.947354 0.24915 black

cg19940437 chr14 89954878 89954879 EFCAB11 S_Shore 0.934014 0.275199 tan

cg18901116 chr10 71397101 71397102 CDH23 Island 0.939698 0.259864 tan

cg19940437 chr14 89954878 89954879 TDP1 S_Shore 0.934014 0.275199 tan

cg00919016 chr7 1.39E + 08 1.39E + 08 KLRG2 Island 0.930312 0.289498 black

cg25191850 chr1 2.34E + 08 2.34E + 08 KCNK1 Island 0.900188 0.49867 turquoise

cg14831838 chr2 2.19E + 08 2.19E + 08 CDK5R2 Island 0.909691 0.264816 black

cg26682866 chr2 2.19E + 08 2.19E + 08 CDK5R2 Island 0.935384 0.262505 black

cg19584875 chr14 90061869 90061870 KCNK13 Island 0.942315 0.279599 tan

cg21231789 chr14 90061855 90061856 KCNK13 Island 0.932377 0.254928 tan

cg16581536 chr14 37595644 37595645 TTC6 Island 0.916525 0.46462 turquoise

cg16581536 chr14 37595644 37595645 FOXA1 Island 0.916525 0.46462 turquoise

cg06706183 chr6 53545058 53545059 GCLC Island 0.923999 0.204057 black

cg26752263 chr6 53545055 53545056 GCLC Island 0.930967 0.217814 black

cg19940437 chr14 89954878 89954879 RP11-33N16.3 S_Shore 0.934014 0.275199 tan

cg23466060 chr4 13544858 13544859 NKX3-2 Island 0.908867 0.326585 black

cg06061966 chr11 46345093 46345094 DGKZ N_Shore 0.905048 0.551368 green

cg01244124 chr15 70763776 70763777 UACA Island 0.925507 0.263363 black

cg09272849 chr15 70763496 70763497 UACA Island 0.917523 0.35689 black

cg07436991 chr20 11890663 11890664 BTBD3 N_Shore 0.911026 0.45042 turquoise

Table 4.  Annotation information of the 17 hub CpG loci.

https://doi.org/10.1038/s41598-020-65479-y
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expression signatures have been applied to clinical practice because of their uncertain performance on clinical 
samples. Furthermore, some studies were devoted to the excavation of prognostic markers from the perspective 
of microRNA or lncRNA profile, and a few prognostic signatures were proposed24–26; however, their clinical per-
formance remains to be evaluated.

DNA methylation is another potential biomarker known to convey diagnostic and prognostic significance 
in many types of cancer27. DNA methylation is an epigenetic mechanism that modifies a cytosine base through 
the addition of a methyl group at the CpG nucleotide residues (4). Vertebrate CpG islands are short, interspersed 
DNA sequences that are rich in guanine and cytosine (GC) and are predominantly non-methylated28,29. The devel-
opment of lung cancer has been associated with the exposure to hazardous environmental substances through 
respiration, which is considered a common cause of alteration in genome methylation30,31. The methylation status 
of specific genes has been found to be of diagnostic and prognostic value in lung cancer32,33. Genomic-wide meth-
ylation analysis has enabled the screening of methylation loci that have prognostic influence. Methylation-based 
diagnostic or prognostic signatures have been proposed for many cancers, including breast cancer, melanoma, 
colon cancer, hepatocellular cancer, and so on, and has shown promising predictive power34–39. A previous study 
proved DNA methylation would be a better biomarker for diagnosis and prognosis because of its predictive stabil-
ity when compared with gene and miRNA expression profiles40. A 4-gene methylation signature was recently pro-
posed to predict the outcome of early-stage lung adenocarcinoma41. Nonetheless, studies on a methylation-based 
prediction model for NSCLC are scarce.

Figure 7.  (A) Correlation of RiskScore with methylation pattern and overall survival in the training cohort; (B) 
Kaplan–Meier survival analysis of patients with high RiskScore vs low RiskScore in the training cohort.

Figure 8.  (A) Correlation of RiskScore with the methylation pattern and overall survival in the validation 
cohort; (B) Kaplan–Meier survival analysis of patient with high RiskScore vs low RiskScore in the validation 
cohort.
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In this study, we screened the hub methylation loci and established a prognostic model on the basis of the loci; 
this model was confirmed to be reliable in outcome prediction for early-stage lung cancer in the validation cohort. 
Our findings support the feasibility of methylation signature in risk stratification of patients with early-stage 
NSCLC. We identified 17 hub methylation loci that correspond to 13 genes; some of these have been previously 
shown to be associated with tumorigenesis in lung cancer. For example, the epigenetic repression of MAP1B was 
associated with the development of lung cancer in patients with chronic obstructive pulmonary disease42. Cdh23 
functions as a suppressor of cell migration, and its deletion can lead to progression of lung cancer43. GCLC is 
another tumor suppressor gene that induces synthetic lethality of cancer cells; GCLC deletion is associated with 
lung cancer development44. Moreover, CDK5R2/p39 increased the invasiveness of lung cancer by impairing cell 
adhesion and promoting epithelial-to-mesenchymal transition45. FOXA1 promoted lung cancer development as 
a suppressor of the tumor immune microenvironment, which facilitates immune evasion of cancer cells46. The 
consistency between the results of our study and the previous studies further confirms the reliability of our cur-
rent findings, and rationalizes the use of the methylation spectrum for risk stratification in NSCLC. Also, further 
analysis of the novel markers that identified in our study may generate more insights into the mechanism of lung 
cancer etiopathogenesis, or hopefully lead to the identification of new therapeutic targets.

In comparison with the methylation levels of selected genes, the RiskScore model integrating all the 
prognosis-related gene loci can yield more precise results and facilitate better risk stratification. The methylation 
based scoring system can be incorporated in the clinical practice for risk stratification of patients with early-stage 
lung cancer who have undergone surgical treatment. RiskScore can help predict the risk of recurrence and guide 
decision-making with respect to application of adjuvant therapy. In addition, this risk scoring model can also 
be applied to patients with advanced lung cancer for predicting long-term outcomes and to determine the best 
therapeutic choice. As tissue samples may not be available from patients who do not undergo surgery, circulating 
tumor DNA may serve as a promising substitute for methylation detection. As our RiskScore model is based on 
tissue, further study is required to validate its application on liquid samples like plasma, sputum, or bronchoal-
veolar lavage fluid. Applying RiskScore with liquid biopsies can help in dynamic monitoring of the therapeutic 
effect and disease progression.

Our study sheds light on improving the clinical management of early-stage NSCLC by enhancing risk 
stratification through the methylation profile. However, this study has some limitations that should be clearly 
addressed. First, we could not test our model in the setting of predicting the risk of recurrence, as data pertaining 
to progression-free survival data are not available in the TCGA database. As indicated in ESMO guidelines, the 
risk of recurrence ranges from 6%–10% per person per year, but decreases thereafter to 2%. After 5 years, the 
recurrence is virtually absent. This implies that long overall survival may be equivalent to lack of recurrence. 
Our results based on overall survival may reflect the risk of recurrence to some extent. However, further studies 
based on recurrence data are still required. Also, the methylation profile used in our study was derived from 
fresh frozen surgical samples; it remains unknown whether our results can be replicated in formalin-fixed and 
paraffin-embedded (FFPE) tissue samples or on clinical samples. The reliability of our findings should be further 
verified in the clinical settings. Furthermore, the prognostic model established in our study is a combination of 
the weighted level of certain methylation loci. The weight coefficient may change when data are produced by 
another analysis platform or how the quantifying methylation level is altered; this could limit the widespread 
application of the established RiskScore model. The model is yet to be simplified to be feasible for clinical applica-
tion. Lastly, the methylation signature alone may not potentiate its value in prognostic prediction. Further effort is 
required to integrate the methylation signature with other prognostic markers such as clinicopathological param-
eters, genomic mutation, or gene expression profile to maximize the predictive power of the model.

In conclusion, we identified a prognostic methylated NSCLC classifier based on the TCGA methylation spec-
trum. This classifier can efficiently identify patients of early-stage NSCLC with high risk of recurrence, wherein 
multimodality treatment should be considered. This model can guide clinicians in the selection of the most 
appropriate therapeutic for different individual, and thus optimize the clinical outcome of patients with NSCLC.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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