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Abstract

GABAergic dysfunction has been strongly implicated in the pathophysiology of schizophrenia. In 

this study, we analyzed the expression levels of several GABAergic genes in the anterior cingulate 

cortex (ACC) of postmortem subjects with schizophrenia (n=21) and a comparison group of 

individuals without a history of psychiatric illness (n=18). Our analyses revealed a significant sex 

by diagnosis effect, along with significant differences in GABAergic gene expression based on 

medication status. Analyses revealed that in male groups, the expression of GABAergic genes was 

generally lower in schizophrenia cases compared to the controls, with significantly lower 

expression levels of GABA-Aα5, GABA-Aβ1, and GABA-Aε. In females, the expression of 

GABAergic genes was higher in the schizophrenia cases, with significantly higher expression of 

the GABA-Aβ1 and GAD67 genes. Analysis of the effect of medication in the schizophrenia 

subjects revealed significantly higher expression of GABA-Aα1–3, GABA-Aβ2, GABA-Aγ2, and 

GAD67 in the medicated group compared to the unmedicated group. These data show that sex 

differences in the expression of GABAergic genes occur in the ACC in schizophrenia. Therefore 

our data support previous findings of GABAergic dysfunction in schizophrenia and emphasize the 

importance of considering sex in analyses of the pathophysiology of schizophrenia. Sex 

differences in the GABAergic regulation of ACC function may contribute to the differences 

observed in the symptoms of male and female patients with schizophrenia. In addition, our 

findings indicate that antipsychotic medications may alter GABAergic signaling in the ACC, 
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supporting the potential of GABAergic targets for the development of novel antipsychotic 

medication.
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1. Introduction

Schizophrenia is a widespread and debilitating disorder, with a lifetime risk of 

approximately 0.7% (Saha et al., 2005). Several hypotheses for the pathophysiology of 

schizophrenia have been proposed. These focus on the neurotransmitter systems implicated 

by pharmacological evidence, particularly the dopamine system (Kuepper et al., 2012; 

Seeman, 2013), the serotonin (5-HT) system (Meltzer et al., 2012), and more recently the 

glutamate system (Coyle et al., 2012; Javitt, 2012; Moghaddam and Krystal, 2012; Sodhi et 

al., 2008). Inadequate inhibition of these systems due to dysfunctional γ-aminobutyric acid 

(GABA) neurotransmission has also been proposed, and accumulating data support the 

GABAergic hypothesis of schizophrenia (Guidotti et al., 2005; Stan and Lewis, 2012).

The combined effect of nature (genes) and nurture (a stressful environment) is considered to 

underpin the causes of schizophrenia (Brown, 2011; Gejman et al., 2011; Owen et al., 2010; 

Roth et al., 2009; Uher, 2014). Gene expression provides a readout of both the genetic and 

the environmental factors that contribute to the pathophysiology of schizophrenia. Analysis 

of human postmortem brain is a powerful approach with which to elucidate the 

pathophysiological mechanisms of schizophrenia, because unlike studies of living patients, 

detailed molecular analyses can be performed directly in the critical brain regions of interest.

Accumulating data indicate that GABAergic function is disrupted in schizophrenia. 

Significant associations have been detected between variation of several GABAergic genes 

and schizophrenia, including the genes encoding the 67 kilodalton isoform of glutamic acid 

dehydrogenase (GAD67) (Straub et al., 2007; Zhao et al., 2007), and the GABA-A receptor 

subunits GABA-Aα1, GABA-Aα6 (Petryshen et al., 2005), GABA-Aβ2 (Lo et al., 2007; Lo 

et al., 2004; Yu et al., 2006; Zhao et al., 2007) and GABA-Aγ2 (Zai et al., 2009). Data from 

postmortem gene expression analyses have revealed reduced expression of GAD67 in 

several brain regions in schizophrenia, including the dorsolateral prefrontal cortex (DLPFC) 

(Akbarian et al., 1995; Curley et al., 2011; Duncan et al., 2010; Guidotti et al., 2000; 

Hashimoto et al., 2008a; Hashimoto et al., 2008b; Hashimoto et al., 2005; Kimoto et al., 

2014; Veldic et al., 2005; Volk et al., 2000; Woo et al., 2008), and the anterior cingulate 

cortex (ACC) (Guidotti et al., 2000; Hashimoto et al., 2008b; Thompson et al., 2009; Woo et 

al., 2004). Moreover, differences in the expression of GABA-A receptor genes have been 

detected in the DLPFC in schizophrenia, such as the GABA-A receptor subunits α1 

(Beneyto et al., 2011; Hashimoto et al., 2008a; Hashimoto et al., 2008b; Impagnatiello et al., 

1998; Ishikawa et al., 2004; Ohnuma et al., 1999), α2 (Beneyto et al., 2011; Volk et al., 

2002), α5 (Beneyto et al., 2011; Duncan et al., 2010; Impagnatiello et al., 1998), β2 

(Beneyto et al., 2011), and δ (Hashimoto et al., 2008a; Hashimoto et al., 2008b). Studies of 
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neutrotransmitter-to-receptor binding indicate that increased GABA-A receptor binding 

occurs in the neurons of layers II and III of the ACC (Benes et al., 1992) and in the 

prefrontal cortex in schizophrenia (Benes et al., 1996; Hanada et al., 1987). These data 

indicate that there is dysregulation of GABAergic signalling in schizophrenia. Moreover, 

reduced numbers of GABAergic cells expressing the glutamate receptor subunits GRIN2A 

and GRIK1 have been reported to occur in the ACC in schizophrenia, indicating that 

glutamatergic inputs may fail to adequately activate inhibitory GABAergic interneurons in 

schizophrenia (Woo et al., 2007; Woo et al., 2004).

The ACC is a critical component of the cortico-limbic circuitry in the brain, which is 

considered to be disrupted in schizophrenia (Benes, 2010; Beneyto and Lewis, 2011). 

Abnormal function of the ACC would be predicted to disrupt several aspects of emotional 

and cognitive processing, which are important components of the clinical presentation of 

schizophrenia. Data indicate altered morphological, metabolic, and neurotransmitter-related 

abnormalities in the ACC in schizophrenia (Clark et al., 2006). Furthermore, structural 

changes of the ACC have been detected using brain imaging of patients with schizophrenia 

(reviewed in Fornito et al., 2009). Functional imaging reveals deficits in the activation of the 

ACC during tests of executive function in schizophrenia patients (Minzenberg et al., 2009). 

For example, schizophrenia patients show impaired performance of the Stroop task, which 

measures information processing skills that require activation of the ACC (Krabbendam et 

al., 2009).

In the current study we have tested the hypothesis that there is abnormal GABAergic gene 

expression in the ACC in schizophrenia. We investigated the expression levels of several 

GABAergic genes in the ACC of postmortem subjects with schizophrenia and a comparison 

(control) group of subjects without a history of psychiatric illness. Genes were prioritized 

for analysis if they were previously associated with schizophrenia. We report sex differences 

in GABAergic gene expression in the ACC in schizophrenia which may contribute to the 

differences observed in the symptoms and pathophysiology of the disorder in males and 

females. Furthermore, we report differential GABAergic gene expression in medicated and 

unmedicated patients with schizophrenia, indicating that these medications may alter ACC 

function in schizophrenia through the GABAergic system.

2. Materials and Methods

2.1 Tissue used for study

Subjects were recruited at the Mount Sinai/Bronx Veterans Administration Medical Center 

Department of Psychiatry Brain Bank. Postmortem brain tissue was taken from individuals 

with schizophrenia diagnosed by DSM-IV criteria and comparison (control) subjects with no 

history of psychiatric or neurological disorders (Table 1). All subjects died of natural causes, 

without a history of alcoholism and/or substance abuse. All subjects had thorough 

neurological characterization to rule out neurodegenerative disorders including Alzheimer’s 

disease, as described previously (Oni-Orisan et al., 2008). This included evaluation for 

National Institute of Neurological and Communicative Disorders and Stroke and 

Association Internationale pour la Recherché et l'Enseignement en Neurosciences 

(NINCDS-AIREN) criteria for a diagnosis of vascular dementia; NINCDS, DSMIV and 
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Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) diagnosis of 

dementia; Consensus criteria for Lewy body disease; unified Parkinson's disease rating scale 

(UPDRS); clinical criteria for frontotemporal dementia; and tests of cognitive function 

including the mini-mental state examination (MMSE) and clinical dementia rating (CDR). 

The brain tissue also underwent neuropathological examination macro- and microscopically 

using CERAD guidelines. All assessment, consent, and postmortem procedures were 

conducted as required by the Institutional Review Boards of Pilgrim Psychiatric Center, 

Mount Sinai School of Medicine, and the Bronx Veterans Administration Medical Center. 

Tissue collection was as described previously (Oni-Orisan et al., 2008). Frozen tissue was 

placed on slides in 20µm sections including the anterior cingulate cortex, and stored at 

−80°C.

2.2 RNA extraction and cDNA synthesis

Tissue sections were stained in order to differentiate grey and white matter by incubation in 

1% cresyl violet acetate for 2 minutes, submersion in 95% ethanol, 100% ethanol for 30 

seconds, followed by immersion in xylene for 5 minutes. Grey matter was collected from the 

slides and RNA was extracted using an RNeasy mini kit (Qiagen, Hilden, Germany). The 

RNA integrity number (RIN) was determined using an Agilent BioAnalyzer (Agilent 

Technologies, Santa Clara, California) to provide a measure of RNA quality at the UIC 

DNA Services Core Facility.

All RNA samples were diluted to 20ng per microliter, followed by reverse transcription 

using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, 

California). Preamplification of cDNA was necessary due to the low starting concentration 

of mRNA. Equal volumes of each TaqMan assay to be used for expression analysis were 

combined for the preamplification reaction. 40µl cDNA, together with 4µl pooled assays and 

44µl TaqMan JumpStart (Sigma-Aldrich, St Louis, Missouri), was preamplified for 14 

cycles as previously described (Mengual et al., 2008; Sodhi et al., 2011).

2.3 qPCR

Gene expression was measured using commercial TaqMan assays (Applied Biosystems; 

Table 2). The expression of GAD67 and selected GABA-A receptor subunits (Table 2) were 

measured in preamplified cDNA derived from the gray matter of the ACC from each 

subject. In addition the expression levels of the housekeeping genes glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), cyclophilin (PPIA), and glucuronidase beta (GUSB) 

were measured. Assays for each target gene were performed in duplicate in 96-well optical 

plates using a Stratagene MX3000P instrument (Stratagene, La Jolla, California) and 

Sequence Detector Software (SDS version 1.6; PE Applied Biosystems). The relative 

standard curve method was used for these analyses as described previously (Sodhi et al., 

2011). Briefly, standard curves were generated for each target assay and for each 

endogenous control assay using a calibration curve and the geometric mean of GAPDH, 

PPIA, and GUSB expression was used for normalization of the target genes according to 

Applied Biosystems instructions (Guide to Performing Relative Quantitation of Gene 

Expression Using Realtime Quantitative PCR, Applied Biosystems).
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2.4 Statistical Analysis

Statistical analysis was conducted using SPSS version 20. Any subjects with RIN < 5.0 were 

excluded from the analyses. For α= 0.05, and n= 39, our observed power (one-tailed 

hypothesis) was 0.8 for a large effect size of 0.84, as determined by an online statistical 

calculator (www.danielsoper.com). Shapiro-Wilk tests were used to determine if data were 

normally distributed. Normally distributed data were analysed using multivariate ANCOVA 

to investigate main effects, and post-hoc analyses of individual genes were performed using 

univariate ANCOVA. Postmortem interval (PMI), age at death, and brain pH were included 

as covariates due to their correlation with gene expression and/or differences in their values 

between diagnostic groups (data not shown). Analyses included relative gene expression as 

the independent variable and both diagnosis and sex as the dependent variables. Data that 

were not normally distributed were analysed using the non-parametric Mann-Whitney U 

test. Due to the potential confounding effects of antipsychotic medications, and the reports 

of changes in GABAergic gene expression in rodents treated with haloperidol or clozapine 

(Zink et al., 2004a; Zink et al., 2004b), univariate ANCOVAs were also conducted to 

investigate the effect of medication status, including PMI, age at death, and brain pH as 

covariates.

3. Results

3.1 Effect of diagnostic group

Data were normally distributed for all target gene transcripts except GABA-Aε. Analysis of 

normally distributed target genes by multivariate ANOVA indicated no significant effect of 

diagnosis (F11,22=0.644, p>0.05) or sex (F11,22=1.454, p>0.05), but revealed a significant 

sex by diagnosis interaction for GABAergic gene expression (F=11,22=3.049, p=0.013). To 

further investigate this sex by diagnosis effect, post-hoc analyses were conducted on males 

and females separately.

Expression data in male subjects were normally distributed for every gene tested. 

Multivariate ANCOVA indicated no significant association between GABAergic gene 

expression and diagnosis in the male group (F12,3=1.521, p>0.05), but post-hoc analyses of 

individual genes revealed significantly decreased expression of GABA-Aα5 (F1,14=9.504, 

p=0.008), GABA-Aβ1 (F1,14=7.427, p=0.016), and GABA-Aε (F1,14=4.843, p=0.045) 

(Figure 1A). In the female subjects, all gene expression data were normally distributed 

except for GABA-Aε. Multivariate ANOVA of normally distributed data showed no effect 

of diagnosis (F11,5=1.233, p>0.05), but post-hoc tests indicated significant increases in the 

expression of GABA-Aβ2 (F1,15=7.197, p=0.017) and GAD67 (F1,15=4.545, p=0.05) 

(Figure 1B). The Mann-Whitney U test indicated no significant differences in the expression 

of GABA-Aε between the diagnostic groups (p>0.05).

3.2 Effect of medication status

The patient group was dichotomized into cases that were reported to be on antipsychotic 

medication at time of death and those who were not on antipsychotic medication. Analysis 

of gene expression by medication status was conducted in the male schizophrenia group 

only, due to the small number of females (<5) in the ‘off medication’ group. ANCOVA 
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showed significant differences between the on- and off- medication groups for the 

expression of several GABAergic genes (Figure 2, Table 3). Within the male subjects the 

off-medication group had significantly lower expression compared to the on-medication 

group for the genes encoding GABA-Aα1, GABA-Aα2, GABA-Aα3, GABA-Aβ2, GABA-

Aγ2, and GAD67 (Figure 2).

4. Discussion

This is the first report of sex-specific changes of GABAergic gene expression in the ACC in 

schizophrenia. While the majority of GABAergic genes had reduced expression in the ACC 

of the male schizophrenia group relative to the male comparison subjects, there appeared to 

be an overall increase in the female schizophrenia group relative to female comparison 

group. Statistically significant reductions in the expression levels of GABA-Aα5, β1, and ε 

genes (GABRA5, GABRB1, and GABRE respectively) were observed in the male 

schizophrenia group (Figure 1A). In contrast, gene expression was significantly increased 

for GABA-Aβ1 and GAD67 (encoded by GABRB1and GAD1 respectively) in the female 

patients relative to the female comparison group (Figure 1B). Therefore our data support 

previous findings of GABAergic dysfunction in schizophrenia and emphasize the 

importance of considering sex when investigating the pathophysiology of schizophrenia by 

revealing significant sex differences in the relative expression of these GABAergic genes in 

the ACC of males and females with schizophrenia.

Although the differential expression of specific GABA-A receptor subunits has been 

previously reported in schizophrenia, these differences have not been consistent between the 

studies conducted. For example, our findings in the ACC in males of decreased expression 

of the GABA-Aα5 subunit in schizophrenia have previously been reported in the prefrontal 

cortex in schizophrenia (Duncan et al., 2010), specifically in layer 4 (Beneyto et al., 2011). 

Conversely, an increase in GABA-Aα5 expression has been reported in the same region 

(Impagnatiello et al., 1998). Targeting this GABA receptor subunit may be therapeutic in 

schizophrenia. Indeed, a GABA-A receptor positive allosteric modulator that binds to the 

GABA-Aα5 subunit, has been shown to reverse dopaminergic hyperactivation in a rodent 

model of schizophrenia (Gill et al., 2011).

The abnormal expression of GABA-Aα5 may contribute to the cognitive symptoms 

experienced by patients with schizophrenia. The GABA-Aα5 subunit is reported to play a 

role in spatial memory (Collinson et al., 2002), although global ablation of this subunit in 

GABRA5 knockout mice resulted in improved performance in memory and learning (Olsen 

and Sieghart, 2008). These data indicate that altered expression of GABA-Aα5 may disrupt 

the pathways necessary for optimal cognitive function.

The GABA-A receptors containing the α5 subunit are located at extrasynaptic sites (Brunig 

et al., 2002), and these extrasynaptic GABA-A receptors are required for optimal tonic 

inhibitory function (Brickley and Mody, 2012; Yamada et al., 2007). Impaired tonic 

inhibition has previously been implicated in schizophrenia. The δ subunit of the GABA-A 

receptor which, like GABA-Aα5, is also predominantly within extrasynaptic GABA 

receptors (Zheleznova et al., 2009), is also reported to have lower expression in 
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schizophrenia (Maldonado-Aviles et al., 2009). Moreover our data indicated reduced levels 

of GABA-Aε expression in the ACC of males with schizophrenia. The role of the GABA-

Aε subunit in behavior is relatively unknown, but this subunit appears to confer insensitivity 

to anesthesia (Thompson et al., 2002) and to treatment with benzodiazepine drugs (Belujon 

et al., 2009; Kasparov et al., 2001; Thompson et al., 1998). GABA-A receptors containing 

the GABA-Aε subunit are unusual because they exhibit spontaneous activity (Neelands et 

al., 1999). Furthermore, there have been indications that receptors containing GABA-Aε are 

located extrasynaptically and contribute to tonic inhibition (Li et al., 2013). Therefore our 

GABA-Aα5 and GABA-Aε findings lend further support to the notion that altered tonic 

inhibition by GABA may contribute to the pathophysiology of schizophrenia (Maldonado-

Aviles et al., 2009).

Reduced GAD67 expression is a consistent finding in schizophrenia (Akbarian et al., 1995; 

Curley et al., 2011; Duncan et al., 2010; Guidotti et al., 2000; Hashimoto et al., 2008a; 

Hashimoto et al., 2008b; Hashimoto et al., 2005; Kimoto et al., 2014; Thompson et al., 

2009; Volk et al., 2000; Woo et al., 2004), however, we observed increased GAD67 

expression in the ACC of the female schizophrenia group. It is possible that this difference 

may be due to medication, because we observed that the expression of GAD67 was 

significantly higher in patients who were on medication compared with those who were off 

medication (Figure 2; Table 3). Indeed, elevated GAD67 expression has been detected in the 

ACC of rodents after treatment with antipsychotic drugs (Zink et al., 2004a; Zink et al., 

2004b).

The differential gene expression in males and females with schizophrenia may contribute to 

the sex differences observed in this disorder. While the frequency of schizophrenia is similar 

for both sexes (Saha et al., 2005), male patients have an earlier age of onset compared with 

female patients (Eranti et al., 2013; Faraone et al., 1994; Goldstein et al., 1990; Leung and 

Chue, 2000; Szymanski et al., 1995; van der Werf et al., 2014). Sex differences have also 

been noted in response to antipsychotic treatment (Smith, 2010; Usall et al., 2007), perhaps 

because male schizophrenia patients exhibit a greater level of negative symptoms which are 

relatively unresponsive to current antipsychotic treatments (Chue and Lalonde, 2014). The 

increased levels of GABA-Aβ1 (and perhaps also GAD67) in the ACC of female patients 

may contribute to their increased vulnerability to depressive symptoms compared with male 

schizophrenia patients (Andia et al., 1995; Goldstein and Link, 1988; Hafner, 2003).

As with any study using postmortem human tissue, there are limitations to this work. Firstly, 

while the sample size has sufficient power to detect relatively large effect sizes when the 

entire group was considered, this statistical power would be reduced after subgrouping the 

subjects by sex. This postmortem cohort differs from others previously tested because there 

is very little substance abuse in these subjects, and a relatively high average age (Table 1). It 

is beyond the scope of the current study to determine whether the differences reported here 

are also present in the earlier stages of schizophrenia. The results were also not corrected for 

multiple comparisons. Therefore these findings may require further validation through 

replication in other postmortem schizophrenia cohorts.
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Potential confounding effects of antipsychotic medication in the schizophrenia group were 

explored by comparing male patients who were medicated with male patients who were 

unmedicated at their time of death. Treatment of male rats with haloperidol and clozapine 

leads to increased expression of GAD67 and GABA-A receptors in the ACC (Zink et al., 

2004a; Zink et al., 2004b). Our data indicate that a similar effect may occur in human 

subjects treated with antipsychotic drugs (Figure 2). Higher expression levels of GAD67 and 

the GABA-A subunits α1, α2, α3, β2, and γ2 were detected in patients who were on-

medication while male patients who were off-medication had lower levels of GABAergic 

gene expression. Therefore, antipsychotic medication may ’correct’ the expression levels of 

GABAergic genes to the levels observed in the male controls (Figure 2; Table 3). It was 

beyond the scope of this study to fully determine whether medication was the sole cause of 

differences in GABAergic gene expression observed, and we were also unable to determine 

the effect of medication in females because only two female schizophrenia cases were off 

medication at time of death. Therefore the extent to which GABAergic targets are 

modulated by currently prescribed antipsychotic medication requires further investigation. 

Given the sex differences reported here, future investigations of the effects of medication on 

GABAergic gene expression in females could reveal interesting data.

Our ongoing studies will determine whether the differences in GABAergic gene expression 

we have observed are specific to particular cell types or cortical layers. The current data 

provided an overview of GABAergic gene expression across the cortex because we included 

all gray matter layers in our analyses. Previous studies have indicated differential GABA 

receptor binding in schizophrenia in specific cortical layers of the ACC (Benes et al., 1992).

In summary, our data show that sex differences in the expression of GABAergic genes occur 

in the anterior cingulate cortex in schizophrenia, and that antipsychotic medications may 

influence the regulation of GABAergic genes in this critical brain region. These data 

indicate that molecular pathways including the GABAergic genes contribute to the 

pathophysiology and treatment of schizophrenia, and provide further support to the notion 

that the GABAergic system contains novel targets for antipsychotic drug development.
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Figure 1. Differential GABAergic gene expression occurs in the ACC of males and females with 
schizophrenia
The relative expression of each GABA-A receptor subunit and GAD67 is compared in 

schizophrenia and control subjects. (A) Male schizophrenia subjects have a generalized 

decrease in the expression of almost every gene tested relative to male controls. (B) Female 

schizophrenia subjects appear to have a generalized increase in the expression in almost 

every GABAergic gene tested. Post-hoc analyses reveal significant alterations in the 

expression levels of specific genes, and are summarized in the graphs. Values shown are 

mean ± SEM of the relative expression of each target gene normalized to the geometric 
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mean of three housekeeping genes (GUSB, PPIA, and GAPDH), measured by qPCR. * 

indicates p≤0.05; ** indicates p≤0.01.
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Figure 2. Medication appears to ‘correct’ GABAergic deficits in the ACC in male patients with 
schizophrenia
The relative expression of each GABA-A receptor subunit and GAD67 is compared in 

schizophrenia subjects on and off medication at the time of death. Male schizophrenia 

subjects on medication have a generalized increase in the expression of the majority of 

genes tested relative to the patients off medication. Post-hoc analyses reveal significant 

alterations in the expression levels of specific genes; the off medication group had 

significantly lower expression compared with both the controls and the on medication 

groups for the genes encoding GABA-Aα1 (p=0.005 and 0.006 respectively), GABA-Aα2 

(p=0.010 and 0.005), GABA-Aα3 (p=0.003 and 0.007), GABA-Aγ2 (p=0.004 and 0.008), 

and GAD67 (p=0.005 and 0.013); expression in the control group was higher than both the 

on and off medication schizophrenia groups for GABA-Aα5 (p=0.012 for both) and GABA-

Aβ1 (p=0.023 and 0.024 respectively), medicated schizophrenia cases showed higher 

expression of GABA-Aβ2 than the off medication group (p=0.015), the control group had 

higher expression of GABA-Aγ3 (p=0.050) and GABA-Aε (p=0.049) than the medicated 

schizophrenia group, and there were no changes of expression for GABA-Aδ and GABA-

Aγ1. Values shown are mean + SEM of the expression of each target gene normalized to the 

geometric mean of three housekeeping genes (GUSB, PPIA, and GAPDH), measured by 

qPCR. * indicates p≤0.05; ** indicates p≤0.01.

Bristow et al. Page 16

Schizophr Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bristow et al. Page 17

T
ab

le
 1

D
em

og
ra

ph
ic

 v
ar

ia
bl

es
 o

f 
po

st
m

or
te

m
 s

ub
je

ct
s 

in
cl

ud
ed

 in
 th

e 
st

ud
y

N
A

ge
pH

R
IN

P
M

I

C
on

tr
ol

M
al

e
(0

)
72

.8
 (

14
.1

)
6.

41
 (

0.
27

)
6.

91
 (

0.
60

)
8.

2 
(6

.7
)

Fe
m

al
e

13
 (

0)
85

.5
 (

8.
5)

6.
41

 (
0.

25
)

6.
71

 (
0.

84
)

7.
3 

(6
.5

)

T
ot

al
18

 (
0)

81
.9

 (
11

.5
)

6.
41

 (
0.

25
)

6.
76

 (
0.

77
)

7.
6 

(6
.3

)

Sc
hi

zo
ph

re
ni

a
M

al
e

14
 (

8)
80

.0
 (

10
.6

)
6.

60
 (

0.
24

)
6.

39
 (

0.
78

)
11

.9
 (

4.
6)

Fe
m

al
e

7(
5)

75
.4

 (
5.

0)
6.

30
 (

0.
41

)
6.

61
 (

1.
09

)
13

.0
 (

6.
0)

T
ot

al
21

 (
13

)
78

.5
 (

9.
3)

6.
50

 (
0.

33
)

6.
46

 (
0.

87
)

12
.2

 (
5.

0)

V
al

ue
s 

sh
ow

n 
ar

e 
m

ea
n 

w
ith

 s
ta

nd
ar

d 
de

vi
at

io
n 

fo
r 

co
nt

in
uo

us
 v

ar
ia

bl
es

 in
 p

ar
en

th
es

es
.

A
bb

re
vi

at
io

ns
: A

ge
, a

ge
 a

t d
ea

th
 in

 y
ea

rs
; N

, n
um

be
r 

of
 s

ub
je

ct
s 

(n
um

be
r 

on
 a

nt
ip

sy
ch

ot
ic

 m
ed

ic
at

io
n 

at
 ti

m
e 

of
 d

ea
th

 s
ho

w
n 

in
 p

ar
en

th
es

es
);

 P
M

I,
 p

os
tm

or
te

m
 in

te
rv

al
 in

 h
ou

rs
; R

IN
, R

N
A

 in
te

gr
ity

 
nu

m
be

r.

Schizophr Res. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bristow et al. Page 18

Table 2

Analyses of GABAergic gene expression in the ACC in schizophrenia.

Gene Protein Locus Assay ID#

GABRA1 GABA-Aα1 5q34 Hs00168058_m1

GABRA2 GABA-Aα2 4p12 Hs00168069_m1

GABRA3 GABA-Aα3 Xq28 Hs00168073_m1

GABRA5 GABA-Aα5 15q12 Hs00181291_m1

GABRB1 GABA-Aβ1 4p12 Hs00181306_m1

GABRB2 GABA-Aβ2 5q34 Hs00241451_m1

GABRD GABA-Aδ 1p36 Hs00181309_m1

GABRE GABA-Aε Xq28 Hs00608332_m1

GABRG1 GABA-Aγ1 4p12 Hs00381554_m1

GABRG2 GABA-Aγ2 5q34 Hs00168093_m1

GABRG3 GABA-Aγ3 15q12 Hs00264276_m1

GAD1 GAD67 2q31 Hs01065893_m1

GUSB GUSB 7q21 Hs99999908_m1

GAPDH GAPDH 12p13 Hs99999905_m1

PP1A Cyclophilin 7p13 Hs99999904_m1

Relative gene expression was measured using commercially designed assays (Applied Biosystems).
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Table 3

GABAergic gene expression in the ACC – effects of medication in male subjects

Control
N=5

Schizophrenia
Off Medication
N=6

Schizophrenia
On Medication
N=8

Gene Protein Mean SEM Mean SEM Mean SEM F2,13 P

GABRA1 GABA-Aα1 1.20 0.11 0.59 0.11 1.04 0.08 6.67 0.010*

GABRA2 GABA-Aα2 2.29 0.20 1.34 0.19 2.17 0.14 6.33 0.012*

GABRA3 GABA-Aα3 1.74 0.21 0.50 0.20 1.31 0.15 7.40 0.007*

GABRA5 GABA-Aα5 1.16 0.10 0.68 0.10 0.80 0.07 5.19 0.022*

GABRB1 GABA-Aβ1 1.08 0.08 0.75 0.08 0.83 0.06 3.98 0.045*

GABRB2 GABA-Aβ2 3.03 0.39 1.92 0.37 3.24 0.27 3.95 0.046*

GABRD GABA-Aδ 0.90 0.21 0.74 0.20 0.99 0.15 0.49 0.625

GABRE GABA-Aε 0.57 0.13 0.31 0.12 0.25 0.09 2.36 0.134

GABRG1 GABA-Aγ1 0.89 0.11 0.79 0.10 0.61 0.08 2.84 0.095

GABRG2 GABA-Aγ2 1.70 0.19 0.69 0.18 1.40 0.13 6.67 0.010*

GABRG3 GABA-Aγ3 1.28 0.08 1.21 0.08 1.08 0.05 2.96 0.088

GAD1 GAD67 1.96 0.20 0.90 0.19 1.59 0.14 6.14 0.013*

Control subjects have no history of psychiatric disorder and no antipsychotic medication treatment; schizophrenia subjects are grouped based on 
whether or not they were on medication at time of death. Data were analyzed by univariate ANOVA with PMI, pH, and age of death included as 
covariates.

*
= p≤0.05.
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