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Sirtuin 1 suppresses nuclear factor κB induced transactivation and pro-inflammatory 
cytokine expression in cat fibroblast cells
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ABSTRACT.	 Nuclear factor κB (NF-κB) is a key factor in the development of chronic inflammation and is deeply involved in age-related and 
metabolic diseases development. These diseases have become a serious problem in cats. Sirtuin 1 (SIRT1) is associated with aging and 
metabolism through maintaining inflammation via NF-κB. In addition, fibroblasts are considered an important factor in the development of 
chronic inflammation. Therefore, we aimed to examine the effect of cat SIRT1 (cSIRT1) on NF-κB in cat fibroblast cells. The up-regulation 
of NF-κB transcriptional activity and pro-inflammatory cytokine mRNA expression by p65 subunit of NF-κB and lipopolysaccharide was 
suppressed by cSIRT1 in cat fibroblast cells. Our findings show that cSIRT1 is involved in the suppression of inflammation in cat fibroblast 
cells.
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Aging and obesity are associated with immune function 
failure, which leads to chronic inflammation and causes 
age-related and metabolic diseases in humans [7, 12]. These 
diseases have recently also become a serious problem in cats 
due to an increase in their indoor lifestyle and lifespan [10]. 
Nuclear factor κB (NF-κB) is a key factor in the develop-
ment of chronic inflammation and is deeply involved in 
age-related and metabolic disease development by driving 
pro-inflammatory cytokines [1, 5]. The p65 subunit of NF-
κB is extremely important in the NF-κB family, because it is 
the only ubiquitously expressed NF-κB protein containing 
a transcriptional activation domain [4]. Because the cat p65 
subunit of NF-κB (cp65) is expressed in a wide range of tis-
sue and up-regulates NF-κB transcriptional activity and pro-
inflammatory cytokine expression [15], regulation of cp65 
may be a potential target for protection from age-related and 
metabolic diseases.
The mammalian homologs of the yeast silent information 

regulator 2 (Sir2), sirtuin 1 (SIRT1), mediate a wide array of 
cellular responses that maintain metabolic and immune func-
tions through nicotinamide adenine dinucleotide (NAD+)-
dependent reactions [21]. Because of its NAD+-dependent 
activities, SIRT1 is deeply associated with aging and me-
tabolism [13]. SIRT1 has many substrates, and among these 
substrates, NF-κB plays a central role in regulating immune 
function [18]. It was initially shown that SIRT1 regulates NF-

κB transcriptional activity via direct deacetylation of the p65 
subunit of NF-κB [28]. Subsequently, the regulatory role of 
SIRT1 in the NF-κB pathway involves various mechanisms, 
such as pathway through the deacetylation of coactivator and 
activities, that do not depend on the deacetylation in mice 
and humans [2, 11]. We have previously reported that cat 
SIRT1 (cSIRT1) may be involved in inflammation in vivo 
[14], but there is little information on inflammation regula-
tory activity of cSIRT1 via the NF-κB pathway in vitro.
Fibroblasts have the ability to produce structural connec-

tive tissue proteins, such as collagen, and to modify the ex-
tracellular matrix and play a role in maintaining homeostasis 
in damaged tissue [17]. In addition, fibroblasts produce pro-
inflammatory cytokines, such as IL-1β, IL-6 and TNF-α, and 
modify the level of inflammation [23]. For these reasons, 
fibroblasts are considered an important factor in the forma-
tion of chronic inflammation and have attracted attention as 
therapeutic targets [6]. However, the underlying mechanism 
of chronic inflammation in cat fibroblasts remains elusive. In 
the present study, we aimed to examine the effect of cSIRT1 
on NF-κB transactivation and pro-inflammatory cytokine 
expression in cat fibroblast cells.
Cat fibroblast cells were prepared from uterine tissues 

obtained from 5- to 8-month-old healthy client-owned cats 
(n=3) that were spayed and cultured as previously described 
[15]. Written informed consent for the experiment was ob-
tained from the owners. Full coding regions were obtained 
by polymerase chain reaction (PCR) with specific primers 
of cp65 (primers 1, 2) and cSIRT1 (primers 3, 4) (Table 1). 
PCR products were cloned into mammalian-based expres-
sion vectors pcDNA3.1 V5-His B (Invitrogen, Carlsbad, 
CA, U.S.A.). Cloned cp65 and cSIRT1 expression vectors 
(pcDNA3.1-cp65 and pcDNA3.1-cSIRT1) were sequenced, 
and they confirmed the mRNA expression in cultured cells 
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(data not shown). To investigate the effect of SIRT1 on NF-
κB transcriptional activity, we performed luciferase reporter 
assay on cat fibroblast cells. Cat fibroblast cells were plated 
in 96-well plates at a density of 2 × 104 cells/well. Each vec-
tor was transfected using Lipofectamine 2000 (Invitrogen) 
according to the manufacturer’s instructions. All cells were 
transfected with 40 ng/well of pGL 4.32 [Luc2P/NF-κB-RE/
Hygro] reporter vector, with the luciferase coding sequence 
under the control of a minimal promoter containing five 
NF-κB-binding sites (Promega Corporation, Madison, WI, 
U.S.A.). The pGL 4.73 [hRluc/SV40] vector (Promega) 
was included in all transfections at 10 ng/well to allow nor-
malization for transfection efficiency. In the co-expression 
analysis, 40 ng/well of expression vectors (mock plasmid 
pcDNA3.1, pcDNA3.1-cp65 and pcDNA3.1-cSIRT1) 
were transfected in each cell. Furthermore, fibroblast cells 
transfected with mock or SIRT1 were incubated with lipo-
polysaccharide (LPS, Escherichia coli 0111:B4, Sigma, St. 
Louis, MO, U.S.A.) 5 µg/ml for 48 hr. LPS is large mol-
ecules constituting the outer wall of gram-negative bacteria. 
LPS acts as the endotoxin and induces NF-κB activation and 
pro-inflammatory cytokine production [3]. The uterine fibro-
blast cells express Toll-like receptor 4 and LPS induced in-
flammatory reaction in human and cats [8, 16]. In this study, 
the luciferase activity of the pGL 4.32 [Luc2P/NF-κB-RE/
Hygro] reporter vector was up-regulated by transient trans-
fection of cp65, and up-regulation of NF-κB transcriptional 
activity was considerably suppressed by co-transfection 
with cSIRT1 in cat fibroblast cells (Fig. 1a). In addition, LPS 
treatment of fibroblast up-regulated NF-κB transcriptional 
activity and up-regulation of NF-κB transcriptional activity 
was considerably suppressed by transiently transfection of 
SIRT1 (Fig 1b). Increased transcriptional activity of NF-κB 
triggers various intracellular events and leads to multiple 
cell responses, such as inflammation and apoptosis [20]. 
In human cells, SIRT1 overexpression suppresses NF-κB 

transcriptional activity and apoptosis [27]. Furthermore, in 
several mouse experimental case models, SIRT1 overexpres-
sion protected cells and suppressed symptom severity by 
suppressing NF-κB activity [19, 22]. Therefore, cSIRT1 can 
suppress NF-κB transcriptional activity, which may indicate 
that cSIRT1 protects cells and biological objects from a va-
riety of cellular responses caused by NF-κB in cats. Further 
investigation is required to understand the underlying mo-
lecular mechanisms and cellular responses involved in the 
NF-κB suppression ability of cSIRT1.
To investigate the ability of SIRT1 anti-inflammatory 

reaction, we determined the mRNA expression levels of 
pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in 
fibroblast cells by quantitative real-time PCR. Cat fibro-
blast cells were plated in 12-well plates at densities of 1 
× 105 cells and transfected with 400 ng/well of expression 
vectors (mock plasmid pcDNA3.1, pcDNA3.1-cp65 and 
pcDNA3.1-cSIRT1) using lipofectamine 2000. Furthermore, 
fibroblast cells transfected with mock or SIRT1 were incu-
bated with LPS 5 µg/ml for 48 hr. Total RNA was extracted 
using TriPure Isolation Reagent (Boehringer, Mannheim, 
Germany), and reverse transcription was performed using 
the QuantiTect Reverse Transcription Kit (Qiagen, Hilden, 
Germany). Real-time PCR was performed with Real Time 
PCR System 7300 (Applied Biosystems, Foster City, CA, 
U.S.A.) using SYBR Premix Ex Taq II (Takara, Otsu, Ja-
pan). The beta-actin (primers 5,6), IL-1β (primers 7,8), IL-6 
(primers 9,10) and TNF-α (primers 11,12) amplification 
primers are listed in Table 1. In the present study, all pro-in-
flammatory cytokine expression levels were up-regulated by 
transiently transfection of cp65, and up-regulation of expres-
sion levels was considerably suppressed by co-transfection 
with cSIRT1 in cat fibroblast cells (Fig. 2a). Furthermore, 
LPS treatment of fibroblast up-regulated pro-inflammatory 
cytokine expression levels, and up-regulation of expression 
levels was considerably suppressed by transiently transfec-

Table 1.	 Sequences of primers used for PCR

Primer Sequence (5’–3’) Position Accession Number
cp65
1 CTGGCTAGTTAAGCTCATGGACGACCTGTTTCC 115–132 AB930130.1
2 CTGGACTAGTGGATCTTAGGAGCTGATCTGACTC 1784–1765 AB930130.1
cSIRT1
3 CTGGCTAGTTAAGCTAGCAGAGGAGGCGAGGGA 21– 38 NM_001290246.1
4 CTGGACTAGTGGATCCTGGACAACTATTACATTATG 2321–2299 NM_001290246.1
Beta-actin
5 GCCAACCGTGAGAAGATGACT 152–172 AB051104.1
6 CCCAGAGTCCATGACAATACCAG 280–257 AB051104.1
IL-1β
7 TGGCACCAGTACCTGAACTC 46–65 NM_001077414.1
8 GCAACTGGATGCCCTCATCT 195–175 NM_001077414.1
IL-6
9 GGCTACTGCTTTCCCTACCC 69 –88 NM_001009211.1
10 GGTTGTTTTCTGCCAGTGCC 259–240 NM_001009211.1
TNF-α
11 CCACACTCTTCTGCCTGCT 134–152 NM_001009835.1
12 GAGTTGCCCTTCAGCTTCGG 305–287 NM_001009835.1
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tion of SIRT1 (Fig. 2b). An increase in pro-inflammatory 
cytokines is found in chronic inflammatory conditions [9, 
25], and fibroblast cells play a central role in producing 
pro-inflammatory cytokines in chronic inflammatory milieu 
[6]. Furthermore, pro-inflammatory cytokines produced in 
local cells by LPS stimulation were dispersed in the blood, 
and it causes also increase of pro-inflammatory cytokines 
levels and forming chronic inflammation in other tissues in 
mouse [26]. A recent study indicated that SIRT1 suppresses 
the production of pro-inflammatory cytokines and apoptosis 
caused by TNF-α or LPS treatment in human fibroblast cells 
[24, 27]. Taken together, these results suggest that cSIRT1 
suppresses the expression of pro-inflammatory cytokines 
in fibroblasts, indicating that cSIRT1 may be a useful tar-
get for chronic inflammation treatment. Further studies on 

the relationship between chronic inflammation and cSIRT1 
are needed for understanding pathogenesis and developing 
treatment modalities for age-related and metabolic diseases 
in cats.
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