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Brain network efficiency is influenced by
the pathologic source of corticobasal
syndrome

ABSTRACT

Objective: To apply network-based statistics to diffusion-weighted imaging tractography data
and detect Alzheimer disease vs non-Alzheimer degeneration in the context of corticobasal
syndrome.

Methods: In a cross-sectional design, pathology was confirmed by autopsy or a pathologically val-
idated CSF total tau-to-b-amyloid ratio (T-tau/Ab). Using structural MRI data, we identify asso-
ciation areas in fronto-temporo-parietal cortex with reduced gray matter density in corticobasal
syndrome (n5 40) relative to age-matched controls (n5 40). Using these fronto-temporo-parietal
regions of interest, we construct structural brain networks in clinically similar subgroups of in-
dividuals with Alzheimer disease (n 5 21) or non-Alzheimer pathology (n 5 19) by linking these
regions by the number of white matter streamlines identified in a deterministic tractography
analysis of diffusion tensor imaging data. We characterize these structural networks using 5
graph-based statistics, and assess their relative utility in classifying underlying pathology with
leave-one-out cross-validation using a supervised support vector machine.

Results: Gray matter density poorly discriminates between Alzheimer disease and non-Alzheimer
pathology subgroups with low sensitivity (57%) and specificity (52%). In contrast, a statistic of
local network efficiency demonstrates very good discriminatory power, with 85% sensitivity
and 84% specificity.

Conclusions: Our results indicate that the underlying pathologic sources of corticobasal syndrome
can be classified more accurately using graph theoretical statistics derived from patterns of white
matter network organization in association cortex than by regional gray matter density alone.
These results highlight the importance of a multimodal neuroimaging approach to diagnostic anal-
yses of corticobasal syndrome. Neurology® 2017;89:1373–1381

GLOSSARY
aAD 5 amnestic Alzheimer disease; AD 5 Alzheimer disease; CBS 5 corticobasal syndrome; FA 5 fractional anisotropy.

Two distinct neuropathologies account for the majority of causes of corticobasal syndrome
(CBS): (1) a form of tauopathy associated with the accumulation of misfolded and hyperphos-
phorylated tau or (2) Alzheimer disease (AD) with deposits of b-amyloid (Ab) in the form of
neuritic plaques and paired helical filaments of tau that result in neurofibrillary tangles.1 At
present, the pathology of underlying CBS is predicted antemortem in only 25%–56% of cases.1

Recent clinically heterogeneous studies have demonstrated that white and gray matter MRI
measurements can help distinguish AD from non-Alzheimer pathologies such as tauopathy,2,3

but may have been confounded by heterogeneous patterns of disease distribution associated with
clinical phenotypes rather than underlying pathologies. More recently, it has been demonstrated
that with CBS there is a dissociation of greater gray matter disease associated with AD pathology
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and greater white matter disease associated
with non-Alzheimer, or likely frontotemporal
dementia, pathology.4 However, this prior evi-
dence has not considered classification of indi-
vidual patients or network features.

Network science offers methods to analyze
complex relational data, and has increasingly
been applied to neuroimaging data. Recent
evidence suggests that network hubs in
fronto-temporo-parietal systems play critical
roles in normative processes associated with
cognitive and motor function5 and that their
failure leads to clinical abnormalities.6 Yet,
specific neuropathologic mechanisms linking
network properties to observable behavioral
phenotypes in clinical disorders have remained
elusive.

Here, we address these prior gaps by apply-
ing a network analytic technique to multi-
modal neuroimaging data to differentiate
pathologic drivers of CBS. We hypothesize
that AD pathology and non-Alzheimer pathol-
ogy such as tauopathy may contribute to subtle
differences in the degeneration of fronto-
temporo-parietal regions—key loci of multiple
cognitive and motor hubs implicated in CBS
—and that this is discernible as differential
network patterns. Specifically, we expect wide-
spread gray matter density reductions in fron-
tal, parietal, and temporal lobes in patients

with CBS, regardless of the specific pathol-
ogy.7 We further anticipate that network char-
acteristics associated with areas of reduced
gray matter density in CBS display discrimi-
nable patterns in non-Alzheimer vs AD
pathology, representing complex pathologic
consequences of these diseases. We test these
predictions in a clinically homogeneous pop-
ulation with CBS using diffusion-weighted
images in participants with non-Alzheimer or
AD pathology confirmed by autopsy or
autopsy-validated CSF tau/Ab ratios.

METHODS Participants. The patient cohort included 40 in-
dividuals from the Penn Frontotemporal Degeneration Center and

Cognitive Neurology Clinic at the University of Pennsylvania who

were clinically diagnosed with CBS and 40 age- and sex-matched

elderly controls. A board-certified neurologist with extensive expertise

in neurodegenerative diseases diagnosed all patients using published

criteria.1 AD or nonAD pathology was confirmed by autopsy, genetic

screen, or CSF analysis (see CSF analysis and figure e-1 at Neurology.

org). Throughout the rest of the article, we consider 3 groups of

interest: healthy elderly controls, individuals with AD pathology

presenting as CBS, and individuals with nonAD pathology pre-

senting as CBS confirmed by autopsy, genetics, or T-tau/Ab ratio.

We refer to these groups as controls, CBS due to AD (CBS-AD),

and CBS due to non-Alzheimer pathology (CBS-nonAD), respec-

tively. In all neuroimaging analyses including machine learning

approaches, tests were applied to identify differences among these

group designations. Patient groups were comparable on education

and overall disease severity measured with the Mini-Mental State

Examination and Clinical Dementia Rating scale (all p . 0.1).

Disease duration was significantly different (p 5 0.04) between

groups (see e-Results, “Relationship of network classification out-

comes to extrinsic variables,” concerning the robustness of results to

Table 1 Demographics and clinical features of corticobasal syndrome patients

Age, y Sex, M/F Education, y Disease duration, y MMSE CDR

Demographics and clinical ratings

AD 60.3 (7.9) 7/12 14.9 (2.9) 3.4 (2.6) 18.8 (7.3) 2.5 (5.3)

NonAD 65.7 (10.6) 7/14 14.6 (3.0) 2.1 (1.2) 22.1 (7.7) 1.5 (3.3)

Controls 60.9 (6.6) 20/20 15.1 (1.9) — —

Asymmetric rigidity Apraxia Cortical sensory loss Myoclonus Dystonia

Clinical symptom frequency

AD 0.5 0.9 0.6 0.6 0.4

NonAD 0.9 0.8 0.5 0.3 0.4

Visuospatial impairment Executive dysfunction Naming difficulty Effortful speech Early amnesia

Clinical symptom frequency

AD 0.8 0.8 0.8 0.3 0.4

NonAD 0.7 0.8 0.6 0.4 0.1

Abbreviations: AD 5 Alzheimer disease; CDR 5 Clinical Dementia Rating; MMSE 5 Mini-Mental State Examination.
Demographic, CDR, and MMSE information is presented as mean (SD). Values for CDR are median (interquartile range). Clinical features are presented as
the proportions of observed features noted on patient charts in the current sample. Classification accuracy was tested for robustness against
demographic and neuropsychological symptoms. See “Relationship of network classification outcomes to extrinsic variables” in the supplemental data for
a discussion of misclassifications.
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variables of noninterest). Patients were also matched on clinician

evaluation of the frequency of asymmetric rigidity, apraxia, cortical

sensory loss, myoclonus, dystonia, visuospatial impairments, exec-

utive dysfunction, naming difficulty, and effortful speech (table 1).

Standard protocol approvals, registrations, and patient
consents. Written informed consent was obtained from all study

participants using a protocol approved by an institutional review

board convened at the University of Pennsylvania.

Neuroimaging methods. See the supplemental data for

a description of our neuroimaging acquisition and preliminary

processing methods.

Network methods. See figure 1 for a schematic and description

of methods used to construct structural networks and train clas-

sifiers. See the supplemental data for further discussion and math-

ematical definitions of network features.

Network construction and regional statistics. Network sci-

ence is a framework for representing and analyzing complex rela-

tional data.8 In this framework, components of a system are

referred to as nodes, and connections between nodes are referred

to as edges. Together, the nodes and the edges that connect them

form a graph, which can be studied using techniques developed in

the field of mathematics known as graph theory. A graph can be

summarized in the form of an N3N adjacency matrix A. Here,

we generated an adjacency matrix of size 1193119 for each

participant. Each matrix element gives the number of streamlines

connecting region i with region j. Using each individual’s adja-

cency matrix, we calculated 5 commonly applied network statis-

tics at each of the 119 brain regions. We selected the statistics

based on the representation in the literature and theoretical rel-

evance in their putative roles in mediating network dynamics.

Specifically, we examined (1) strength (sometimes referred to as

“weighted degree,” here defined as the sum of streamline counts

to that particular region), (2) strength corrected for total edge

weight in the network (also known as network density), (3) local

clustering coefficient, (4) eigenvector centrality, and (5) local

efficiency. See the supplemental data for mathematical definitions

and reference 9 for a discussion regarding the usage of network

statistics in neuroimaging data.

Support vector machine analysis. Support vector machine is

a supervised learning method for binary classification,10 and is

therefore often used to classify observations (e.g., patients) into

2 possible classes (e.g., CBS-nonAD and CBS-AD). We treat the

following 3 types of data as features: gray matter density, white

matter streamline counts connecting pairs of regions, and net-

work statistics. We then train the support vector machines by

providing them with labeled observations, for which the classi-

fication results are known. To overcome limitations evident in the

use of linear classifiers, we employ nonlinear classification using

kernels,11 which transform the feature space such that a linear

classifier trained in the kernelized space is a nonlinear classifier in

the original feature space (figure 1E for an illustration of a non-

linear classifier).

Classifier training and testing. We evaluate classification

power for gray matter density and network statistics calculated

from cortical labels that displayed significantly reduced gray mat-

ter density in CBS (both CBS-AD and nonCBS-nonAD) in

comparison to healthy controls. We assign a label (CBS-nonAD

or CBS-AD) to each observation (patient in the CBS cohort)

based on that patient’s likely pathology determined using

autopsy, genetic, or CSF T-tau/Ab ratio. We utilized labeled

features for all observations except one to train a support vector

machine classifier and compared the pathology predicted by the

classifier for the left-out observation with his or her actual

pathology.12 This process was repeated 40 times (i.e., the number

of individuals in the clinical sample), each time with a different

individual excluded from the training phase. We defined the

Figure 1 Schematic of the method

(A) Regions of interest (n5119) were defined by OASIS labels registered to each individual’s
structural T1. (B) For each individual, we performed diffusion tractography to estimate
streamlines connecting all voxel pairs. (C) An N 3 N adjacency matrix A whose element
Aij represents the number of streamlines reconstructed between region i and region j. We
refer to each region as a network node, and each region–to-region connection as a network
edge, weighted by the number of connecting streamlines. (D) We used 5 statistics at each
node to classify non-Alzheimer vs Alzheimer disease (AD): (1) gray matter density, which is
agnostic to network connectivity; (2) node strength, which represents total edge weight of
connections incident to or equivalently emanating from a region; (3) local clustering, which
represents the extent to which a node’s neighbors are also connected to each other; (4)
eigenvector centrality, which is a statistic for the overall influence of a node in a network; and
(5) local efficiency, which offers ameasurement characterizing how connected the neighbors
of a node are when this node is deleted. Note that in this illustration, the local efficiency for
the node of interest is low. (E) Using the 5 statistics illustrated pictorially in panel D, we apply
a support vector machine to training data (see “support vector machine analysis”) to deter-
mine the classification measures and performance, equally weighted in sensitivity and
specificity. CBS 5 corticobasal syndrome.
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global sensitivity and specificity of the classification to be the

average performance over all trials for each feature. See the

supplemental data for additional details.

Majority vote. Each network statistic can be sensitive to fine-

scale differences in pathologic drivers. Pragmatically, we may

wish to combine information from all statistics to maximize

sensitivity to individual differences. Combined classifiers

generally lead to better classification results by including more

diverse information.13 In our “majority vote” classifier, each

individual was assigned to either the predicted CBS-nonAD

group or the predicted CBS-AD group according to the most

frequently predicted assignment across the 5 network statistics.

RESULTS Gray matter density as a disease biomarker.

To test the hypothesis that the gray matter in frontal,
temporal, and parietal cortex would be more affected
in CBS compared to healthy individuals, we tested for
regional differences in gray matter density using 2-
tailed t tests comparing the gray matter values from
controls to the joint sample of CBS-AD and CBS-
nonAD pathology. We applied a Bonferroni correc-
tion13 for multiple comparisons based on an a value
of 0.05 (corrected value: p 5 0.0004) and observed
that 62 of the 119 regions displayed significantly less
gray matter density in CBS in comparison to controls.
These regions were anatomically located over
a broad distribution of bilateral fronto-temporo-
parietal cortex, including the primary and supple-
mentary motor cortices, as well as the bilateral
insula (figure 2 and table e-1). We use these 62 areas
as regions of interest in the following classification
analysis.

White matter streamline differences as disease

biomarkers. To contextualize our machine learning
approach applied to network statistics, we tested for
differences in the number of streamlines connecting
pairs of regions in (1) elderly individuals compared
to those with CBS (CBS-AD and nonCBS-nonAD
pathology) in addition to (2) individuals with CBS-
nonAD relative to CBS-AD. We applied a Bonferro-
ni correction14 for multiple comparisons assuming an
a level of 0.05 (corrected value: p5 3.53 1026) and
observed that streamlines connecting 9 pairs of re-
gions were reduced in CBS relative to controls
predominantly within and between the right fronto-
temporal cortex, in addition to a pair in the left
frontal cortex and one interhemispheric connection
between the left medial frontal cortex and right
medial superior frontal gyrus (figure 3 and table e-2).
There were no region pairs with significantly different
streamline counts between individuals with CBS-
nonAD and AD. See the supplemental data for
a list of all regions with a reduced number of
streamlines in CBS relative to controls and a discus-
sion of our results compared to voxelwise measures of
white matter integrity in CBS.4

Network statistics as a pathology biomarker: A machine

learning approach. We trained support vector ma-
chines to identify nonCBS-AD relative to AD
pathology on each of the 5 network statistics calcu-
lated for the 62 regions displaying reduced gray
matter volume in CBS (see also the supplemental data
for analyses comparing CBS-AD and CBS-nonAD

Figure 2 Gray matter differences between corticobasal syndrome and healthy
controls, and between Alzheimer disease (AD) and nonAD pathology

(A) Regions with significantly reduced gray matter density in individuals with corticobasal
syndrome relative to controls following Bonferroni correction for multiple comparisons. A
wide range of regions within the frontal, parietal, and temporal lobes demonstrated reduced
density in the diseased cohort. (B) Regions with significantly different gray matter density in
individuals with nonAD relative to AD. In all cases, volumes were reduced in AD relative to
nonAD. Observe that only one region in the left precuneus and one region in the right medial
frontal gyrus are found to be statistically significant following Bonferroni correction for mul-
tiple comparisons. In both panels, hotter colors indicate increasing statistical significance.
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to an amnestic AD and amnesic mild cognitive
impairment sample). We observed the best classifi-
cation performance when using the local efficiency of
regions as the features in the support vector machine:
performance reached a peak sensitivity of 85% and
a peak specificity of 84% (see figure e-2 for results
across classifier parameters). Other network statistics
offered more modest sensitivities and specificities
compared to local efficiency. While local efficiency
reflects all areas of gray matter atrophy in CBS, the
regions contributing the highest weights to classifi-
cation performance include left middle temporal
gyrus, right temporal-parietal-occipital cortex, and
bilateral insula (figure 4 and figure e-3; see also figure
e-4 representing the relationship between local effi-
ciency and T-tau/Ab ratios).

To determine the relative utility of network statis-
tics in comparison to univariate descriptors in identi-
fying CBS-nonAD relative to CBS-AD pathology, we
trained and tested support vector machines using
either (1) gray matter density values or (2) all white
matter streamlines connecting pairs of regions within
the 62 regions shown to have reduced gray matter
density relative to the healthy control sample. The
classifier based on regional gray matter density offered
a maximum sensitivity of 57% and a maximum spec-
ificity of 52%. These results indicate that gray matter
density measurements do not strongly distinguish
between the 2 pathologies underlying CBS. We next

examined differences in peak performance (maximum
shared sensitivity/specificity) between network and
non-network statistics.15 Only local efficiency
demonstrated statistically superior performance to that
observed when using gray matter density (84% vs 52%;
x2[1] 5 7.26; p 5 0.035) and to that observed when
using white matter streamline counts (84% vs 52%;
x2[1] 5 7.26; p 5 0.035). Note that p values are
corrected for multiple comparisons within the gray
matter and white matter comparisons separately
due to their methodologically independent source.

Three other network statistics demonstrated statis-
tically significant classification performance relative to
chance (50% classification) as determined using
a binomial sign test: strength (p 5 0.008), strength
corrected for network density (p5 0.003), and eigen-
vector centrality (p 5 0.003). See figure e-5 for peak
sensitivity and specificities for each tested neuroimag-
ing measure. We also evaluated a decision tree
approach to network statistic-based classification to
examine the relative utility of the support vector
machine approach, but this did not yield any statis-
tically significant effects (see figure e-6).

The majority vote across network statistics offered
comparable performance to that obtained from the
local efficiency alone (against gray matter: 84% vs
52%; x2[1]5 7.26; p5 0.007; against white matter:
84% vs 52% x2[1]5 7.26; p5 0.007). Collectively,
these results indicate that the 5 selected network

Figure 3 Streamline differences between corticobasal syndrome (CBS) and healthy controls

Region pairs with significantly reduced white matter streamline counts in individuals with CBS relative to controls. Differ-
ences were most prominently observed in the right frontal and temporal cortices. Coronal representation is viewed facing
the anterior surface. Hotter colors for connections indicate increasing statistical significance. See the supplemental data
for a list of region pairs with a reduced number of streamlines.
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statistics robustly classify CBS-nonAD from CBS-
AD, but that local efficiency drives most of the clas-
sifier performance (see figure 4 and table e-3; see
“Relationship of network classification outcomes to
extrinsic variables” in the supplemental data for a dis-
cussion of misclassifications).

We also assessed the discriminating value of global
efficiency (at a conceptual level, a measure that is
inversely related to the path length) across the entire
network. While this measure discriminated between

all patients and controls with 82.5% accuracy (mini-
mum sensitivity/specificity 5 80%), we found that
global efficiency does not discriminate between CBS-
AD and CBS-nonAD patient groups (accuracy 5

65%; minimum sensitivity/specificity 5 58%) (see
e-Results, also for a model associating CSF T-tau/
Ab ratios with white matter local efficiency values).

Finally, we examined a cohort of 20 demographi-
cally and severity-matched patients with amnestic
mild cognitive impairment and amnestic AD
(aAD), and found that local efficiency robustly dis-
criminates between CBS-nonAD patients and aAD
patients (accuracy 5 100%; minimum sensitivity/
specificity 5 100%). In addition, local efficiency
robustly discriminates between CBS-AD and aAD
patients (accuracy 5 92.3%; minimum sensitivity/
specificity 5 90%; see e-Results “Additional clinical
cohort: amnestic Alzheimer and mild cognitive
impairment” section).

DISCUSSION Our results demonstrate that network
techniques applied to white matter tractography can
provide high accuracy in classifying the underlying
neuropathology contributing to CBS. Anatomical
network features can offer unique diagnostic value
relative to other traditional neuroimaging measures
in samples (CBS-AD and CBS-nonAD) where clas-
sification via clinical characteristics or neuroimaging
is particularly challenging. The underlying neuropa-
thology is captured most strongly by “local effi-
ciency,” which offers an intuitive measure of the
robustness of a local network to the degradation of
a gray matter node. These findings demonstrate that
multimodal imaging, network science, and machine
learning can be used to quantify distinct pathologies
underlying clinically homogeneous samples.3

We found broad fronto-temporo-parietal gray
matter loss in CBS due to CBS-AD or CBS-nonAD
pathology.6 However, evaluation of gray matter loss
alone did not discriminate effectively between CBS-
nonAD and CBS-AD pathology. Specifically, we
found AD-specific gray matter disease in the precu-
neus relative to healthy adults, consistent with find-
ings in AD not presenting as CBS.16 This brain area is
often associated with visual attention, the alteration
of which is a clinical characteristic of CBS. We also
found significant gray matter atrophy in ventral
medial frontal cortex in CBS-AD relative to CBS-
nonAD. While this medial frontal area is often noted
as the focus of disease in patients with a behavioral
variant of frontotemporal degeneration,17 and while
some patients with pathologically confirmed cortico-
basal degeneration may have disease in this region,18

this area is associated with a disorder of personality
and social cognition, and most patients participating
in this study did not have prominent changes in

Figure 4 Discriminating power of different feature sets

Sensitivity (blue) and specificity (yellow) for gray matter density and white matter stream-
lines (left), network statistics (middle), and majority vote (right). (A) Asterisk denotes that
local efficiency and themajority vote perform significantly better than graymatter and white
matter streamline classifiers. Observe that both sensitivity and specificity demonstrate
approximately chance performance when only regional gray matter density is considered.
(B) The spatial distribution of weights for the local efficiency classifier. In this classifier,
the left middle temporal gyrus, bilateral insula, and right lateral temporal-parietal-occipital
regions contribute the highest weight. Importantly, this weight is assigned in the context
of the entire support vector machine (SVM) classifier; thus, the weights are only meaningful
in the context of all regions contributing to the classifier. Increasing red represents increas-
ing absolute values of normalized weight in the classifier on a (0:1) interval.
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personality and cognition. Regardless of the clinical
consequences of disease in these regions, the analysis
of patterns of gray matter change in frontal, temporal,
and parietal regions affected by CBS was not able to
classify the corticobasal patients participating in this
study on the basis of their underlying pathology.

Within regions displaying reduced gray matter
density in CBS, the classification power of local effi-
ciency was superior to that obtained from white mat-
ter streamlines connecting pairs of regions or from
regional gray matter density. Local efficiency in cer-
tain frontal, temporal, and parietal regions contrib-
uted the highest weights to the discrimination
between CBS-nonAD and CBS-AD pathology, while
global efficiency of the gray matter reduced network
was not as effective at discriminating between these
underlying pathologies. The performance of local effi-
ciency was similar to a majority vote including the
prediction of all 5 network statistics, suggesting that
other characteristics of white matter network topol-
ogy did not substantially contribute critical informa-
tion sensitive to the pathologic basis for CBS. The
strategy applied here is an alternative to feature selec-
tion strategies designed to reduce feature redundancy
applied in other network analyses.19 These strategies
typically begin feature selection by examining the
correlation structure between features and group as-
signments. However, this may result in circular fea-
ture selection within a given sample. The current
work demonstrates that network feature selection
can be informed by independently calculated meas-
ures of gray matter degeneration prior to training
classifiers. This strategy could be examined in the
context of other neurodegenerative conditions to
identify robust structural network classifiers.

Importantly, prior work has demonstrated that
voxel and region-wise white matter analysis of frac-
tional anisotropy (FA) values can discriminate
between CBS-AD and CBS-nonAD pathology.4

Here, we demonstrate that the differential conse-
quences of AD and nonAD pathology are not
strongly discriminable when examining the number
of estimated streamlines. Streamlines are constructed
from paths through the principal directions of voxel
orientations, whereas FA quantifies the degree of
directedness of individual voxels regardless of their
direction. Here, we demonstrate that complex net-
work topology can discriminate CBS-AD and CBS-
nonAD pathology, and can additionally identify am-
nestic AD and mild cognitive impairment relative to
both CBS-AD and CBS-nonAD groups. Considered
together, the current results suggest that in addition
to sensitivity to pathology in the overall fractional
anisotropy of white matter,4 pathologic expressions
in structural white matter topology differ significantly
across these groups.

Our findings extend prior theories positing that
network-based statistics of neuroimaging data can
provide unique diagnostic value in neurologic sam-
ples.20 Pathologic burdens to the brain may appear
similar in gross neuroimaging approaches that apply
univariate techniques, but may have dissociable ef-
fects on network topology. It is particularly informa-
tive in the study of patients with CBS because of the
differences in white matter disease in the CBS-AD
and CBS-nonAD pathologies implicated in CBS.2

Our work demonstrates detectably different patterns
of network failure in the brain despite similar clinical
presentations. Widely distributed atrophy in fronto-
temporo-parietal gray matter characterizes CBS
compared to matched elderly controls, and clinical
features in this sample may result from similar effects
on local gray matter degeneration due to various his-
topathologic abnormalities that are insensitive to the
simple anatomical distribution of disease.

Our findings suggest that advanced analytic meth-
ods may be more sensitive to disease mechanisms re-
flected by dissociable local efficiency patterns in the
Alzheimer and non-Alzheimer groups. In AD, white
matter pathology is primarily due to Wallerian degener-
ation that follows from gray matter disease. Wallerian
degeneration is also evident in nonAD pathology
including frontotemporal lobar degeneration spectrum
pathology. The form of frontotemporal lobar degenera-
tion associated specifically with tau pathology, the other
major cause of CBS presumed to be present in our
non-Alzheimer group,1 is also uniquely associated with
specific white matter disease such as astrocytic plaques.21

The current findings suggest that the net effect of differ-
ences in white matter pathology at the network level
result in detectable differences in network organization
between Alzheimer and non-Alzheimer-related CBS.
Future studies could examine this hypothesis by using
postmortem pathology and by linking genetic variants
to patterns of structural network degeneration.

Network approaches can additionally enlighten us
as to the nature of complex network failures underlying
cognitive dysfunction,6 perhaps resulting from damage
to cognitive “hubs” that support a broad set of func-
tions.22 Here, local efficiency is particularly interesting
when considering cognitive resilience. This statistic
measures the local tolerance of the network to a node’s
removal and is thought to describe the importance of
a node in information transfer in subnetworks.23 This
is because local efficiency can be thought to represent
the degree to which neighbors of a node communicate
with one another via short paths. Thus, this measure
represents a notion of robustness in the context of
neurologic syndromes24: reduced local efficiency at
a given node means that its neighbors depend on the
node’s role for short paths of information transfer in
the local neighborhood. If a subnetwork involves many
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nodes with low local efficiency, relatively minor per-
turbations could have drastic consequences for subnet-
work function. Our results suggest that this could have
differential consequences for CBS-AD and CBS-
nonAD pathology: as structural network failures evolve
over time, clinical differences may becomemore salient
and produce cognitive and behavioral effects detectable
with neuropsychological testing.

Finally, the nosologic status of CBS is a complex
behavioral expression of neurobiological damage.
CBS is one of 4 clinical phenotypes resulting from
corticobasal degeneration, but its nosologic status
remains questionable.1 We focused on this pheno-
type and identified underlying differences in neuro-
pathologic effects on network organization. An
important goal in CBS and neurologic disorders at
large is to characterize disorders from genetic to
cognitive-behavioral levels. In corticobasal degener-
ation, it remains to be seen whether different path-
ologic and clinical expressions can be linked to
distinct network phenotypes more generally. For
example, in our CBS-nonAD group, we presume
that tau- and TDP-43 pathology contributes to
the degeneration that dissociates against CBS-AD
pathology.1 However, the spectrum of tauopathies
is particularly unexplored across neurodegenerative
disorders.25 It is possible that distinct genetic causes
of tauopathy express dissociable network damage
and different clinical phenotypes. Our study suggests
that linking validated CSF biomarkers with network
analysis could be constructive. In the future, similar
work that links biomarkers including CSF and genet-
ics with structural network and neuropsychological
measurements may provide an important new dimen-
sion in clarifying syndrome nosology.

Some limitations apply to this work. First, only
a subset of commonly applied network statistics was
examined; other statistics may offer additional in-
sights.26 Second, we employed deterministic tractog-
raphy to diffusion imaging data, and defined network
edges as the number of streamlines connecting 2 re-
gions27; other algorithms and probabilistic approaches
may emphasize different features of white matter net-
work organization in CBS.28 Third, diffusion imaging
data with greater resolution of diffusion directions
may increase classification accuracy. There is also
the possibility that a small proportion of participants
were incorrectly identified as AD or nonAD prior to
the network-based classification: the results of cross-
validation suggest that about 5% of individuals may
be incorrectly classified with the CSF heuristic used
here.29 Finally, while we assigned participants to clin-
ical groups based on current clinical diagnostic prac-
tices, future studies could include Ab-PET as an
additional diagnostic procedure and covariate to
examine robustness in classification analyses.
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