
Research Article
Universal Nonlinear Spiking Neural P Systems with Delays and
Weights on Synapses

Liping Wang , Xiyu Liu , and Yuzhen Zhao

Business School, Shandong Normal University, Jinan, China

Correspondence should be addressed to Xiyu Liu; xyliu@sdnu.edu.cn and Yuzhen Zhao; zhaoyuzhen@sdnu.edu.cn

Received 28 May 2021; Accepted 6 August 2021; Published 26 August 2021

Academic Editor: José Alfredo Hernández-Pérez

Copyright © 2021 LipingWang et al. 0is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0e nonlinear spiking neural P systems (NSNP systems) are new types of computation models, in which the state of neurons is
represented by real numbers, and nonlinear spiking rules handle the neuron’s firing. In this work, in order to improve computing
performance, the weights and delays are introduced to the NSNP system, and universal nonlinear spiking neural P systems with
delays and weights on synapses (NSNP-DW) are proposed. Weights are treated as multiplicative constants by which the number
of spikes is increased when transiting across synapses, and delays take into account the speed at which the synapses between
neurons transmit information. As a distributed parallel computing model, the Turing universality of the NSNP-DW system as
number generating and accepting devices is proven. 47 and 43 neurons are sufficient for constructing two small universal NSNP-
DW systems. 0e NSNP-DW system solving the Subset Sum problem is also presented in this work.

1. Introduction

Membrane computing (MC) is a representative of a new type
of computing, abstracted from the phenomenon of signal
transmission between cells in animals. It was proposed by
Gheorghe Păun in 1998 and published in 2000 [1]. As a new
type of natural computing, membrane computing has
abundant model support [2–4] and is widely used in real life
[5, 6]. 0e distributed computing model is named after the
membrane system or P system. So far, P systems are mainly
divided into three categories: cell-like P systems [7, 8],
tissue-like P systems [9, 10], and neural-like P systems.
Spiking neural P (SNP) systems [11], axon P systems [12],
and dendrite P systems [13] are widely studied types of
neural-like P systems.0e research on SNP systems has been
abundant for more than ten years. Similar to the spiking
neural network (SNN), in the SNP system, neurons are
activated, and the spikes are transmitted to other neurons
along the synapse. SNP systems encode information through
spikes in neurons. Intuitively, SNP systems are represented
by a directed graph, where the nodes in the graph represent
neurons, and the neurons are connected by arcs representing
synapses. Neurons contain spikes and rules; two kinds of

rules are used in SNP systems: firing rules (E/ar)⟶ a and
forgetting rules as⟶ λ. Generating, accepting, and func-
tional computing are the three working modes of SNP
systems. It is worth mentioning that, by introducing neuron
division, budding, or dissolution, the SNP system has been
proven to be able to solve some computationally difficult
problems, like SAT problem and Subset Sum problem
[14, 15]. SNP can also solve many practical problems such as
fault diagnosis of power systems [16–18], image processing
[19, 20], and combination optimization problem [21]. Based
on those innovative works, more and more scholars pay
attention to SNP systems. Many variants of SNP systems
have been proposed, and their computing power has also
been proven.

0e generation of the SNP system itself is affected by the
spike signal in biological phenomena. From the perspective
of biological facts, Păun et al. considered another important
component related to brain function, astrocytes, which
implicitly control the number of spikes along the axon. 0e
functional application of astrocytes in the SNP model was
first introduced in 2007 [22]. In 2012, Pan et al. formally
proposed SNP systems with astrocytes [23]. More discus-
sions about this type of system have been formed, such as

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 3285719, 15 pages
https://doi.org/10.1155/2021/3285719

mailto:xyliu@sdnu.edu.cn
mailto:zhaoyuzhen@sdnu.edu.cn
https://orcid.org/0000-0001-5583-545X
https://orcid.org/0000-0003-4976-9227
https://orcid.org/0000-0003-4902-1120
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3285719

[24, 25]. For such systems, astrocytes influence computation
by controlling the transmission of spikes on synapses.
Considering the difference in the number of synapses
connected between neurons, Pan et al. [26] previously
proposed spiking neural P systems with weighted synapses.
0en considering the mutual annihilation between spikes,
Pan and Păun [27] used a pair of antispikes (a, a) to explain
the SNP system with antispikes. In the initial SNP system,
there was a unique synapse connection between two neu-
rons. Based on biological facts, Peng et al. [28] proposed that
the synapse of each neuron can have an indefinite number of
channels connected to subsequent neurons, and the SNP
systemwithmultiple channels was reasonably verified. Later,
for the phenomenon that neurons carry positive and neg-
ative ions, the polarized SNP system was studied [29, 30]. In
view of this neurophysiological observation, the speed of
information transmission on the synapse is different. Song
et al. [31] proposed spiking neural P systems with delay on
synapses (SNP-DS) in 2020. On the other hand, driven by
the ideas of mathematics and computing science, many
variants of SNP systems make the SNP computing model
with a parallel mechanism more powerful, for example, a
complete arithmetic calculator constructed from SNP sys-
tems [32], SNP systems with random application of rules by
introducing probability [33], homogeneous SNP systems
with structural plasticity by adding and deleting connections
between neurons [34], SNP systems with colored spikes by
the idea of colored Petri nets [35], SNP systems with
communication on request by using the parallel-cooperating
grammar system to communicate on request [36], SNP
systems with learning functions used to identify letters and
symbols [37], and numerical SNP systems inspired by the
numerical nature of the numerical P (NP) systems [38].

For SNP systems and variants mentioned above, the
number of spikes in neurons is in integer form. So the
nonlinear spiking neural P (NSNP) systems were investi-
gated by Peng et al. [39]. In this system, the nonnegative
integer state of neurons is replaced by real numbers; the
number of spikes consumed and generated is replaced by
nonlinear functions. However, NSNP systems need 117 and
164 neurons to construct Turing universal systems as
functional computing device and number generator, re-
spectively. For a new heuristic computing model such as this
one, computing power is an important measure. At the same
time, as a computational model of exchanging space for
time, the computing power of NSNP systems needs to be
further improved.

In this work, for the purpose of greater calculation power
of NSNP systems, inspired by [26, 31], a novel P system, the
nonlinear spiking neural P systems with delays and weights
on synapses are proposed, abbreviated as NSNP-DW. In
NSNP-DW systems, related to several factors, such as the
dendrites’ length, the spikes emitted from the same firing
neuron reach different postsynaptic neurons at different
times. So delays on synapses are introduced into the NSNP
systems. Also, the number of dendrites among a firing
neuron and its postsynaptic neurons is different. Although
the spikes emitted from one neuron are the same, post-
synaptic neurons with different amounts of dendrites to the

firing neuron receive different amounts of spikes. 0erefore,
weights on synapses are added to the NSNP systems, and
weights are treated as multiplicative constants by which the
number of spikes varies when transiting across synapses.
Both of these elements play a role in enhancing the com-
puting power of the system.

Different from NSNP systems, the main novelties of this
work are as follows:

(i) We propose a novel P system called universal
nonlinear spiking neural P systems with delays and
weights on synapses closer to biological neurons.

(ii) For the NSNP systems in [39], integer spikes are
replaced by nonlinear functions. In the proposed
NSNP-DW system, we find more applicable non-
linear functions that are also common in neural
networks andmachine learning, so as to abstract the
complex responses generated by spikes.

(iii) We prove the computational power of the new P
system; in addition, 47 and 43 neurons are suc-
cessfully used for simulating function calculation
and number generator, respectively.

(iv) Computational efficiency is also an important
evaluation for a P system, usually considering
whether the NP-complete problem can be solved in
a feasible time. We prove the computational effi-
ciency of the new P system by solving a typical NP-
complete problem: Subset Sum problem in poly-
nomial time. It is an attraction of P system solving
computationally hard problems so quickly. 0is
makes the NSNP-DW system another powerful tool
to solve the NP-complete problem.

0e remaining contributions of the paper are reflected as
follows: Section 2 briefly shares the relevant content of
register machine. Section 3 proposes NSNP-DW systems
and gives two intuitive examples. 0e computing power of
NSNP-DW systems equivalent to the Turing machine is
proven in Section 4. Section 5 verifies the universality of the
NSNP-DW system using fewer neurons. 0e uniform so-
lution of the Subset Sum using the NSNP-DW system is
added in Section 6. Conclusion and follow-up research on
the NSNP-DW system are explained in the last section.

2. Prerequisites

0e elements of the formal language of the SNP system can
be consulted in [11, 26]. Here, we only introduce some
symbolic theories used in this work, such as Turing machine
construction, execution instructions, and universal Turing
machine.

We show that the proposed NSNP-DW system as
number generating and accepting device is equivalent to
Turing machine. An arbitrary family of Turing computable
natural numbers, defined as NRE, is a family of length sets
for recursively enumerable languages. NRE can be charac-
terized by a register machine M. 0e structure of the form
M � (m, H, l0, lh, I), where m is the number of registers, H

denotes the instruction tag set, l0 is the starting label, lh is the

2 Computational Intelligence and Neuroscience

halting instruction HALT, and I denotes the instruction set.
Each instruction in I is one of the following three forms:

(1) li: (ADD(r), lj, lk) (add 1 to register r and then
execute nondeterministically the instruction with
label lj or lk).

(2) li: (SUB(r), lj, lk) (if register r is nonzero, then
subtract 1 from it, and go to the instruction with label
lj; otherwise, go to the instruction with label lk).

(3) lh: HALT (the halting instruction).

By imitating the register machine, the universal NSNP-
DW system was verified. When all the registers are empty,
the calculation starts from l0, and the instructions in I are
continuously executed until halting instruction lh. 0e
number set generated by the register machine M is defined
as Ngen. Nacc is the number set accepted by M; corre-
sponding instruction li: (ADD(r), lj, lk) is deterministic and
can be expressed as li: (ADD(r), lj).

Computable function f: Nk⟶ N (k is a natural
number) can be calculated by the register machine. If the
equation ψx(y) � Mu(g(x), y) is satisfied, where x and y

are nonnegative integers and g(x) is a recursive function,
then the register machine Mu is universal. A universal
register machine Mu

′ simulated by the NSNP-DW system is
shown in Figure 1, consisting of 9 registers, 14 SUB in-
structions, 10 ADD instructions, and one HALT instruction.

3. NSNP-DW Systems

0ematerials and methods section should contain sufficient
detail so that all procedures can be repeated. It may be
divided into headed subsections if several methods are
described.

In the following, we provide the definition of the NSNP-
DW system and related semantic explanations. An example
shows the operation of the system more clearly.

3.1. Definition. 0e structure of the proposed NSNP-DW
system with degree m≥ 1 is

Π � O, σ1, σ2, . . . , σm, syn, Dsyn, in, out􏼐 􏼑, (1)

where

(1) O � a{ } is the singleton alphabet (a denotes spike);
(2) σ1, σ2, . . . , σm are neurons, in the form of

σi � (xi, Ri) for 1≤ i≤m, where xi ∈ R+ is the initial
value of spikes contained in neuron σi, indicating the
initial state of neuron σi, and Ri is the finite set of
spiking rules in the following form:

(a) Spiking/firing rules: E|ap(xi)⟶ aq(xi), where E

is the firing condition, p(xi) is a linear or
nonlinear function, and q(xi) is a nonlinear
function, and p(xi)≥ q(xi)≥ 0.

(b) Forgetting rules: E|ap(xi)⟶ λ, for a linear or
nonlinear function p(xi).

(3) syn ∈ 1, . . . , h{ } × 1, . . . , h{ } × W is a synaptic ex-
pression with weight, where W � 1, . . . , n{ },

h � m∪ environment. For any (i, j, n) ∈ syn,
1≤ i, j≤ h, i≠ j, and n ∈W.

(4) Dsyn represents the delay on synapse (i, j), expressed
in the form of a time number.

(5) in and out indicate the input and output neurons of
the system, respectively.

0e NSNP-DW system can be visualized by a directed
graph GΠ with nodes and arcs, where nodes are neurons and
arcs represent synapse connections. In original SNP systems,
the number of spikes is described by an integer. In NSNP-
DW systems, besides integer, it can also be described by
nonlinear functions. For the rules E|ap(xi)⟶ aq(xi) and
E|ap(xi)⟶ λ in the NSNP-DW system, the firing condition
E has two forms. (1) It is a regular expression like a(a3)+ to
exactly “cover” the contents of the neuron. If E is exactly
ap(xi), thenE can be omitted. (2) It is a threshold for enabling
the rule and exists in the form of a positive real number. In
order to distinguish, we write the rules as T|ap(xi)⟶ aq(xi)

andT|ap(xi)⟶ λ,T ∈ R+. Both types of rules can be used in
this paper. We assume that xi(t) is the spike value of neuron
σi at step t. For firing rules T|ap(xi)⟶ aq(xi), only when
xi(t)≥p(xi) and xi(t)≥T are satisfied, the rule can be
applicable. Intuitively speaking, when the firing rule is met,
the neuron is fired, consuming p(xi) spikes (if the remaining
(xi(t) − p(xi)) spike can no longer enable the rule, it will
disappear in the neuron) and sending out q(xi) spikes.
Forgetting rules T|ap(xi)⟶ λ, q(xi) ≡ 0 mean that spikes
with value p(xi) are consumed but not generated in the
neuron to which it belongs. 0ere will inevitably be multiple
rules (greater than or equal to 2) in a neuron, assuming two
rules, corresponding to the thresholds of T1 and T2, re-
spectively. (i) When T1 ≠T2 and both rules can be executed,
the maximum threshold strategy is applied. For instance, if
T1 >T2, the rule with T1 takes precedence, and the rule with
threshold T2 is not used. For this strategy, the forgetting rule
is no exception. (ii) When T1 � T2 � T, nondeterministic
rule selection strategy is enabled. 0at is, the rules with T1
and T2 need to be discussed separately.

In addition, for the NSNP-DW system, weights and
delays are reflected in synapses. For any (i, j, n) ∈ syn, n is
the weight on the synapse. If the spikes with value q(xi) are

l0 : (SUB(1), l1, l2)
l2 : (ADD(6),l3)
l4 : (SUB(6), l5, l3)
l6 : (SUB(7), l7, l8)
l8 : (SUB(6), l9, l0)
l10 : (SUB(4), l0, l11)
l12 : (SUB(5), l14, l15)
l14 : (SUB(5), l16, l17)
l16 : (ADD(4), l11)
l18 : (SUB(4), l0, l22)
l20 : (ADD(0), l0)
l22 : (SUB(0), l23, l24)
l24 : HALT

l1 : (ADD(7), l0)
l3 : (SUB(5), l2, l4)
l5 : (ADD(5), l6)
l7 : (ADD(1), l4)
l9 : (ADD(6), l10)
l11 : (SUB(5), l12 , l13)
l13 : (SUB(2), l18, l19)
l15 : (SUB(3), l18, l20)
l17 : (ADD(2), l21)
l19 : (SUB(0), l0, l18)
l21 : (ADD(3), l18)
l23 : (ADD(8), l22)

Figure 1: 0e universal register machine Mu
′.

Computational Intelligence and Neuroscience 3

emitted by neuron σi, neuron σj will receive n × q(xi) spikes.
0e delay between synapses (i, j) is represented by Dsyn,
Dsyn is in the form of a time number. If there is a delay
between neurons σi and σj, the spiking rules
T|ap(xi)⟶ aq(xi) belonging to neuron σi are enabled at step
t. 0e spikes with value p(xi) are consumed from σi in step
t + 1; neuron σj will receive the spikes with value q(xi) from
neuron σi at step t + Dsyn + 1. 0erefore, the spikes are
owned by σj after Dsyn(i, j) moments.

Besides, the consumption function p(xi) and the pro-
duction function q(xi) can be selected from the following
common activation functions in neural networks:

(1) Tanh function: f(x) � tanh(x) � (e2x − 1)/
(e2x + 1).

(2) Sigmoid function: f(x) � 1/(1 + e− cx).

(3) RuLU function: f(x) �
x, x≥ 0,

0, x< 0.
􏼨

(4) Derivative function of RuLU: f(x) �
1, x≥ 0,

0, x< 0.
􏼨

(5) ELU function: f(x) �
x, x≥ 0,

α(e
x

− 1), x< 0.
􏼨

(6) f(x) �
2, x> 0,

0, x≤ 0.
􏼨

(7) f(x) �

1, x> 0,

0, x � 0,

− 1, x< 0.

⎧⎪⎨

⎪⎩

(8) f(x) �

1, x> 1,

x, − 1≤x≤ 1,

− 1, x< − 1.

⎧⎪⎨

⎪⎩

(9) LReLU function: f(x) �
x, x> 0,

αx, x≤ 0.
􏼨

(10) PReLU function: f(x) � max(αx, x).
(11) Softplus function: f(x) � log(1 + ex).
(12) Swish function: f(x) � x · sigmoid(βx).

In the NSNP-DW system, neurons are used in parallel,
and the use strategy of rules in each neuron is in a sequential
manner; that is, only one rule is allowed to be employed
nondeterministically in a calculation step.

Assuming m neurons, xi(t) is the number of spikes of
the i-th (1≤ i≤m) neuron, then the configuration (state) of
the systemΠ at step t can be expressed as (x1(t), . . . , xm(t)),
and the initial configuration is X0 � (x1(0), . . . , xm(0)). By
executing spike rules, configuration X1 to configuration X2,
denoted by X1⇒X2, is defined as a transition of system Π,
and the sequence obtained by this transition is defined as a
calculation. Each calculation is related to a spike sequence
similar to a binary sequence. 0e sequence is composed of 0
and 1. 0e output neuron emits a spike to the environment
corresponding to 1; otherwise, it corresponds to 0. In this
study, the time interval at which the output neuron emits
spikes to the environment is used as the calculation result.

For an NSNP-DW system with at mostm neurons and at
most 2 rules in each neuron, we use NgenSNP2m to represent
all natural number sets generated by the NSNP-DW system
and NaccSNP2

m to represent all natural number sets accepted

by the NSNP-DW system. When the number of neurons is
uncertain, m is often replaced by ∗.

3.2. Two Illustrative Examples

Example 1. A simple example of the NSNP-DW system is
given in Figure 2, containing three neurons labeled by 1, 2,
and 3.0e weight between neuron σ1 and neuron σ2 is 2.0e
delay between neuron σ1 and σ3 is Dsyn(1, 3) � 1, denoted by
t � 1. It is assumed here that p(x) and q(x) take (5) and (4)
of the above function.

At step t, neuron σ1 receives two spikes from the
environment, its state is x � 2, and rule 2|ax⟶ ap(x)/2 is
applied. Neuron σ1 consumes two spikes and sends one
spike to neurons σ2 and σ3 each (because (p(x)/2) � 1).
At step t + 1, neuron σ2 receives two spikes due to weight
2. At this moment, neuron σ3 is not fired because of
Dsyn(1, 3) � 1. At step t + 2, neuron σ3 receives two spikes,
one from neuron σ1 and one from neuron σ2 (because
q(x) � 1). 0ere are two rules in neuron σ3 that both
meet the fired conditions. Subject to the maximum
threshold strategy, rule 2|ax⟶ aq(x) is used and emits
one spike to the environment (for q(x) � 1). 0is example
is complete and the results of each step are presented in
Table 1.

Example 2. Let p(x) and q(x) take (2) and (3) of the above
functions as the consumption and generation functions.
We define Πk as the system for generating natural
numbers; as shown in Figure 3, each neuron initially has a
spike.

In the first step, neuron σ3 uses rule 1|ap(x)⟶ aq(x)/2 to
emit 1/2 spike to the environment. At the same time,
neurons σ1 and σ2 also fire by applying rule
1|ap(x)⟶ aq(x)/2, sending a spike to each other (because of
weight 2), and neuron σ1 and neuron σ2 send one (because of
weight 2) and 1/2 spike to neuron σ3, respectively. In the
next step, neurons σ1 and σ2 continue their initial actions
any number of times, and the 3/2 spikes in neuron σ3 are
always removed. Once neuron σ2 executes rule
1|ap(x)⟶ aλ at step t, neuron σ2 stops emitting spike, and
neuron σ1 sends the last spike to neuron σ3. At step t + 1,
neuron σ3 has a spike, using rule 1|ap(x)⟶ aq(x)/2 to send
1/2 spike to the environment again. In this way, the time
interval (t + 1) − 1 � t of transmitting spike to the envi-
ronment, that is, the natural number N generated by the
system Πk.

4. Computational Power

In the nonlinear spike rule of the NSNP-DW system, we
choose two of the aforementioned functions (repre-
senting consumption or generation function) to verify
the Turing universality of the system and its computing
power. 0e following functions p(x) and q(x) are
considered:

4 Computational Intelligence and Neuroscience

p(x) �
x, x≥ 0,

α e
x

− 1(􏼁, x< 0,
􏼨

q(x) �
1, x≥ 0,

0, x< 0.
􏼨

(2)

0us, the state of neuron σi can be recorded by a
nonlinear equation:

xi(t + 1) �
xi(t) − p xi(t)(􏼁 + yi(t), if neuron σi fires,

xi(t) + yi(t), otherwise,
􏼨

(3)

where xi(t) and xi(t + 1) are the states of neuron at step t

and t + 1, respectively, p(xi(t)) represents the consumption
value, and yi(t) is the reception value.

In this part, we are committed to showing Turing
universal NSNP-DW system as number generating
device and accepting device. Given that the register
machine M can generate and accept any NRE, the NSNP-
DW system is proved to be universal through simulating
the number generated by M. In order to facilitate un-
derstanding, we assume that number n in register r

represents 2n spikes in neuron σr. Neurons σli
, σlj

, and σlk
receive two spikes, and the corresponding instructions
are activated.

4.1. NSNP-DW Systems as Number Generating Device

Theorem 1. NgenSNP2
∗ � NRE.

Proof. NgenSNP2
∗⊆NRE is beyond doubt based on the

Turing-Church thesis; only NgenSNP2
∗⊇NRE needs to be

proved. In the number generating mode, M � (m, H,

l0, lh, I) is the needed register machine, and the number
generating device includes ADD, SUB, and FIN modules.
M generates the number n in the following way: initially,
the number of all registers is empty, and the simulation
starts from instruction l0, continues the process with the
required label instructions, and stops at instruction lh.
According to the instructions, the number n stored in the
first register is calculated by M. In ADD and SUB
modules, neuron σli

receives two spikes and runs
according to instruction li: (OP(r), lj, lk) (OP is ADD or
SUB operation). Neuron σlj

or σlk
receives two spikes

indefinitely, and corresponding instruction lj or lk is
activated. In the FIN module, neuron σout sends spikes
outside twice at intervals.

ADD module (shown in Figure 4)—simulating an ADD
instruction li: (ADD(r), lj, lk).

Neuron σli
will receive two spikes from environment.

After running the ADD mode, spikes will be sent to neuron
σlj

or σlk
indefinitely to simulate instruction lj or lk. When

two spikes are in neuron σr, the corresponding register r is
increased by 1.

In detail, neuron σli
fires at step t, and rule

2|ax⟶ ap(x)/2 is executed, sending one spike to neurons
σc1

, σc2
, σc3

, and σr, respectively. 0e next moment, neuron
σc1

receives one spike. Since the same thresholds of rule
1|ax⟶ ap(x) and rule 1|ax⟶ λ, the two rules are exe-
cuted indefinitely:

(i) At step t + 1, if rule 1|ax⟶ ap(x) is used, one spike
will be sent to neurons σc2

and σc3
, respectively. Next

step, both neurons σc2
and σc3

contain two spikes,
one from neuron σli

and one from neuron σc1
. At

step t + 3, neuron σc3
fires by using rule 2|ax⟶ λ,

so that two spikes are removed. Rule 2|ax⟶ ap(x)/2

in neuron σc2
is applied simultaneously, consuming

two spikes and emitting one to neurons σc4
and σlj

.
At the next step, neuron σc4

becomes active by ex-
ecuting rule 1|ax⟶ ap(x), emitting one spike to
neuron σr and σlj

each. In this way, the second spike
is received by σr, which will aggrandize the value of
register r by 1. Neuron σlj

receives a total of two
spikes successively, and then instruction lj starts to
be simulated.

(ii) At step t + 1, neuron σc1
fires by using rule

1|ax⟶ λ, which causes a spike to be removed. At
step t + 2, neurons σc2

and σc3
each receive one spike,

and soon this no longer exists in neuron σc2
because

of 1|ax⟶ λ. 0e one received in neuron σc3
is sent

to neurons σc4
and σlk

through rule 1|ax⟶ ap(x).
0en, the next moment, neuron σc4

transmits one,
which is received by σr and σlk

. So neuron σr and σlk
have received two spikes at step t + 4, respectively,

2 | ax → ap(x)/2 2 | ax → aq(x)

2 | ax → aq(x)

1 | ax → λ

1 2

3

2

t = 1

Figure 2: A simple example.

Table 1: Number of spikes at each moment in neurons.

Step σ1 σ2 σ3
t 2 0 0
t + 1 0 2 0
t + 2 0 0 2 (fire)

1 | ap(x) → aq(x)/2
a

 | ap(x) → λ3
2

1 | ap(x) → aq(x)/2
a

1 | ap(x) → λ

1 | ap(x) → aq(x)/2
a

2

2 2

2

1

3

Figure 3: An example of simulating natural number generation.

Computational Intelligence and Neuroscience 5

indicating that the register r is increased by 1, and lk
is activated.

0erefore, simulating instruction li: (ADD(r), lj, lk) is
displayed correctly. Considering two different rules, Table 2
shows the number of spikes in all neurons at each moment.

SUB Module (shown in Figure 5)—simulating a SUB
instruction li: (SUB(r), lj, lk).

Two spikes are received by neuron σli
. If register r is not

empty, then two spikes are sent to neuron σlj
, and the

corresponding instruction lj is executed. If the value in the
register r is zero, then two spikes are sent to neuron σlk

, and
the instruction with label lk is executed. 0e detailed sim-
ulation process is as follows.

Neuron σli
fires at step t, and rule 2|ax⟶ ap(x)/2 is

applied to emit one spike. At step t + 1, neuron σr, σlj
, and

σlk
each receive one spike from neuron σli

. Next, there
will be two cases according to the value of spike in
neuron σr:

(i) At step t + 1, if 2n + 1 (n≥ 1) spikes are contained by
σr (the value of the corresponding register r is n),
then rule 3|ax⟶ aq(x) is applicable. Next step, the
neuron σc1

receives three spikes and fires, one from
neuron σli

and two from neuron σr. Based on the
maximum threshold strategy, rule 2|ax⟶ aλ is
used to consume these three spikes. At the same step,
neuron σlj

receives the second spike, and then in-
struction lj is simulated by system Π.

(ii) At step t + 1, if neuron σr only contains one spike
(the value of the corresponding register r is 0), then
the spike is removed by rule 1|ax⟶ aλ. At step
t + 2, a spike from neuron σli

is in neuron σc1
. 0e

firing of neuron σc1
by rule 1|ax⟶ ap(x) causes

neuron σlk
to add a spike. At the next step, neuron σlk

receives a total of two spikes, and then instruction lk
is simulated by system Π, but not lj.

So SUB module simulates instruction li: (SUB(r), lj, lk)

correctly. 0e simulated numerical changes are presented in
Table 3.

(3) FIN module (shown in Figure 6) - outputting the
result of computation.

At step t, neuron σlh
fires by running rule

2|ax⟶ ap(x)/2, transmitting a spike to σ1. Originally,
neuron σ1 contains 2(n − 1) (n≥ 2) spikes, and after re-
ceiving one spike, the rule 3|a2⟶ a can be used first
because of themaximum threshold strategy.0en neuron σc1
and neuron σout each have a spike from neuron σ1. 0e first
spike is sent by output neuron σout to the environment
through 1|ax⟶ ap(x) at step t + 3. Besides, neuron σout
receives one spike from neuron σ1 and neuron σc1

, re-
spectively, causing them to be forgotten by 2|ax⟶ λ. Since
two spikes are consumed in neuron σ1, a spike is contin-
uously given σc1

and σout. As a result, both spikes in neuron
σout from t + 2 to t + n are forgotten by 2|ax⟶ λ. Until
step t + n + 1, only one spike is kept in σ1, and then the
generated one is emitted by 1|ax⟶ ap(x). At step t + n + 2,
the neuron σout still accepts two spikes but is forgotten
instantly. At step t + n + 3, the last spike is received by
neuron σout from σc1

and sent to the environment through
rule 1|ax⟶ ap(x). 0e time interval between spikes
emitted to the environment is the number calculated by the
system Π. In short, the numerical result computed through
the system Π is (t + n + 3) − (t + 3) � n. Take the generated
number n � 4 as an example, and the simulated numerical
changes of output module are reflected in Table 4.

0rough the above discussion, we can see that the system
Π accurately simulates the register machine M, so the
theorem is reasonable. □

4.2. NSNP-DW Systems as Number Accepting Device

Theorem 2. NaccSNP2
∗ � NRE.

Proof. In the number accepting mode, the number in the
first register is n (others are empty), and then the calculation
starts from l0; when the calculation stops, the number n is
accepted. Similar to 0eorem 1, we only need to verify
NaccSNP2∗⊇NRE. 0e constructed NSNP-DW system as
number accepting device includes an INPUT module, a
deterministic ADD module, and a SUB module. Figure 7
shows the INPUT module.

Suppose that the first spike is received by neuron σin at
step t; the firing of σin gives a spike to neurons σc1

, σc2
, and

σc3
through rule 1|ax⟶ ap(x). 0en, neuron σc1

fires and
outputs one spike to neuron σl0

, while neurons σc2
and σc3

fire by using rule 1|ax⟶ ap(x). At step t + 2, neurons σc2
and σc3

send one spike to each other, and especially neuron
σ1 receives two spikes from neuron σc2

, until neuron σin
receives the second spike. 0us, neuron σ1 receives 2n spikes
from step t + 2 to t + n + 1.

At step t + n + 1, neuron σin obtains a spike again and
reacts using rule 1|ax⟶ ap(x), sending one spike to
neurons σc1

, σc2
, and σc3

again. At step t + n + 2, σc2
and σc3

each possess two spikes, and rule 2|ax⟶ λ is applicable so

c2

c4

c1

lj

li

t = 1 t = 1

r

lk

c31 | ax → ap(x)

1 | ax → ap(x)

1 | ax → λ

1 | ax → ap(x)

2 | ax → λ

2 | ax → ap(x)/2

1 | ax → λ

2 | ax → ap(x)/2

1 | ax → λ

Figure 4: ADD module (simulating li: (ADD(r), lj, lk)).

6 Computational Intelligence and Neuroscience

that spikes are eliminated. Simultaneously, neuron σc1
fires

for the second step, executing rule 1|ax⟶ aq(x) to give
neuron σl0

a spike, whereupon instruction l0 is activated.
Figure 8 displays the simulating of deterministic ADD

instruction li: (ADD(r), lj). Neuron σli
accepts two spikes,

consuming them and sending two spikes to neuron σlj
through rule 2|ax⟶ ap(x); instruction lj is simulated.
Neuron σr contains two spikes, indicating that the register r

is increased by 1. 0e SUB module of accepting mode is the
same as in Figure 4.

In short, NaccSNP2
∗ � NRE holds. □

5. Small Universal Computing Devices

5.1. Small Universal NSNP-DW Systems as Function Com-
puting Device

Table 2: 0e spike result under ADD module.

Step σli
σc1

σc2
σc3

σc4
σlj

σlk
σr

t 2 0 0 0 0 0 0 2n
t + 1 0 1 0 0 0 0 0 2n+ 1

If 1|ax⟶ ap(x) is used If 1|ax⟶ λ is used
σli

σc1
σc2

σc3
σc4

σlj
σlk σr σli

σc1
σc2

σc3
σc4

σlj
σlk σr

t + 2 0 0 2 2 0 0 0 2n+ 1 0 0 2 2 0 0 0 2n+ 1
t + 3 0 0 0 0 1 1 0 2n+ 2 0 0 0 0 1 0 1 2n+ 1
t + 4 0 0 0 0 0 2 1 2n+ 1 0 0 0 0 0 1 2 2n+ 2
t + 5 0 0 0 0 0 2 0 2n+ 1 0 0 0 0 0 0 2 2n+ 2

li

lj lk

t = 1

r c1
2

2 | ax → ap(x)/2

1 | ax → λ

3 | ax → aq(x)

1 | ax → λ

1 | ax → ap(x)

2 | ax → λ

Figure 5: SUB module (simulating li: (SUB(r), lj, lk)).

Table 3: 0e results of spike in SUB module.

σr is not empty σr is empty
Step σli

σc1
σlj

σlk
σr σli

σc1
σlj

σlk
σr

t 2 0 0 0 2n+ 1 2 0 0 0 0
t + 1 0 0 1 1 2n+ 2 0 0 1 1 1
t + 2 0 3 2 1 2n − 1 0 1 1 1 0
t + 3 0 0 2 1 2n − 1 0 0 1 2 0
t + 4 0 0 2 0 2n − 1 0 0 0 2 0

c1

lh

out

2 | ax → ap(x)/2

1 | ax → ap(x)1

1 | ax → ap(x)

2 | ax → λ

3 | a2 → a

1 | ax → ap(x)

Figure 6: FIN Module (output calculation result).

Table 4: 0e results of spike in FIN module.

Step σlh
σc1

σ1 σout Environment

t 2 0 6 0 0
t + 1 0 0 7 0 0
t + 2 0 1 5 1 0
t + 3 0 1 3 2 1
t + 4 0 1 1 2 0
t + 5 0 0 0 2 0
t + 6 0 0 0 1 0
t + 7 0 0 0 0 1

1 | ax → aq(x)

l0

1 | ax → ap(x)

1 | ax → ap(x)

2 | ax → λ

1 | ax → ap(x)

2 | ax → λ

c1

c2

2

1

c3

in

Figure 7: INPUT module.

Computational Intelligence and Neuroscience 7

Theorem 3. 5ere is a small universal NSNP-DW system
possessing 47 neurons for computing functions.

Proof. For simulation of the register machine Mu
′, the

designed NSNP-DW system includes INPUT, ADD, SUB,
and OUTPUT modules. 0e general design is visualized in
Figure 9. Still the same as originally assumed, the value n in
register r corresponds to 2n spikes in neuron σr. Assume that
all neurons are empty in the initial configuration. Figure 10
is the designed INPUT module. σin is the input neuron,
reading a spike train 10g(x)− 10y− 11. Finally, 2g(x) and 2y

spikes are contained by neurons σ1 and σ2, respectively.
As before, a time step or step represents the execution

time of one rule.We still use this notion tomark themoment
the rule is executed. At step t1, if the first spike from the
environment is received by neuron σin, rule 1|ax⟶ ap(x) is
applicable, sending one spike to neurons σc1

, σc2
, σc3

, σc4
, σc5

,
and σc6

, respectively. At step t1 + 1, neurons σc3
, σc4

, σc5
, and

σc6
will not receive spikes due to one moment of delay;

neuron σc1
and neuron σc2

each receive one spike but do not
fire. At the next step, the neurons σc3

, σc4
, σc5

, and σc6
receive

one spike from neuron σin, but neurons σc5
and σc6

do not
fire. Neurons σc3

and σc4
fire by employing rule

1|ax⟶ ap(x), sending one spike to each other and both
sending one spike to σ1, so neuron σ1 owns two spikes at
t1 + 3. In this way, neuron σ1 continues to receive two spikes,
until step t1 + g(x) + 2, σ1 has a total of 2g(x) spikes.

At step t2, here actually t2 � t1 + g(x) + 2, and neuron
σin fires a second time and applies rule 1|ax⟶ ap(x) to
send one spike to each of neurons σc1

, σc2
, σc3

, σc4
, σc5

, and σc6
.

Neurons σc1
and σc2

each have two spikes at step t2 + 1. For
one delay, neurons σc3

, σc4
, σc5

, and σc6
receive one spike from

neuron σin at step t2 + 2. At this step, neurons σc4
and σc5

each have two spikes, and executing rule 2|ax⟶ λ causes
two spikes to be removed. On the contrary, neurons σc5

and
σc6

each have two spikes and stay active. Two spikes are sent
to each other by neurons σc5

and σc6
, and two are given to σ2

by neuron σc5
, so that neuron σ2 contains two spikes at step

t2 + 3. Neuron σ2 accepts two spikes from neuron σc5
continuously until step t2 + y + 3. At step t2 + y + 3, neuron
σ2 retains 2y spikes in total.

At step t3, here actually t3 � t2 + y + 3, neuron σin fires a
third time, one spike is consumed, and one is sent to neurons
σc1

, σc2
, σc3

, σc4
, σc5

, and σc6
, respectively, by rule

1|ax⟶ ap(x). At step t3 + 1, neuron σc1
with three spikes

fires, and the rule 3|ax⟶ a2q(x) is used to consume three
spikes and send two spikes to neuron σl0

. When the neuron
σl0

receives two spikes, the introduction l0 is simulated.
Neuron σc2

also fires at step t3 + 1 and sends one spike to
neurons σc3

and σc4
through rule 3|ax⟶ aq(x). At step

t3 + 2, neuron σc3
receives spikes from neuron σin and

neuron σc2
; forgetting rule 2|ax⟶ λ is applied to remove

two spikes. 0e same is true for neuron σc4
. At the same step,

neurons σc5
and σc6

each receive the third spike from neuron
σin, so they have three spikes and remain inactive. 0e
forgetting rule 3|ax⟶ λ is used to remove the three spikes.

In order to reflect the rationality of INPUT module,
assuming g(x) � 4 and y � 3, the change in the number of
spikes at each step can be clearly seen in Table 5.

In addition, the ADD and SUB modules are the same as in
Figures 8 and 5.0e design and simulation process of OUTPUT
module is the same as Figure 6, except that the register 1 is
replaced by register 8 (shown in Figure 11). 0is is because
when a small universal NSNP-DW system is used as function
computing device, after each instruction simulation, the final
register 8 contains n numbers (the neuron σ8 contains 2n

spikes). 0e result n is output through the OUTPUTmodule.
From the discussion above, the NSNP-DW system as a

function computing device can accurately simulate the register
machine Mu

′ by using 57 neurons: (i) 7 neurons in the INPUT
module, (ii) 2 neurons in the OUTPUTmodule, (iii) 1 neuron
in each SUB instruction and 14 in total, (iv) 9 neurons in 9
registers, and (v) 25 neurons for 25 instructions.

0e register machine Mu
′ is simulated by the NSNP-DW

system, and each instruction li on Mu
′ is regarded as a

neuron. However, some instructions are continuous. By
exploring the relationship between the instructions of Mu

′,
correspondingly constituted modules can be combined,
instructions are omitted, and the use of neurons is reduced
by the way. A detailed introduction to the initial register
machine and its instructions can be found in [40]. For the
NSNP-DW system, module combination is mainly divided
into three categories: module ADD-ADD, module ADD-
SUB, and module SUB-ADD (includes modules SUB-ADD-
1 and SUB-ADD-2). 0e working process of module ADD-
SUB and module SUB-ADD is closely related to that of
module SUB. 0e working principle is expressed by the
structure diagram. Readers interested in a description of the
principle can refer to [11, 26, 41]. □

5.1.1. Module ADD-ADD

l17: ADD(2), l21(􏼁,

l21: ADD(3), l18(􏼁.
(4)

0ese are two deterministic ADD instructions. 0e
simulation of each instruction is the same as in Figure 8. 0e
module design is shown in Figure 12 before the instruction
l21 is omitted.

Obviously, this is a sequence of two consecutive ADD
instructions connected by l21; instruction l21 can be omitted
through the following module ADD-ADD (shown in
Figure 13).

li

lj

2 | ax → ap(x)

1 | ax → λ

r

Figure 8: ADD module (simulating li: (ADD(r), lj)).

8 Computational Intelligence and Neuroscience

in

Module INPUT

Register machine simulator

Module OUTPUT

out

a2 a2g(x)

a2φ(x)

a2yl0 1 2

0 8

10g(x)–10y–11

Figure 9: Framework of the universal NSNP-DW system.

2

in

t = 1

t = 1 t = 1

t = 1

t = 1

c3

c1

c2

c6c5

l0

c4

1

2 | ax → ap(x)

3 | ax → λ

2 | ax → ap(x)

3 | ax → λ

1 | ax → ap(x)

2 | ax → λ

1 | ax → ap(x)

2 | ax → λ

3 | ax → a2q(x)

3 | ax → aq(x)

1 | ax → ap(x)

Figure 10: INPUT module.

Computational Intelligence and Neuroscience 9

5.1.2. Module ADD-SUB

l5: ADD(5), l6(􏼁,

l6: SUB(7), l7, l8(􏼁,

l9: ADD(6), l10(􏼁,

l10: SUB(4), l0, l11(􏼁.

(5)

0ese are two consecutive pairs of ADD-SUB instruc-
tions connected by l6 and l10, respectively; we can combine
instructions l5: (ADD(5), l6) and l6: (SUB(7), l7, l8) into
one instruction l5: (ADD(5), SUB(7), l7, l8), which saves
instruction l6. Instructions l9: (ADD(6), l10) and
l10: (SUB(4), l0, l11) are combined into one instruction
l9: (ADD(6), SUB(4), l0, l11), saving instruction l10.

Taking the omission of l6 as an example, neuron σl5
sends

spikes to σ5 and σl6
, and then neuron σl6

performs the sim-
ulation of instruction l6. Here, neuron σl6

can be omitted, and
neuron σl5

replaces σl6
to directly simulate the SUB instruction.

It can be seen from Figure 14 that this is possible.

5.1.3. Module SUB-ADD. For introduction li: (SUB(r),

lj, lk), when the value r≠ 0, it is subtracted by 1, and the
instruction lj is executed; otherwise, the labeled lk is acti-
vated. 0erefore, considering that there are two forms of
consecutive SUB-ADD instructions, module SUB-ADD is
divided into modules SUB-ADD-1 and SUB-ADD-2.

Module SUB-ADD-1:

l15: SUB(3), l18, l20(􏼁,

l20: ADD(0), l0(􏼁.
(6)

0is is the case when lk is activated and lj is reserved. We
can combine instructions l15: (SUB(3), l18, l20) and
l20: (ADD(0), l0) into one instruction l15: (SUB(3), l18,

ADD(0), l0), causing instruction l20 to be omitted (see
Figure 15).

Module SUB-ADD-2:

l0: SUB(1), l1, l2(􏼁,

l1: ADD(7), l0(􏼁,

l4: SUB(6), l5, l3(􏼁,

l5: ADD(5), l6(􏼁,

l6: SUB(7), l7, l8(􏼁,

l7: ADD(1), l4(􏼁,

l8: SUB(6), l9, l0(􏼁,

l9: ADD(6), l10(􏼁,

l14: SUB(5), l16, l17(􏼁,

l16: ADD(4), l11(􏼁,

l22: SUB(0), l23, l24(􏼁,

l23: ADD(8), l22(􏼁.

(7)

0is is the case when lj is activated and lk is reserved.
0ere are six pairs of instructions that can be combined in
pairs. It is found through observation that the following

Table 5: 0e results of spike in INPUTmodule when g(x) � 4 and
y � 3.

Step σin σc1
σc2

σc3
σc4

σc5
σc6

σ1 σ2 σl0

t 1 0 0 0 0 0 0 0 0 0
t + 1 0 1 1 0 0 0 0 0 0 0
t + 2 0 1 1 1 1 1 1 0 0 0
t + 3 0 1 1 1 1 1 1 2 0 0
t + 4 1 1 1 1 1 1 1 4 0 0
t + 5 0 2 2 1 1 1 1 6 0 0
t + 6 0 2 2 2 2 2 2 8 0 0
t + 7 1 2 2 0 0 2 2 8 2 0
t + 8 0 3 3 0 0 2 2 8 4 0
t + 9 0 0 0 2 2 3 3 8 6 0
t + 10 0 0 0 0 0 0 0 8 6 2

3 | a2 → a

1 | ax → ap(x)

1 | ax → ap(x)

2 | ax → λ

2 | ax → ap(x)/2

1 | ax → ap(x)

lh

8 c1

out

Figure 11: OUTPUT module.

2 | ax → ap(x)l17

l21 l18

2 3

Figure 12: Module ADD-ADD before omitting l21: the sequence of
two consecutive ADD instructions l17: (ADD(2), l21) and
l21: (ADD(3), l18)

2 | ax → ap(x) l18l17

32

Figure 13: Module ADD-ADD after omitting l21: the sequence of
two consecutive ADD instructions l17: (ADD(2), l21) and
l21: (ADD(3), l18).

10 Computational Intelligence and Neuroscience

ADD instruction happens to be the first execution position
of the previous SUB instruction. 0en each pair of SUB-
ADD instruction combinations can be updated to
li: (SUB(r1), lj, lk) andlj: (ADD(r2), lg). When the register
r1 ≠ r2, they can share one neuron σlj

. In this way, six
neurons in total of σ1, σ5, σ7, σ9, σ19, and σ23 can be saved.
0e visualization can be illustrated in Figure 16.

0rough the above instruction combination (called
“code optimization” in [41]), 10 neurons σ21, σ6, σ10, σ20, σ1,
σ5, σ7, σ9, σ16, and σ23 can be omitted. In the end, 47 neurons
are enough to complete a small universal NSNP-DW system
for computing functions:

(i) Nine neurons for 9 registers.
(ii) 15 neurons in remaining 15 instruction labels (ten

labels are saved).
(iii) Seven neurons in the module INPUT.
(iv) 14 neurons for a total of 14 SUB instructions.
(v) Two neurons in the module OUTPUT.

5.2. Small Universal NSNP-DW Systems as Number
Generator. In the simulation of number generator, the
INPUTmodule can be combined with the OUTPUTmodule,
found in Figure 17. In the constructed INPUT-OUTPUT
module, instruction lh is removed, and register 8 is no longer
needed. 0e spike train that the input neuron gets from the
environment is 10g(x)− 11, neuron σ1 is loaded with 2g(x)

spikes, and neuron σ2 receives 2n spikes nondeterministi-
cally. Neuron σout fires twice successively, and the time
interval n is the numerical result generated.

0e simulation of NSNP-DW systems as number gen-
erator shares 43 neurons, and the specific details will not be
repeated:

(i) Eight neurons for 8 registers (no register 8).
(ii) 14 neurons in the remaining 14 instruction labels (lh

and ten labels are saved).
(iii) Seven neurons in the module INPUT-OUTPUT.
(iv) 14 neurons for a total of 14 SUB instructions.

Theorem 4. 5ere is a small universal NSNP-DW system
possessing 43 neurons for number generator.

0e specific simulation will not be introduced in detail.
We use an example to analyze the feasibility of number
generator simulation; assuming g(x) � 2 and n � 2, the
results of each step are reflected in Table 6.

5.3. Discussion. 0eorem 3 gives the Turing universal
NSNP-DW system with fewer neurons as a function com-
puting device. In order to more intuitively verify the
computing power of the NSNP-DW system, Table 7 com-
pares the number of computing units for the variant and its
related systems. According to Table 7, we observe that NSNP
systems, SNP systems, SNP-DS systems, and recurrent
neural networks use 117, 67, 56, and 886 neurons, respec-
tively, to accomplish Turing universality for computing
function, and NSNP-DW systems only require 47 neurons.
Besides, according to Table 8, we have observed that 121

l5

l7 l8

c1

25

t = 1

2
7

2 | ax → ap(x)/2

1 | ax → λ

1 | ax → ap(x)

2 | ax → λ

3 | a3 → aq(x)

1 | ax → λ

Figure 14: A module for consecutive ADD-SUB instruction
l5: (ADD(5), SUB(7), l7, l8).

2 | ax → ap(x)/2

1 | ax → λ

3 | a3 → aq(x)

1 | ax → λ

1 | ax → ap(x)

2 | ax → λ

3
t = 1

2
2

0

l15

c1

l0 l18

Figure 15: Module SUB-ADD-1: the sequence of two consecutive
instructions l15: (SUB(3), l18, l20) and l20: (ADD(0), l0).

2 | ax → ap(x)/2

1 | ax → λ

3 | a3 → aq(x)

1 | ax → λ

1 | ax → ap(x)

2 | ax → λ

t = 1

lk

li

lg

c1

r1 r22 2

Figure 16: Module SUB-ADD-2: the sequence of the SUB and
ADD instructions li: (SUB(r1), lj, lk) and lj: (ADD(r2), lg).

Computational Intelligence and Neuroscience 11

neurons are reduced for simulating number generator. In
short, NSNP-DW systems are better than these systems in
the use of neurons, and the computational power of the
NSNP system has been effectively improved.

6. A Uniform Solution to Subset Sum Problem

0e Subset Sum problem is one of the typical NP-complete
problems proposed in [43]. We use the NSNP-DW system to
solve the uniform solution of the Subset Sum in a nonde-
terministic operation mode.

0e Swish function and the LReLU function are con-
sidered for the spike consumption function and the gen-
erating function in the problem.

ϕ(x) � x · sigmoid(x),

c(x) �
x, x> 0,

αx, x≤ 0.
􏼨

(8)

Problem. NAME: Subset Sum.
INSTANCE: a set of positive integers V � v1, v2, . . . , vn􏼈 􏼉

and a positive integer S.
QUESTION: is there a subset B⊆V that satisfies

􏽐b∈Bb � S?

Theorem 5. 5e uniform solution of Subset Sum problem
can be solved by NSNP-DW systems.

Figure 18 depicts the architecture of the NSNP-DW
system to solve the Subset Sum in a uniform way. 0e
complexity of the uniform solution is that the system only
“recognizes” the number n when solving the problem. 0e
instance of the problem needs to be introduced into the
system. σgi,3

(1≤ i≤ n) is the input neuron of the system. 0e
positive integer vi (1≤ i≤ n) in the problem is encoded into
σgi,3

. At the beginning of the calculation, 3(v1 − 1) spikes
(a3(v1− 1)) enter neuron σg1,3

, 3(v2 − 1) spikes (a3(v2− 1)) enter
neuron σg2,3

, ..., and 3(vn − 1) spikes (a3(vn− 1)) enter neuron
σgn,3

. In the initial configuration (state) of the system, except
that neuron σi (1≤ i≤ n) contains four spikes, all other
neurons are empty.

In the first calculation, both rules in neuron σi are likely
to be employed first (because they have the same threshold).
0e indeterminate use of these two rules indicates that the
system solves this Subset Sum problem in a nondeterministic
way of operation, and it also corresponds to whether the
integer vi is in the subset B. In the following, we carry out a
complete derivation.

Proof. Neuron σi initially has four spikes. At step one, if rule
4|aϕ(x)⟶ a(3/4)c(x) is selected for use, then neuron σi will
consume 4 · sigmoid(4) spikes and send three spikes to
neurons σgi,1

and σgi,2
, respectively (because c(x) � 4). At

step 2, neuron σgi,1
forgets three spikes by the rule

3|aϕ(x)⟶ λ. At the same time, neuron σgi,2
uses rule

1 | ax → ap(x)1 | ax → ap(x)

2 | ax → λ

1 | ax → ap(x)

2 | ax → λ

2 | ax → ap(x)

3 | ax → λ

2 | ax → ap(x)

3 | ax → λ

1 | ax → ap(x)

2 | ax → λ

c1

c5

c4

c2

l0

c5

1 | ax → ap(x)

1

in

out

2 2

2

Figure 17: INPUT-OUTPUT module.

Table 6: 0e results of spike in INPUT-OUTPUT module.

Step σin σc1
σc2

σc3
σc4

σc5
σ1 σ2 σout σl0

t 1 0 0 0 0 0 0 0 0 0
t + 1 0 1 1 1 0 0 0 0 0 0
t + 2 1 1 1 0 2 2 2 0 1 (fire) 0
t + 3 1 2 2 1 2 2 4 2 0 1
t + 4 0 0 0 0 4 4 4 4 1 (fire) 1
t + 5 0 0 0 0 0 0 4 4 0 2

Table 7: Comparison of the least neurons of several calculation
models.

Computing models Number of neurons
NSNP-DW systems 47
NSNP systems [39] 117
SNP systems [11] 67
SNP-DS systems [31] 56
Recurrent neural networks [42] 886

Table 8: Comparison of the least neurons as number generator.

Computing models Number of neurons
NSNP-DW systems 43
NSNP systems [39] 164

12 Computational Intelligence and Neuroscience

3|aϕ(x)⟶ a(2/3)c(x) to become active and sends two spikes
to neurons σgi,3

(because c(x) � 3). At the end of this step,
neurons σgi,1

and σgi,2
maintain their original state. At step 3,

neuron σgi,3
has a total of 3vi − 1 spikes and fires. 0e rule

a2(a3)+|a3⟶ a3 is used first, sending three spikes to
neurons σgi,4

and σout, respectively. 0is process will con-
tinue for vi − 1 steps until the rule a2(a3)+|a3⟶ a3cannot
be activated. Neurons σgi,4

and σout still cannot be active after
receiving 3k (k ∈ N) spikes. When there are only two spikes
left in neuron σgi,3

, rule a2⟶ a2 is used, and finally, two
spikes are sent to neuron σgi,4

and σout, respectively. After
possessing 3k + 2 spikes, neuron σgi,4

fires and emits a spike
to neurons σout and σh, respectively. In the next step, the
neuron σout still cannot fire because it takes 3k + 1 spikes to
be activated. Conversely, neuron σh that has received n

spikes is activated by rule an⟶ a and sends one spike to
neuron σout. In this way, the output neuron σout can fire and
emit spikes to the environment.

If initially neuron σi uses the rule 4|aϕ(x)⟶ a(1/2)c(x),
4 · sigmoid(4) spikes are consumed and two spikes are sent
to neurons σgi,1

and σgi,2
, respectively (because c(x) � 4). In

the second step, the two spikes received by neuron σgi,2
are

removed by rule 2|aϕ(x)⟶ λ. Neuron σgi,1
uses the rule

2|aϕ(x)⟶ a(1/2)c(x) and sends a spike to neuron σh (because
c(x) � 2). Before the neuron σh fires, neuron σout remains
inactive. After neuron σh receives a total of n spikes from
σgi,1

(1≤ i≤ n), it fires and sends a spike to neuron σout. In the
next step, the neuron σout contains only one spike, so it does
not fire, nor does it emit spikes into the environment.

At this point, we have ended the process of solving the
uniform solution of the Subset Sum. Obviously, the system
requires a total of 5n + 2 neurons. After stopping operation,
if there are exactly S spikes in the environment, the answer to
the problem is “yes,” which means that there is a subset B⊆V
that makes 􏽐b∈Bb � S hold. Otherwise, it is “no.” 0is is
enough to show that the NSNP-DW system for solving
Subset Sum problem is complete.

In the calculation process, the calculation between
neurons is parallel, and the rules in each neuron are cal-
culated sequentially. 0rough computing and reasoning, it
can be known that neurons σi, σgi,1

, σgi,2
, σgi,4

, and σh fire
once, respectively, and neuron σgi,3

fires 􏽐
n
i�1 vi times. After

all other neurons stop computing, the neuron σout can fire at
most 􏽐

n
i�1 vi times. 0erefore, the system needs 􏽐

n
i�1 2vi + 5

steps to complete the calculation. In addition, we choose
nonlinear functions as the spike consumption function and
generation function, which is closer to reality and reflects the
significance of nonlinear functions in the NSNP-DW
system. □

7. Conclusions and Further Work

0e nonlinear spiking neural P (NSNP) systems are variants
of spiking neural P (SNP) systems. Nonlinear functions are
used flexibly in NSNP systems. We focus on the computing
power of NSNP systems in this work. Two mechanisms of
delays and weights are introduced, and nonlinear spiking
neural P systems with delays and weights (NSNP-DW) are

1

2

n

g2,4g2,3
g2,2

g1,1

g1,2
g1,3

g1,4

g2,1

gn,1 gn,3
gn,4

gn,1

3(v2 –1)

3(vn –1)

3(v1 –1)

out h

a4

1 y(x)
4 | aϕ(x) → a2

3 y(x)
4 | aϕ(x) → a4

a4

1 y(x)
4 | aϕ(x) → a2

3 y(x)
4 | aϕ(x) → a4

a4

1 y(x)
4 | aϕ(x) → a2

3 y(x)
4 | aϕ(x) → a4

2 | aϕ(x) → λ

2 y(x)
3 | aϕ(x) → a3

2 | aϕ(x) → λ

2 y(x)
3 | aϕ(x) → a3

2 | aϕ(x) → λ

2 y(x)
3 | aϕ(x) → a3

1 y(x)
2 | aϕ(x) → a2

3 | aϕ(x) → λ

1 y(x)
2 | aϕ(x) → a2

3 | aϕ(x) → λ

1 y(x)
2 | aϕ(x) → a2

3 | aϕ(x) → λ

a2(a3)+ | a3 → a3

a2 → a2
a2(a3)∗ | a2 → a

a2(a3)+ | a3 → a3

a2 → a2
a2(a3)∗ | a2 → a a(a3)+ | a3 → a an → a

a2(a3)+ | a3 → a3

a2 → a2
a2(a3)∗ | a2 → a

.

Figure 18: An NSNP-DW system solving the Subset Sum problem.

Computational Intelligence and Neuroscience 13

proposed. An explicit example is given to visually demon-
strate the operation of the NSNP-DW system. 0rough a
series of simulation computing, 47 and 43 neurons are
sufficient for constructing small universal NSNP-DW sys-
tems as function computing device and number generator.
Compared with the NSNP systems [39], the NSNP-DW
system decreases 70 neurons and 121 neurons, respectively,
as function computing device and number generator. Fi-
nally, the uniform solution of the Subset Sum problem is
solved efficiently by using the NSNP-DW system.

For further work, the NSNP-DW system, as a distributed
parallel computing model, can be combined with clustering
algorithms to improve algorithm efficiency. As far as the
computational power of the NSNP-DW system is con-
cerned, we are committed to proving that the 47 and 43
neurons used by the simulating function calculation and the
number generator, respectively, are the least in total. In
particular, the number of spikes breaks through the integer
limit and has been replaced by nonlinear functions in NSNP
systems. In view of this breakthrough, we can try to link
NSNP-DW systems with the neural network to expand more
interesting research.

Data Availability

No datasets were used in this article.

Conflicts of Interest

0e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

0is research project was supported by the National Natural
Science Foundation of China (61876101, 61802234, and
61806114), Social Science Fund Project of Shandong Prov-
ince, China (16BGLJ06 and 11CGLJ22), Natural Science
Fund Project of Shandong Province, China (ZR2019QF007),
Postdoctoral Project, China (2017M612339 and
2018M642695), Humanities and Social Sciences Youth Fund
of the Ministry of Education, China (19YJCZH244), and
Postdoctoral Special Funding Project, China (2019T120607).

References

[1] G. Păun, “Computing with membranes,” Journal of Computer
& System Sciences, vol. 61, pp. 108–143, 2000.

[2] G. Zhang, Z. Shang, S. Verlan et al., “An overview of hardware
implementation of membrane computing models,” ACM
Computing Surveys, vol. 53, no. 5, pp. 1–38, 2020.

[3] X. Liu and Q. Ren, “Spiking neural membrane computing
models,” Processes, vol. 9, no. 5, 2021.

[4] G. Zhang, M. J. Pérez-Jiménez, A. Riscos-Nuñez et al.,
Membrane Computing Models: Implementations, Springer,
New York, NY, USA, 2021.

[5] C. Buiu and A. G. Florea, “Membrane computing models and
robot controller design, current results and challenges,”
Journal of Membrane Computing, vol. 1, no. 4, pp. 262–269,
2019.

[6] G. Zhang, M. J. Pérez-Jiménez, and M. Gheorghe, Real-life
Applications with Membrane Computing, Springer, New York,
NY, USA, 2017.

[7] B. Song, L. Pan, and M. J. Pérez-Jiménez, “Cell-like P systems
with channel states and symport/antiport rules,” IEEE
Transactions on NanoBioscience, vol. 15, no. 6, pp. 555–566,
2016.

[8] X. Wang, G. Zhang, F. Neri et al., “Design and imple-
mentation of membrane controllers for trajectory tracking of
nonholonomic wheeled mobile robots,” Integrated Computer-
Aided Engineering, vol. 23, no. 1, pp. 15–30, 2016.

[9] R. Freund, G. Păun, and M. J. Pérez-Jiménez, “Tissue P
systems with channel states,” 5eoretical Computer Science,
vol. 330, no. 1, pp. 101–116, 2005.

[10] A. Leporati, L. Manzoni, G. Mauri, A. E. Porreca, and
C. Zandron, “Tissue P systems with small cell volume,”
Fundamenta Informaticae, vol. 154, no. 1-4, pp. 261–275, 2017.

[11] M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P
systems,” Fundamenta Informaticae, vol. 71, pp. 279–308,
2006.

[12] C. Haiming, T.-O. Ishdorj, and G. Paun, “Computing along
the axon,” Progress in Natural Science, vol. 17, no. 4,
pp. 417–423, 2007.

[13] H. Peng, T. Bao, X. Luo et al., “Dendrite P systems,” Neural
Networks, vol. 127, pp. 110–120, 2020.

[14] L. Pan, G. Păun, and M. J. Pérez-Jiménez, “Spiking neural P
systems with neuron division and budding,” Science China-
Information Sciences, vol. 54, no. 8, pp. 1596–1607, 2020.

[15] Y. Zhao, X. Liu, andWWang, “Spiking Neural P Systems with
neuron division and dissolution,” PLoS One, vol. 11, Article
ID e0162882, 2016.

[16] T. Wang, G. Zhang, J. Zhao, Z. He, J. Wang, and M. J. Perez-
Jimenez, “Fault diagnosis of electric power systems based on
fuzzy reasoning spiking neural P systems,” IEEE Transactions
on Power Systems, vol. 30, no. 3, pp. 1182–1194, 2015.

[17] H. Peng, J. Wang, P. Shi, M. J. Pérez-Jiménez, and A. Riscos-
Nunez, “Fault diagnosis of power systems using fuzzy tissue-
like P systems,” Integrated Computer-Aided Engineering,
vol. 24, no. 1, pp. 401–411, 2017.

[18] H. Peng, J. Wang, J. Ming et al., “Fault diagnosis of power
systems using intuitionistic fuzzy spiking neural P systems,”
IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4777–4784,
2018.

[19] D. Dı́az-Pernil, F. Peña-Cantillana, and M. A. Gutiérrez-
Naranjo, “A parallel algorithm for skeletonizing images by
using spiking neural P systems,” Neurocomputing, vol. 115,
pp. 81–91, 2013.

[20] D. Dı́az-Pernil, M. A. Gutiérrez-Naranjo, and H. Peng,
“Membrane computing and image processing: a short sur-
vey,” Journal of Membrane Computing, vol. 1, no. 1, pp. 58–73,
2019.

[21] G. Zhang, H. Rong, F. Neri, and M. J. Pérez-Jiménez, “An
optimization spiking neural P system for approximately
solving combinatorial optimization problems,” International
Journal of Neural Systems, vol. 24, no. 5, pp. 1440006–1440016,
2014.

[22] G. Păun, “Spiking neural P systems with astrocyte-like con-
trol,” Journal of Universal Computer Science, vol. 13, no. 11,
pp. 1707–1721, 2007.

[23] L. Pan, J. Wang, and H. J. Hoogeboom, “Spiking neural P
Systems with astrocytes,” Neural Computation, vol. 24, no. 3,
pp. 805–825, 2012.

[24] T. Song, P. Zheng, M. L. DennisWong, and X.Wang, “Design
of logic gates using spiking neural P systems with

14 Computational Intelligence and Neuroscience

homogeneous neurons and astrocytes-like control,” Infor-
mation Sciences, vol. 372, pp. 380–391, 2016.

[25] B. Aman and G. Ciobanu, “Spiking neural P systems with
astrocytes producing calcium,” International Journal of
Neural Systems, vol. 30, 2020.

[26] L. Pan, X. Zeng, X. Zhang, and Y. Jiang, “Spiking neural P
systems with weighted synapses,” Neural Processing Letters,
vol. 35, no. 1, pp. 13–27, 2012.

[27] L. Pan and G. Păun, “Spiking neural P systems with anti-
spikes,” International Journal of Computers, Communications
& Control, vol. 4, no. 3, pp. 273–282, 2009.

[28] H. Peng, J. Yang, J. Wang et al., “Spiking neural P systems with
multiple channels,” Neural Networks, vol. 95, pp. 66–71, 2017.

[29] T. Wu, A. Păun, Z. Zhang, and L. Pan, “Spiking neural P
systems with polarizations,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 8, pp. 3349–3360,
2017.

[30] T. Wu, T. Zhang, and F. Xu, “Simplified and yet Turing
universal spiking neural P systems with polarizations opti-
mized by anti-spikes,”Neurocomputing, vol. 414, pp. 255–266,
2020.

[31] X. Song, L. Valencia-Cabrera, H. Peng, J. Wang, and
M. J. Perez-Jimenez, “Spiking neural P systems with delay on
synapses,” International Journal of Neural Systems, vol. 31,
no. 1, 2020.

[32] G. Zhang, H. Rong, P. Paul, Y. He, F. Neri, and M. J. Pérez-
Jiménez, “A complete arithmetic calculator constructed from
spiking neural P systems and its application to information
fusion,” International Journal of Neural Systems, vol. 31, no. 1,
pp. 1–17, 2021.

[33] P. P. L. Lazo, F. G. C. Cabarle, H. N. Adorna, and J. M. C. Yap,
“A return to stochasticity and probability in spiking neural P
systems,” Journal of Membrane Computing, vol. 3, no. 2,
pp. 149–161, 2021.

[34] R. T. A. de la Cruz, F. G. C. Cabarle, I. C. H. Macababayao,
H. N. Adorna, and X. Zeng, “Homogeneous spiking neural P
systems with structural plasticity,” Journal of Membrane
Computing, vol. 3, no. 1, pp. 10–21, 2021.

[35] T. Song, A. Rodriguez-Paton, P. Zheng, and X. Zeng, “Spiking
neural P systems with colored spikes,” IEEE Transactions on
Cognitive and Developmental Systems, vol. 10, no. 4,
pp. 1106–1115, 2018.

[36] L. Pan, G. Păun, G. Zhang, and F. Neri, “Spiking neural P
systems with communication on request,” International
Journal of Neural Systems, vol. 27, no. 8, Article ID 1750042,
2017.

[37] T. Song, L. Pan, T. Wu, P. Zheng, M. L. D. Wong, and
A. Rodriguez-Paton, “Spiking neural P systems with learning
functions,” IEEE Transactions on NanoBioscience, vol. 18,
no. 2, pp. 176–190, 2019.

[38] T.Wu, L. Pan, Q. Yu, and C. Tan, “Numerical spiking neural P
systems,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 10, 2020.

[39] H. Peng, Z. Lv, B. Li et al., “Nonlinear spiking neural P
systems,” International Journal of Neural Systems, vol. 30,
no. 10, Article ID 2050008, 2020.

[40] M. Minsky, Computation: Finite and Infinite Machines,
Prentice-Hall, Hoboken, NJ, USA, 1967.

[41] A. Păun and G. Păun, “Small universal spiking neural P
systems,” Bio Systems, vol. 90, no. 1, pp. 48–60, 2007.

[42] H. T. Siegelmann and E. D. Sontag, “On the computational
power of neural nets,” Journal of Computer and System Sci-
ences, vol. 50, no. 1, pp. 132–150, 1995.

[43] R. G. Michael and S. J. David, Computers and Intractability: A
Guide to the 5eory of NP-Completeness, WH Freeman &
Company, New York, NY, USA, 1979.

Computational Intelligence and Neuroscience 15

