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Abstract

Epileptic seizures are one of the most well-known dysfunctions of the nervous system. During a seizure, a highly
synchronized behavior of neural activity is observed that can cause symptoms ranging from mild sensual malfunctions to
the complete loss of body control. In this paper, we aim to contribute towards a better understanding of the dynamical
systems phenomena that cause seizures. Based on data analysis and modelling, seizure dynamics can be identified to
possess multiple spatial scales and on each spatial scale also multiple time scales. At each scale, we reach several novel
insights. On the smallest spatial scale we consider single model neurons and investigate early-warning signs of spiking. This
introduces the theory of critical transitions to excitable systems. For clusters of neurons (or neuronal regions) we use patient
data and find oscillatory behavior and new scaling laws near the seizure onset. These scalings lead to substantiate the
conjecture obtained from mean-field models that a Hopf bifurcation could be involved near seizure onset. On the largest
spatial scale we introduce a measure based on phase-locking intervals and wavelets into seizure modelling. It is used to
resolve synchronization between different regions in the brain and identifies time-shifted scaling laws at different wavelet
scales. We also compare our wavelet-based multiscale approach with maximum linear cross-correlation and mean-phase
coherence measures.
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Introduction

Trying to predict epileptic seizures using time series analysis has

been an important research topic for decades. In particular, the

now wide-spread use of EEG (electroencephalography) techniques

to acquire data has been a major driving force of the subject. The

review article [1] and the recent book [2] provide perspectives

what has been achieved in seizure prediction. The main goal was

to identify and characterize a pre-ictal phase occurring before the

onset and to design measures that approximately predict the

critical starting time of the seizure [3]. Since research has focused

in this direction there are still gaps [4] in our understanding of

seizures from a dynamical systems perspective [5–7]. In this paper,

we are going to address this issue and focus on dynamical

mechanisms as e.g. in [8] instead of aiming at a predictive

technique for seizures.

The main themes of our results are the deep links to

mathematical multiscale techniques [9,10] and the observation

of scaling laws at different spatio-temporal levels. From models

based on biophysical principles of brain dynamics it is expected

that multiple spatial [11] and multiple time scales [12] play an

important role for epileptic seizures [13]. Based on a combination

of analyzing epileptic seizure patient data and neuron modelling

we split the problem into three spatial scales and show that at each

individual spatial level the problem exhibits multiple time scale

behaviour. We point out that our approach to verify the existence

of multiscale phenomena is primarily data-driven and comple-

ments modelling approachs (see e.g. [14]).

On the smallest spatial scale, we employ model-based analysis of

single neurons [15,16] using a multiple time scale stochastic

FitzHugh-Nagumo model [17–19] with a focus on early-warning

signs [20] of spiking and scaling laws. In particular, we investigate

three different cases of spiking and provide the first results of scaling

laws in critical transition theory [21] for neurons in an excitable state.

Scaling law results for systems without equlibria near bifurcations

have recently been applied successfully in climate modeling [22,23]

and in ecological systems [24,25]. Apparently these techniques have

not been applied to neuroscience problems yet although the

phenomenon of slowing down has been found in neuronal systems

[26]. We analyze three different regimes for the relationship between

noise and time scale separation and show that the variance can be a

precursor of spiking in some parameter regimes while it fails in the

low noise case. In this context, we point out that the distributions of

interspike intervals [27] has been studied extensively in single neuron

models but that our work only studies the time series locally near a

bifurcation and does not require multiple events.

The second spatial scale which we consider are clusters/regions

of neurons [28,29]. Here we use electrocorticogram (ECoG) data;

see Materials section. We examine the onset of the epileptic seizure

using the variance as a simple univariate measure. We observe that

during a certain period before the seizure the variance shows

oscillations. Furthermore, very close to the transition to a seizure

the inverse of the variance displays a linear scaling law. Based on

critical transition theory, these observations are generically

characteristics for Hopf bifurcation [30]. It is very important to

note that many seizure models [31–35] suggest a Hopf bifurcation
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as a main mechanism as the transition point. Therefore, our results

not only provide a first application of local scaling laws near

bifurcations to data but also validate the proposed bifurcation

mechanism arising from biophysical principals. Similar to the

individual neurons scale, we point out that distributions of

interseizure intervals have been studied [36] but that we do not

require multiple events.

On the largest spatial scale we analyze the synchronization and

correlation between different brain regions [37]. Several bivariate

measures have been proposed [1] to study epileptic seizures but the

underlying complex network structure makes the problem difficult

[38]. Our approach utilizes a recent technique calculating phase-

locking intervals (PLIs) [39] based on wavelet transforms [10].

Wavelet-based methods have been applied previously in the context

of epileptic seizures [40] but our approach is the first to investigate

PLIs and associated phase-locking. We show that our wavelet-based

method [10,39] measures increasing phase-locking and resolves a

multiple time scale structure near the seizure onset. Furthermore,

we observe a linear scaling law of average phase-locking and that

phase-locking at different scales often starts at different times. These

results apply near the seizure onset and could potentially relate to

recently observed rapid discharges [41,42]. We also compare our

results to other bivariate measures such as maximum linear cross-

correlation [43,44] and mean phase coherence [45].

In summary, our study introduces two recently developed

methods (critical transitions, PLIs) into the analysis of epileptic

seizures. Using critical transitions theory we give the first analysis

of early-warning signs for excitable neurons, identify a potential

Hopf bifurcation as the seizure onset mechanism from data and

find a new scaling law of single-event time series data at the cluster

level. For the wavelet-based phase-locking technique, we provide a

comparative study to other bivariate measures and discover a

scaling law occurring at time-shifted onset times. On each of the

three spatial levels we also identified a multiple time scales

structure, based on a data-driven time series approach.

Results

Single Neurons
We start on the level of single neurons. Clearly it is very

problematic to get data in this case before epileptic seizures so that

we resort to model neurons. The main question will be whether we

can predict a spike in the voltage time trace of the model neuron

before it occurs. The FitzHugh-Nagumo (FHN) model [17,18,46]

is a simplification of the Hodgkin-Huxley equations [47] which

model the action potential in a neuron. We point out that the

methods we are going to present here are going to apply to a much

wider class of excitable neuronal models than the FHN equation

such as the original Hodgkin-Huxley model [48] or the Morris-

Lecar system [49] since these models have similar bifurcation

structure and multiple time scale properties [15].

There are several forms of the FHN-equation [50]. One

possible version suggested by FitzHugh is the Van der Pol-type

[51] model

E
dx

dt
~ E _xx ~ x{x3{y,

dy

dt
~ _yy ~ cx{yzb,

ð1Þ

where x represents voltage, y is the recovery variable and c, b, E
are parameters. We think of b as an external signal or applied

current [52] and assume that the time scale separation E satisfies

0ƒE%1 so that x is the fast variable and y the slow variable. The

dynamics of (1) can be understood using a fast-slow decomposition

[53–55]. Setting E~0 in (1) yields a differential equation on the

slow time scale t defined on the algebraic constraint

C0 : ~f(x,y)[R2 : y~x{x3~ : c0(x)g:

We call C0 the critical manifold; see Figure 1. Differentiating

y~c0(x) implicitly with respect to t we find _yy~ _xx(1{3x2) so that

the differential equation on C0 can be written as

_xx~
cx{xzx3zb

1{3x2

which we refer to as slow flow. Observe that the slow flow is not

well-defined at the two points (x+,y+)~(+x{1=3,c0(+x{1=3)).
Applying a time re-scaling to the fast time t : ~t=E to (1) gives

dx

dt
~ x’ ~ x{x3{y,

dy

dt
~ y’ ~ E(cx{yzb):

ð2Þ

Setting E~0 in 2 gives the fast flow where y’~0 implies that y is

viewed as a parameter in this context. Observe that C0 consists of

equilibrium points for the fast flow and that the points (x+,y+)
are fold (or saddle-node) bifurcation points [56] in this context.

The critical manifold naturally splits into three parts

Ca{
0 : ~C0\fxvx{g, Cr

0 : ~C0\fx{vxvxzg,

Caz
0 : ~C0\fxwxzg

where Ca+
0 are attracting equilibria and Cr

0 are repelling equilibria

for the fast flow. We view Ca{
0 as the refractory state and Caz

0 as

the excited state for the neuron. For E~0 trajectories are

concatenations of the fast and slow flows. We will consider two

different situations for the parameters (c,b). In the first situation

we chose the parameters so that (1) has a single equilibrium point

on Cr
0\C where C : ~f(x,y)[R2 : y~cxzbg is the y-nullcline of

the FHN-equation; see Figure 1(a1)–(a2). For E~0 suppose that

(x0,y0) : ~(x(0),y(0))[Ca{
0 ; then the slow flow moves the system

to (x{,y{), a jump via the fast subsystem to Caz
0 occurs, the slow

flow on Caz
0 brings the system to (xz,yz) and another jump

returns it to Ca{
0 . This is the classical relaxation oscillation

[55,57]. However, in neuroscience one often also considers the

excitable regime [15] where the global equilibrium (x�,y�) for the

system is stable and lies on Ca{
0 close to (x{,y{); see Figure 1(b1)–

(b2). In this case, a trajectory of (1) can generate, depending on

(x0,y0), at most one excursion/spike to the excitable state before

returning to (x�,y�). Repeated spiking in the excitable regime can

be obtained using the more general stochastic FHN-equation

E _xxt ~ xt{x3
t{yzsjt,

_yyt ~ cxt{ytzb,
ð3Þ

where jt is delta-correlated white noise Sjt1
jt2

T~d(t1{t2) and

s is a parameter representing the noise level. We can now ask

whether individual neuron spiking activity already has precursors.

This viewpoint should provide new insights how neurons are able

to control synchronization and how control failure occurs. Recent

results on predicting critical transitions [20] suggest that statistical
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precursors can be used to predict events similar to spiking in

neurons from a time series without knowing their exact location.

The detailed mathematical theory can be found in [21,30].

Here we present the first application of this theory in the context

of single neurons. We want to predict a spiking transition from a

neighborhood of Ca{
0 to Caz

0 and consider the variance as an

early-warning sign

Vt : ~Var(xt) restricted to xt near Ca{
0 :

Observe that we can view Vt also as a function of y, and write

V~V (y), since the mapping between yt and t is bijective when

restricting to Ca{
0 . In the relaxation oscillation regime (see

Figure 1(a1)–(a2)) and if (E,s) are sufficiently small it can be shown

[30,58] that

V (y)*
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y{yE,{
p , as y?ye,{ ð4Þ

for some constant Aw0 and where jyE,{{y{j is small. Therefore

an increase in fast voltage-variable variance can potentially be

used to predict and to control spiking if no equilibrium exists near

(x{,y{). Here we extend the results of [30] by investigating the

excitable regime. Figure 2 shows an average of the variance V
computed over 100 sample paths using a sliding window technique

[21]. Figure 2(a) shows the relaxation oscillation regime where we

can confirm the theoretical prediction (4).

The excitable regime is much more interesting since the

equilibrium point (x�,y�) can lead to a variety of distinct regimes

depending on the noise level. In Figure 2(b) the noise is at an

intermediate level so that deterministic oscillations around the

equilibrium are visible in the variance before an escape; hence the

prediction (4) is not a good prediction of a spike but one should

rely on the oscillatory mechanism before escapes. In Figure 2(c) the

noise is larger which provides a regularizing effect for the variance

via noise-induced escapes. This relates to the well-known

mechanism of coherence resonance [19]. In Figure 2(d) the noise

is very small so that sample paths need exponentially long times to

escape and are metastable near (x�,y�). This causes a decrease in

variance and will make predictions very difficult. The different

scaling regimes for noise level and time scale separation are

discussed in more detail in [30,59–61].

Based on our results we can conclude predictability of a spiking

event and hence also its external control by input currents depend

crucially on noise level and statistical properties of the state of a

neuron. In particular, in the excitable state already a small change

in the noise level or system parameters can result in a substantial

loss of control due to unpredictable spiking. This could cause

undesirable synchronization and continuous spiking. Let us point

out that this is just one possible explanation for a potential

prediction/control failure during epileptic seizures but our results

show that prediction at neuronal level can already be extremely

complicated. We proceed to look at the next scale in our analysis

and move from single neurons to clusters/regions of neurons.

Local Data and Clusters
On the level of regions, we can start to analyze data obtained

before epileptic seizures. The eight time series we use are described

in detail in the Materials section. A natural extension of our

previous strategy is to compute the variance for each time series

using a sliding window technique and to understand the scaling

laws associated with the variance on the cluster level.

Figure 3 shows the results of this computation. We plot the

inverse of the variance V{1
i for i[f1,2, . . . ,8g since this makes it

easier to understand the scaling of Vi near the seizure point at

t~tc. Vertical lines are drawn for orientation purposes in Figure 3

separating a region of low variance from a high-variance regime,

giving an indication where the seizure roughly occured; see also

Materials. Furthermore, for V{1
i we have marked several local

maxima which have been found by subdividing each time series

into 20 equal time intervals ½ti,tiz1� and checking whether the

Figure 1. Simulation of (3) with EE~0:005 and c~2 using an Euler-Maruyama numerical SDE solver [?]; red curves are deterministic
trajectories with s~0 and blue curves are sample paths with s~0:0028. Systems have always been started at (x0,y0)~(0,{0:2). The critical
manifold C0 is shown in grey and the y-nullcline as a dashed black curve. (a) b~0, the equilibrium for the full system lies on Cr

0 . (b) b~0:8, the
equilibrium lies on Ca{

0 near the fold point (x{,y{). The deterministic trajectory has only one spike while noise-induced escapes produce repeated
spiking for the stochastic system.
doi:10.1371/journal.pone.0030371.g001

Scaling Effects in Epileptic Seizures

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e30371



Figure 2. Average of the variance V(y)~Var(x(y)) (black curves) over 100 sample paths starting for t~0 at (x0,y0)~({1,0) up to a
final time T . The green curves are fits of V using (4) with fitting parameters A and yE,{. Fixed parameter values are (E,c)~(2,0:005). (a) Relaxation
oscillation regime with (b,s,T)~(0,0:02

ffiffi
E
p

,0:28). (b) Excitable regime with (b,s,T)~(0:8,0:02
ffiffi
E
p

,0:7); sample paths can exhibit oscillations around
the stable focus equilibrium (x�,y�) which are visible in the variance. (c) Excitable regime with (b,s,T)~(0,0:05

ffiffi
E
p

,0:8) where larger noise regularizes
the variance similar to (a). (d) Excitable regime (b,s,T)~(0,0:005

ffiffi
E
p

,0:9) where smaller noise does not allow fast escapes from (x�,y�) and yields
decreasing variance.
doi:10.1371/journal.pone.0030371.g002

Figure 3. The eight plots show the average channel activity Mi (top, blue) and the average of the inverse variance V{1
i ~1=Vi

(bottom, black) for the eight time series i[f1,2, . . . ,8g; the horizontal axis is the time axis where the labels correspond to the sample
point number. The sliding window length corresponds to the length of the initial gap in V{1

i (5000 points). The green dots mark some local
maxima of V{1

i which correspond to local minima of Vi . The fitted red curves are linear and demonstrate that the variance increases near the
epileptic seizure. The black dashed vertical lines are inserted for orientation purposes, separating the two regions of low and high variance.
doi:10.1371/journal.pone.0030371.g003
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local maximum in ½ti=2,tiz1=2� is also a maximum for ½ti,tiz1�. All

four plots have several important features in common:

N V{1
i decreases near the seizure. The scaling law seems to be

given by

Vi*
1

tc{t
, as t?tc: ð5Þ

N There are multiple local maxima and minima for V{1
i before

approaching the seizure point. This indicates that we should

expect oscillations in statistical indicators near epileptic

seizures. Remarkably, also the number of local maxima varies

only slightly between 5 to 8.

N The last local maximum before tc shows that there is a period

of low variance close to a seizure.

N The last local maximum before tc is already very close to the

seizure. This means that predictions could be very difficult just

based on a calculation of the variance.

The next problem to consider is what types of dynamical models

can reproduce the behavior we have observed from the data analysis

i.e. we look for a model for the variance in clusters/regions of

neurons that displays the observed oscillatory behavior and scaling

law. At first glance, the dynamics in Figures 3(a)–(h) could be

interpreted as a summation of voltage traces from Figure 2(b) i.e. of

neurons that are (almost) in synchrony where the coherent spiking

originates from the noise-induced escape of a spiral sink. However,

the real problem in understanding the dynamical mechanism of

epileptic seizures is shown in Figure 4 where we also plot the inverse

of the variance V{1 near a critical transition. The similarities to the

data in Figure 3 are clear; all four observations (A)–(D) also apply in

Figure 4. The data in Figure 4 have been generated using a simple

model for a Hopf critical transition [21,30]:

E _xx1,t~ytx1,t{x2,tzx1,t(x2
1,tzx2

2,t)zs(a11j1,tza12j2,t),

E _xx2,t~x1,tzytx2,tzx2,t(x2
1,tzx2

2,t)zs(a21j1,tza22j2,t),

_yyt~1,

ð6Þ

where jj,t are independent white noise processes that satisfy

Sjj,t1
jj,t2

T~d(t1{t2) for j~1,2. The model (6) was first analyzed

in the context of delayed Hopf bifurcation [62,63]. Observe that the

deterministic part of the fast variables (x1,x2) is the normal form of

a (subcritical) Hopf bifurcation [64]. The slow variable y can also be

viewed as time since yt~(t{t0)zy0. For the simulation in Figure 3

we have chosen

E~0:0005, s~0:001
ffiffi
E
p

, a11~1~a22, a12~0:2~a21 ð7Þ

with a deterministic initial condition (x1,0,x2,0,y0)~(0,0,{0:3). It

is known that near a sub- or supercritical Hopf bifurcation a scaling

law of the form (5) holds [30]. Obviously the scales differ between

Figure 3 and Figure 4 but those can be re-scaled to match.

Therefore we have found a dynamical model that could potentially

explain the qualitative features of a single variance time series for a

cluster of neurons.

It is very important to note that we have obtained the conjecture

that a Hopf bifurcation is involved in the transition to a seizure

without a detailed biophysical model. In fact, several mean-field

models for various types of epileptic seizures do exhibit Hopf

bifurcations [31–35] that form a boundary between a regular

equilibrium (non-seizure) an oscillatory (seizure) regime. However,

there are several mean-field models available [14] and also other

bifurcation mechanisms have been identified to play a role near

seizure onset [65].

Our methods also have another important implication

regarding the distinction between a preictal and a proictal state

[36]. From a dynamical perspective, it was suggested that one can

differentiate between models that show a distinct preictal state

with a parameter driving the system to a bifurcation or systems

showing a proictal state where noise-induced escapes play a

dominant role [6]. A subcritical Hopf bifurcation is a model that

can interpolate between the two cases. Consider (6) in the

following two cases:

(1) E~0, dw0 and yv0: the equilibrium (x1,x2)~(0,0) is a

stable focus for the deterministic dynamics but it is well-known

[66] that a finite-time noise-induced escape always occurs.

This can be viewed as the transition beyond a basin boundary

given by the unstable limit cycles [36]. If we include another

(seizure-state) attractor beyond this basin boundary we can

view the situation near (x1,x2)~(0,0) as a ‘‘purely proictal’’

state. It is well-known how to calculate the probabilistic

likelihood of this Hopf transition and also for many other

bifurcations involving metastability [67,68].

Figure 4. Time series of the fast variable x2 (top, blue) and the associated inverse of the variance V{1
x2

~Var(x2(y)){1 (bottom, black)
for a Hopf critical transition model (6) with parameter values 7; cf. also Figure 3.
doi:10.1371/journal.pone.0030371.g004
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(2) Ew0, 0vd%1: If the noise is sufficiently small then we will

reach the Hopf bifurcation point with high probability [69] and

our prediction method via scaling of the variance and critical

transitions applies. We are in a ‘‘purely preictal’’ situation.

Obviously there is a continuum of possibilities in between these

two situations [60,69] depending on the scaling of noise and time

scale separation. In fact, the results shown in Figure 2 illustrate the

variation in such a continuum situation for the saddle-node

bifurcation. A study of intermediate regimes for all bifurcations,

including the Hopf bifurcations on a mean-field level, could

certainly be carried out similar to the strategy employed in [30]. Let

us also point out that several models have been proposed to account

for this problem in the context of epileptic seizures [70]. However,

these models are usually based on introducing global dynamics as

well as using global measures, such as interseizure intervals, for

validation. Historically similar dynamical systems attempts have

been made in other disciplines, for example for multi-mode

oscillations [71] in chemistry. Later on, it turned out [53] that the

local mechanisms and scaling laws are much more important as

they often form the truly mathematically generic [72] building

blocks of the dynamics. The Hopf bifurcation normal form (6) as

well as the local dynamics near the fast subsystem saddle-node

bifurcation in (1) are the most generic - i.e. codimension 1 [72,73] -

phenomena available. Therefore it is absolutely necessary to

investigate the link between these phenomena and epileptic seizures

first as demonstrated by our scaling law results.

Correlations between clusters
In the preceding two sections we investigated neuronal

dynamics at different spatial scales, from single model neurons

to neurophysiological data from clusters of neurons, using the

variance as a univariate measure. In the following section, we will

focus on the dynamics from many clusters of neurons encompass-

ing a larger spatial scale. In systems with spatial degrees of freedom

an increase in the noise level can produce spatiotemporal order

characterized by more regular activity patterns [74,75].

In contrast to the previous, bivariate measures for the activity

between different clusters will be used. Bivariate measures can take

into account the correlation of two signals. Information about the

correlation of neuronal activity between different anatomical regions

can give insights into the state of the network as a whole. With regard

to epilepsy, correlation based measures such as mean phase coherence

(MPC) and maximum linear cross correlation (MLCC) have yielded

promising results in identifying pre-ictal states [29,44,76,77].

In this section, we will start by considering the maximum linear

cross correlation for the ECoG data used in the preceding parts,

reviewing and confirming some recent observations. We will then

continue to extend the bivariate analysis to wavelet-based

synchronization measures able to resolve pairwise correlations at

different frequency bands. We will compare these results to those

obtained using MLCC and MPC. Our focus is again on multiscale

character of the system with the goal of identifying scaling

relationships at each level of observation.

Maximum linear cross-correlation. The maximum linear

cross-correlation (MLCC) quantifies the similarity between two

time series Fi(t) and Fj(t). MLCC is a linear measure of lag-

synchronization which captures the normalized product of two

time series dependent on a lag t [43]:

Cmax~ max
t
j CFiFj

(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CFiFi

(0)CFjFj
(0)

q j, ð8Þ

where

CFiFj
(t)~

1

N{t

XN{t

t~1

Fi(tzt)Fj(t) ð9Þ

is the linear cross-correlation function. As a measure of

synchronization between activity in different anatomical areas,

MLCC has been proposed and successfully applied as a precursor

for pre-ictal brain activity [77,78]. We computed the MLCC of 5

randomly chosen signal pairs for each time window (5000

sampling steps, a consecutive time window being shifted 50

sampling steps forward). Figure 4 shows the average over the 5

pairs for each of the 8 time series considered in the preceding

sections.

In most of the depicted time-series (patients 1, 2, 3, 4, 6, 7) an

increase in the MLCC can be observed with the seizure onset

(Fig. 5) which is in agreement with the general observation of

increased synchronization during a seizure [37]. Prior to epileptic

seizures a decrease in MLCC values has been reported and used to

identify a preseizure state [77,78]. To relate to these reports and

later also compare MLCC to the wavelet-based synchronization

measure SPLIT (see following section), we calculated MLCC for a

pre-ictal and an inter-ictal time interval. Figure 6 (left column)

depicts the time series of MLCC values of patient 4 during a pre-

ictal (top) and an exemplary inter-ictal interval (middle), an

interval being at least 6 hours apart from the next seizure attack.

Average values of MLCC are plotted left in the bottom row

illustrating the comparably lower values during pre-ictal intervals.

MLCC levels are lower during the pre-ictal compared to the inter-

ictal interval confirming recent reports of decreased synchroniza-

tion as one characteristic precursor for a seizure.

A lot of effort has been put forward to utilize the observed

synchronization drop in predicting seizure attacks, most of these

works addressing the question whether it could be used to identify

a preseizure state [29,44,45,76–78]. In this work we are not

addressing this issue but focus on the dynamics and scaling

relations of correlation measures near the seizure onset. For this

purpose we extend the analysis to wavelets able to resolve

correlations between clusters for different frequency bands.

Wavelets. Wavelet analysis has been applied in neuroscience

research for some time [79,80]. Wavelet coefficients Wk provide a

frequency-dependent moving average over a time series which can

be used to derive a time-resolved frequency-profile for the data

given. This capacity has also been made use of in the detection of

seizures [81] and the investigationen of frequency profiles of

epileptic seizures in humans and animals [40,82]. Wavelet analysis

[10] can also be used as an elegant tool to identify intervals of phase

synchronization (or phase-locking) between neurophysiological time

series. The phase definition can thereby be used for broad-band

synchronization analysis or analysis of a specific frequency of

interest.

In this study, we investigated broad-band phase-locking

between pairs of signals as introduced in [83]. There, the original

signal is decomposed with respect to multiple scales related to

frequency bands of decreasing size. To derive a scale-dependent

estimate of the phase difference between two time series, we follow

the approach described in [39] using Hilbert transform derived

pairs of wavelet coefficients [83]. The instantaneous complex

phase vector for two signals Fi and Fj is defined as:

Ci,j(t)~
Wk(Fi)

{Wk(Fj)

jWk(Fi)jjWk(Fj)j
, ð10Þ
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Figure 6. Decrease of synchronization measures during a pre-ictal interval. Left column: time series of maximum linear cross correlation
during a pre-ictal (top) and an inter-ictal (middle) interval. Right column: time series of SPLIT for three scales during a pre-ictal (top) and an inter-ictal
(middle) period are depicted. Vertical dashed lines indicate the onset of the seizure attack. Averages over the first 150000 sample points of each time
series indicate a distinct decrease of each synchronization measure during the pre-ictal interval (bottom row). Error bars show standard deviations.
doi:10.1371/journal.pone.0030371.g006

Figure 5. Maximum linear cross-correlation MLCCi for eight pre-ictal time series i[f1,2,:::,8g. Vertical lines indicate the approximate onset
of the seizure attack.
doi:10.1371/journal.pone.0030371.g005
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where Wk denotes the k-th scale of a Hilbert wavelet transform

and { its complex conjugate. A local mean phase difference in the

frequency interval defined by the k-th wavelet scale is then given

by

Dwi,j(t)~Arg(Ci,j), ð11Þ

with

Ci,j(t)~
SWk(Fi)

{Wk(Fj)Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SjWk(Fi)j2TSjWk(Fj)j2T

q ð12Þ

being a less noisy estimate of Ci,j averaged over a brief period of

time Dt~2k8 [39]. One can then identify intervals of phase-locking

(PLI) as periods when jDwi,j(t)j is smaller than some arbitrary

threshold which we set to p=4 here. Furthermore, we require the

modulus squared of the complex time average, s2
i,j~jCi,j j2, to be

greater than 0.5, limiting the analysis to phase difference estimates

above this level of significance. We denote phase-locking intervals

between two signals Fi and Fj as PLIi,j . To obtain a measure of

frequency-specific phase-locking in a defined time window, we

calculate the sum of PLIi,j for all pairs of signals and normalize this

expression to confine the measure to the interval ½0,1�:

SPLIT~
1

nsignals

2

� �
nsteps

X
i,j

PLIi,j , ð13Þ

where nsignals is the number of signals and nsteps the number of time

steps in the time window under consideration.

We analyzed data for each patient for 3 different scales,

referring to frequency bands 12–25, 6–12 and 3–6 Hz for

patients 1–3, 5–8 and 16–32, 8–16 and 4–8 Hz for patient 4,

respectively. The computation of SPLIT was done for time

windows of 5000 sampling steps, consecutive time windows were

shifted forward by 50 sampling steps. Figure 7 shows the results of

this computation.

In all 8 patients, comparably low values of SPLIT (SPLITƒ0:5)

are observed for all scales. Similarly to MLCC synchronization as

measured by the phase-locking intervals for different scales is

decreased during an pre-ictal interval compared to an inter-ictal

one (Fig. 6, right column). The observed decrease in synchroni-

zation measure suggests that application of SPLIT could also prove

useful in preseizure state detection algorithms, similar to the

MLCC.

As mentioned earlier, our focus is on the dynamical behavior

near the seizure onset. Aside from the aforementioned low values

of SPLIT, some characteristic features can be observed:

N Phase-locking measured by SPLIT increases around seizure

onset times. (Similar to MLCC, this is seen less clearly in

patients 5 and 8.)

N The increase of SPLIT for different scales often starts at

different times.

N The increase of SPLIT appears to be linear.

Point A reflects the fact of increased synchronization between

cortical regions observed during seizures. We observed that

SPLIT starts to incease at different times for different scales.

Figure 8 depicts the exemplary behavior of SPLIT of patient 1

near seizure onset time. Furthermore, SPLIT appeared to

increase linearly. Fitting a linear function SPLIT!t close to

seizure onset times provided the better fit compared to power-law

or exponential relationships (Fig. 8).

Another nonlinear measure based on phase synchronization is

the mean phase coherence [45,76]. For two pairs of neurophys-

iological time series Fi and Fj it is given by

Figure 7. Phase-locking measure SPLITi for the eight time series i[f1,2,:::,8g. Colors correspond to different scales. The vertical dashed lines
indicate the approximate onset of the epileptic seizure attack.
doi:10.1371/journal.pone.0030371.g007
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Ri,j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S cosDwi,j(t)T

2zSsinDwi,j(t)T
2

q
ð14Þ

with Dwi,j(t) being the phase difference between the two signals at

time t and ST denoting the average over time. We calculated Ri,j

for all pairs of signals using the wavelet-derived, scale-dependent

phase differences for each patient. The average SRT over all Ri,j

showed a similar time course as SPLIT (Fig. 8). Near seizure

onset, the same temporal order of the increase in synchronization

was observed indicating independence from the specific measure

of phase-synchronization. Direct comparison of both nonlinear

synchronization measures SRT and SPLIT to MLCC suggests

that the frequency resolved measures add new information at the

onset of the seizure. Therefore such multiscale measures may

potentially be better suited to explain the dynamical process that

causes a seizure attack.

Discussion

In the present paper we aimed for a better understanding of the

dynamical processes involved in seizure generation. Our approach

extended over three spatial scales involving two recently developed

methods (critical transitions and wavelet derived phase-lock

intervals). We showed for the first time that the theory of critical

transitions [21,30] can be applied in the context of excitable

neurons operating near the spiking threshold. On the level of

clusters of neurons we identified a potential Hopf bifurcation as

the seizure onset mechanism from data based on this theory and

found a new scaling law of single-event time series data. On the

largest spatial scale we observed a scaling law occurring at time-

shifted onset times and compared our wavelet-based phase-locking

measure to other bivariate measures.

One of our main results is the observation of scaling laws on

different spatial scales – for individual neurons (4), for activity of

clusters of neurons (5) and for the increase of phase-locking near

the seizure onset. A recent publication highlighted five power-law

scaling laws related to epileptic seizures and their analogy to

earthquakes (the Gutenberg-Richter distribution of event sizes, the

distribution of interevent intervals, the Omori and inverse Omori

laws and the conditional waiting time until next event) [84]. Other

works investigating scaling laws of ictal and interictal epochs

reported similar inter-seizure-interval statistics in genetically

altered rats while in human data no power-law distribution was

observed [34,85].

The observation of such scaling laws is important because it

may guide new models of seizure dynamics by allowing insights

into the dynamical processes that may have generated the

underlying data. Many of the scaling laws reported here and

elsewhere [84] exhibit power laws. The observation of similar

scaling laws on different spatial scales, from single neurons to the

size distribution of different seizures, strongly emphasizes the

multi-level character of epileptic seizure generation. More

importantly, it yields insights into the dynamical properties of

the underlying system [86]. The strong analogies between seismic

shocks and brain seizures have previously been pointed out and

hypothesized to emerge from the structural commonality of the

two systems: both are composed of interacting nonlinear threshold

oscillators and are far from equilibrium [87]. Critical dynamics is

believed to be a consequence of these structural properties in both

these systems. Recent findings in preparations of rat cortex [88]

and primate brain in vivo [89] exhibiting power-law statistics of

activity, a hallmark of phase transitions [90–92], have led to the

hypothesis that also human brain dynamics is poised at a phase

transition [39,93]. Although such statistics can result from different

processes, the self-similar behavior captured by the diverse scaling

Figure 8. Comparison between SPLIT and mean phase coherence SRT for patient 1. Both measures based on phase-synchronization show
a similar behavior with an increase around seizure onset time. Colored vertical lines indicate the beginning of the increase in synchronization near
seizure onset (black dashed vertical line). The increase appears to be linear (grey dotted lines) and starts at different times for different scales.
doi:10.1371/journal.pone.0030371.g008
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laws on different levels might potentially be related to the notion of

criticality in brain dynamics. Models describing epilepsy should

also resemble these multi-level scaling laws and take into account

critical brain dynamics.

Decomposition into different spatial scales showed oscillations in

a pre-seizure state at all levels. Observation of such oscillations in

real world data offers characteristics to be useful when testing

future models. As we showed here, based on critical transition

theory, the variance’s oscillations along with its scaling law are

generically characteristics for Hopf bifurcation. These results

therefore validate previous seizure models assuming a Hopf

bifurcation as a main mechanism as the transition point

[31,33,34]. While the goal in seizure prediction is to predict large

events, there is growing consensus about the key role played by

small events, from precursor oscillations to subclinical seizures

[1,84]. Future models and predictor systems should encompass

those as prediction algorithms unable to account for such small

oscillations would be ill-adapted and likely provide incorrect

seizure forecasts.

Near seizure onset we observed a time shifted increase in phase-

locking. In a recent study, wavelet analysis of spike-wave

discharges, a different form seizure activiy, revealed changes in

the time-frequency dynamics during discharges. While initially a

short period with the highest frequency value was observed, the

frequency later decreased [40,94]. Other studies showed high

frequency oscillations specifically at seizure onset [41,42], see [13]

for a comprehensive overview. Together these studies demonstrate

dynamic changes in the time-frequency domain of seizures with

higher dominating frequencies at seizure onset. One could

speculate that the time shifts in phase locking reported here are

related to these observations suggesting a frequency-dependent,

shifted start of synchronization near seizure onset.

Materials and Methods

Eight patients undergoing surgical treatment for intractable

epilepsy participated in the study. Patients underwent a craniot-

omy for subdural placement of electrode grids and strips followed

by continuous video and electrocorticogram (ECoG) monitoring to

localize epileptogenic zones. Solely clinical considerations deter-

mined the placement of electrodes and the duration of monitoring.

All patients provided informed written consent. The study

protocols were approved by the Ethics Committee of the

Technical University Dresden. ECoG signals were recorded by

the clinical EEG system (epas 128, Natus Medical Incorporated)

and bandpass filtered between 0:53 Hz and 70 Hz. Data were

continuously sampled at a frequency of 200 Hz (patients 1{3 and

5{8) and 256 Hz (patient 4, [95]) with two electrodes used as

reference. We always indicate the sampling point number on the

time axis if we use the data. No claims regarding a large-scale

statistical validity of the data set is made since the total patient

sample size is rather small. Although this is an important issue [29]

we focus here on identifying the dynamical mechanisms and new

time series analysis techniques in the context of epileptic seizures.

Furthermore, we also do not claim that the vertical lines we use in

the plots of the data indicate exact seizure onset as determined by

neurophysiologists or direct monitoring of patient symptoms.
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