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The homeostatic regulation of large neutral amino acid (LNAA) concentration in the

brain interstitial fluid (ISF) is essential for proper brain function. LNAA passage into the

brain is primarily mediated by the complex and dynamic interactions between various

solute carrier (SLC) transporters expressed in the neurovascular unit (NVU), among

which SLC7A5/LAT1 is considered to be the major contributor in microvascular brain

endothelial cells (MBEC). The LAT1-mediated trans-endothelial transport of LNAAs,

however, could not be characterized precisely by available in vitro and in vivo standard

methods so far. To circumvent these limitations, we have incorporated published in vivo

data of rat brain into a robust computational model of NVU-LNAA homeostasis, allowing

us to evaluate hypotheses concerning LAT1-mediated trans-endothelial transport of

LNAAs across the blood brain barrier (BBB). We show that accounting for functional

polarity of MBECs with either asymmetric LAT1 distribution between membranes and/or

intrinsic LAT1 asymmetry with low intraendothelial binding affinity is required to reproduce

the experimentally measured brain ISF response to intraperitoneal (IP) L-tyrosine and

L-phenylalanine injection. On the basis of these findings, we have also investigated the

effect of IP administrated L-tyrosine and L-phenylalanine on the dynamics of LNAAs in

MBECs, astrocytes and neurons. Finally, the computational model was shown to explain

the trans-stimulation of LNAA uptake across the BBB observed upon ISF perfusion with

a competitive LAT1 inhibitor.

Keywords: blood brain barrier, neurovascular unit, amino acid transporter, large neutral amino acid, SLC7A5/LAT1

INTRODUCTION

The blood-brain barrier (BBB) is a truly dynamic interface separating the brain from the
bloodstream. It is formed by highly specialized microvascular brain endothelial cells (MBECs)
connected by tight junctions forming brain capillaries. The BBB endothelium together with the
astrocytes and neurons are the fundamental elements of the neurovascular unit (NVU) system.
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Numerous solutes move across the NVU cell membranes with
various transport mechanisms. While small lipophilic molecules
can diffuse, larger and hydrophilic solutes, such as amino
acids (AAs), need the assistance of specialized carrier proteins
to cross the membrane, for instance amino acid transporters
(AATs) (Abbott et al., 2006). NVU-AATs are expressed at both
luminal and abluminal membranes of the MBECs, as well as on
astrocytes and neurons. The NVU-AATs mediate the transfer
of particular amino acids with different transport mechanisms:
antiporters, for example, exchange some AAs for others across
the membrane, while symporters cotransport AAs together with
ions along the ions’ electrochemical gradient (Taslimifar et al.,
2017). Taken together, different classes of NVU-AATs constitute
an integrated dynamic system controlling the homeostasis of
AAs such as large neutral amino acids (LNAAs: L-tyrosine, L-
leucine, L-isoleucine, L-phenylalanine, L-histidine, L-valine, L-
tryptophan, and L-methionine) in the brain interstitial fluid
(ISF). The homeostasis maintenance of LNAA concentrations,
which have been shown to be asymmetrically distributed in the
plasma and individual NVU compartments (Kandera et al., 1968;
Currie et al., 1995; Dolgodilina et al., 2015), is of particular
importance due to their crucial role in the central nervous system
(CNS), for instance as precursors of key neurotransmitters such
as Dopamine, Serotonin, and Histamine.

Figure 1 illustrates a simplified model of the adult rat
NVU that includes the dominant LNAA transporter of each
cell membrane. The NVU-LNAAs have been shown to be
transported mainly, but not exclusively, by SLC7A5 (LAT1),
SLC6A15 (B0AT2), and/or SLC7A8 (LAT2). LAT1 associated
with the accessory subunit 4F2hc (SLC3A2) functions as a Na+-
independent antiporter and plays a dominant role at the luminal
and abluminal membranes of the MBECs (Smith et al., 1987;
Killian and Chikhale, 2001; Meier et al., 2002). B0AT2 is a Na+-
dependent symporter which has been shown to be the dominant
uptake pathway for LNAAs in neurons (Yudkoff et al., 1996b;
Bröer et al., 2006; Bak et al., 2012). A number of studies have
shown that theNa+-independent antiporter LAT2 also associated
with 4F2hc is the major mediator of LNAA transport in primary
astrocytes (Yudkoff et al., 1996a; Kim et al., 2004; Braun et al.,
2011). While it has to be mentioned that comparably high LAT1
mRNA levels have been detected by Zhang et al. (2014) in freshly
isolated astrocytes, the functional contribution of this transporter
remains unclear (Braun et al., 2011). In vivo assays and in vitro
measurements carried out on freshly isolated cells have shown
that the expression of other AATs, such as y+LAT2/SLC7A6
(SLC7A6) and ASCT2/SLC1A5 (SLC1A5), is very low in adult
brain compared to the aforementioned AATs (Utsunomiya-
Tate et al., 1996; Deitmer et al., 2003; Gliddon et al., 2009).
Therefore, based on the available evidence in the literature, we
consider LAT1, LAT2, and B0AT2 to be the predominant LNAA
transporters in MBECs, astrocytes and neurons, respectively.
Taken together, these transporters co-operate as a highly complex
and integrated dynamic system to predominantly control the
homeostasis of LNAAs in the brain ISF. For example, LNAAs in
the brain ISF can be taken up by B0AT2 localized in neurons,
and/or they can be exchanged with other LNAAs of astrocytes
(mediated by LAT2) and/or be transported back into MBECs

FIGURE 1 | Diagram of the dominant LNAA transporters expressed in cells of

the neurovascular unit (NVU). The diagram represents the major compartments

of the brain with the dominant NVU carrier-mediated LNAA transport pathways

from brain capillary plasma (input) across blood brain barrier (BBB)

microvascular endothelial cells (MVEC) into the interstitial fluid (ISF) and from

there into astrocytes and neurons. The abbreviations used for the NVU-SLC

transporters are LAT1 (SLC7A5) and LAT2 (SLC7A8), both Na+-independent

large neutral amino acid antiporters, and B0AT2 (SLC6A15), a Na+-dependent

large neutral amino acid symporter. The arrows indicate the transmembrane

pathways of LNAAs via these transporters into and out of the NVU cells. TL

and CL represent test and competing large neutral amino acids, respectively.

and eventually into the bloodstream via LAT1 expressed at the
abluminal and luminal membranes of the MBECs (Figure 1).

Among the aforementioned dominant transporters, LAT1 is
the central element of the NVU that is involved in the regulation
of LNAA homeostasis in the brain ISF. However, despite its
importance, its bi-directional kinetic behavior across the BBB
has not been characterized yet. We have previously investigated
the bi-directional kinetics of LAT1 using the Xenopus laevis
oocyte expression system, and observed strongly asymmetric
bi-directional kinetics (high extra-cellular vs. low intra-cellular
binding affinity) (Meier et al., 2002; Verrey, 2003), a finding that
has recently been confirmed by reconstitution experiments in
proteoliposomes (Napolitano et al., 2015). However, it remains
unclear whether this bi-directional asymmetry is dependent
on the cell type, and whether it may be influenced by the
regulatory/modulatory function of gene products absent in
Xenopus laevis oocytes and possibly present in other cell types
such asMBECs (Meier et al., 2002; Verrey, 2003). In vivo tracking
of LNAAs from MBECs toward blood plasma and ISF could
provide information on the bi-directional kinetic behavior of
MBEC LAT1. However, there is currently no suitable in vivo
technique available to achieve this. While bi-directional uptake
and efflux assays using in vitro models of MBECs could be used,
they may not reflect the in vivo situation because of the high
sensitivity of the expression level of AATs to culture conditions
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(Lyck et al., 2009). In addition to the unclarity regarding the bi-
directional kinetics of LAT1 in MBECs, the abluminal to luminal
expression ratio of LAT1 at the BBB is not well known yet. Only a
study carried out in isolated vesicles has characterized the relative
expression of LAT1 at the BBB (Sánchez del Pino et al., 1995),
but this approach may not reflect the situation in vivo (Duelli
et al., 2000). Taken together, for the above mentioned reasons,
the bi-directional kinetic behavior of LAT1 in MBECs as well as
its distribution pattern at the luminal and abluminal membranes
of the BBB could so far not be addressed satisfactorily.

To circumvent these limitations, we have developed a robust
computational model of LNAA homeostasis in the NVU based
on a mathematical description of the nonlinear mechanistic
kinetics of the dominant individual NVU-LNAA transporters
in conjunction with published in vivo LNAA microdialysis
(MD) measurements performed in the rat brain ISF upon
intraperitoneal administration of L-tyrosine and L-phenylalanine
(Bongiovanni et al., 2003, 2010). This has allowed us to explore
potential asymmetries of LAT1 bi-directional kinetics and
expression in MBECs. Our computations support the hypothesis
that MBECs exhibit a functional polarity for LNAAs due to an
asymmetry in either bi-directional kinetics and/or expression
of LAT1 in MBECs. In addition, we have employed our model
to capture changes in LNAA levels in MBEC, astrocytes, and
neurons upon perturbations of plasma LNAA concentrations.
Finally, we employed the computational model to explain the
trans-stimulation of LNAAs upon ISF perfusion of MBEC LAT1
competitive inhibitor.

METHODS:

Transport Model
The NVU is represented by four interacting compartments for
MBEC, ISF, astrocytes, and neurons, each with a homogeneous
mixture of LNAAs. The plasma conditions are prescribed

as dynamic inputs to the NVU (Figure 1). Carrier-mediated
transport of LNAAs between the compartments is represented
by fluxes dominantly mediated by AATs located at the interface
between compartments (Panitchob, 2015; Panitchob et al., 2015,
2016). Following these modeling assumptions, temporal changes
in the test LNAA (TL) concentration within the individual NVU
compartments are given by

d[TL]MBEC

dt
=

1

VMBEC

(

f P→MBEC
LAT1,lum − f MBEC→ISF

LAT1,abl

)

, (1)

d[TL]ISF

dt
=

1

VISF

(

f MBEC→ISF
LAT1,abl − f ISF→Ast

LAT2 − f ISF→Neu
B0AT2

)

, (2)

d[TL]Neu

dt
=

f ISF→Neu
B0AT2

VNeu
, (3)

d[TL]Ast

dt
=

f ISF→Ast
LAT2

VAst
, (4)

where [ TL]i and Vi represent the concentration of the test LNAA

in the compartment i and the volume of that compartment,

respectively. The carrier-mediated flux of test LNAA from

compartment i to compartment j is denoted with f
i→j
AAT, and

P,MBEC, ISF, Neu, and Ast refer to plasma, microvascular brain
endothelial cell, brain interstitial fluid, neuron and astrocyte,
respectively. Subscript lum and abl refer to the luminal and
abluminal membranes of the MBEC, respectively.

The fluxes of LNAAs between NVU compartments depend
on the mechanism of the individual transporters and their
dependence on (or independence of) sodium ions. LAT1
and LAT2 are sodium independent antiporters, while B0AT2
functions as a sodium dependent symporter (Meier et al., 2002;
Bröer et al., 2006). The fluxes mediated by these transporters are
given by Panitchob (2015), Panitchob et al. (2015, 2016), and
Pradhan et al. (2013)

f P→MBEC
LAT1, lum =

2Vmax,LAT1,lum,TL

(

[TL]P [CL]MBEC
− [TL]MBEC [CL]P

)

Km,LAT1,TL
P
(

[TL+ CL]P + [TL+ CL]MBEC
)

+

(

Km,LAT1,TL
P

Km,LAT1,TL
MBEC

+ 1

)

(

[TL+ CL]P [TL+ CL]MBEC
)

, (5)

f MBEC→ISF
LAT1, abl =

2Vmax,LAT1,abl,TL

(

[TL]MBEC [CL]ISF − [TL]ISF [CL]MBEC
)

Km,LAT1,TL
MBEC

(

[TL+ CL]MBEC
+ [TL+ CL]ISF

)

+

(

Km,LAT1,TL
MBEC

Km,LAT1,TL
ISF

+ 1

)

(

[TL+ CL]MBEC [TL+ CL]ISF
)

, (6)

f ISF→Ast
LAT2 =

2Vmax,LAT2,TL

(

[TL]ISF [CL]Ast − [TL]Ast [CL]ISF
)

Km,LAT2,TL
ISF

(

[TL+ CL]ISF + [TL+ CL]Ast
)

+

(

Km,LAT2,TL
ISF

Km,LAT2,TL
Ast

+ 1

)

(

[TL+ CL]ISF [TL+ CL]Ast
)

, (7)

f ISF→Neu
B0AT2

=
2Vmax,B0AT2,TL

D

(

εε′ [Na]
ISF

[Na]Neu ([TL]ISF [CL]Neu − [TL]Neu [CL]ISF + ε′ [TL]
ISF

[Na]ISF

Km,B0AT2,CL
Neu Km,B0AT2,Na

Neu
−ε [TL]Neu [Na]Neu Km,B0AT2,TL

ISFKm,Na
ISF

)

, (8)

D = [Na]ISF [Na]Neu
(

ε′ [TL+ CL]ISF
(

[TL+ CL]Neu + Km,CL
Neu

)

+ ε [TL+ CL]Neu( [TL+ CL]ISF + Km,B0AT2,TL
ISF)

)

+ [Na]ISF Km,B0AT2,CL
Neu Km,B0AT2,Na

Neu [TL+ CL]ISF
(

ε′ + 1
)

+ [Na]Neu Km,B0AT2,TL
ISF Km,B0AT2,Na

ISF

[TL+ CL]Neu (ε + 1) + Km,B0AT2,TL
ISFKm,B0AT2,CL

Neu
(

[Na]ISF Km,B0AT2,Na
Neu

+ [Na]Neu Km,B0AT2,Na
ISF

)

+2 Km,B0AT2,TL
ISF Km,B0AT2,CL

Neu Km,B0AT2,Na
ISF Km,B0AT2,Na

Neu, ε = e

(

βz F
R T 1ψ

)

and ε′ = e

(

(β−1)z F
R T 1ψ

)

,

Frontiers in Physiology | www.frontiersin.org 3 March 2018 | Volume 9 | Article 171

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Taslimifar et al. Microvascular Brain Endothelial Cell Polarity

where [CL]i represents the concentration in compartment i of
LNAAs competing with the test LNAA, and Vmax,AAT,TL and
Vmax,AAT,CL are the maximum transport rates of the AATs for
the test and competing LNAA (competitive inhibitors of test
LNAA), respectively. In Equation (8), ε and ε′ are the electrical
potential-induced biases for forward and backward transport
rates, respectively, and 1ψ, β, F, z, R, and T represent potential
difference, electrical bias constant, Faraday constant, sodium
charge, gas constant and absolute temperature, respectively
(Pradhan et al., 2013; Panitchob, 2015; Panitchob et al., 2016).
Km,AAT,TL

i and Km,AAT,CL
i are, respectively, the AAT apparent

Michaelis-Menten binding constants for the test and competing
LNAAs in the presence of competitors. They are determined by
Smith and Takasato (1986) and Smith et al. (1987).

Km,AAT,TL
i
= Km,abs,AAT,TL

i (1+
[CL]i

Km,abs,AAT,CL
i
),

Km,AAT,CL
i
= Km,abs,AAT,CL

i (1+
[TL]i

Km,abs,AAT,TL
i
),

(9)

where Km,abs,AAT,TL
i and Km,abs,AAT,CL

i are, respectively, the
AATs absolute Michaelis-Menten binding constants for test and
competing LNAAs in the absence of competitors (Smith and
Takasato, 1986; Smith et al., 1987). For simplicity, the competing
LNAAs are treated as a single-entity component, representing
the overall concentration of the mixture of individual competing
LNAAs (Figure 1). The maximum transport rate and the overall
absolute Michaelis-Menten binding constant for the competing
LNAA, Vmax,AAT,CL and Km,abs,AAT,CL

i, respectively, are given by
Thorn (1949) and Cundy et al. (2004):

Vmax,AAT,CL =

∑n
k=1 (

Vmax,AAT,CLk
[CLk]

Km,abs,AAT,CLk

)

∑n
k=1 (

[CLk]
Km,abs,AAT,CLk

)
,

Km,abs,AAT,CL
i
=

∑n
k=1 [CLk]

∑n
k=1 (

[CLk]
Km,abs,AAT,CLk

)
,

(10)

where [CLk] and Km,abs,AAT,CLk represent, respectively, the
concentration and the absolute Michaelis-Menten binding
constant of the individual competing LNAAs within the
considered mixture (see Supplementary Table 1), and where n
is the total number of individual competing LNAAs. The MBEC
LAT1 bi-directional kinetics are modeled as

Km,abs,LAT1
MBEC

= RKLAT1 Km,abs,LAT1
P(ISF), (11)

where RKLAT1 is the LAT1 bi-directional kinetic constant, which
represents the absolute Michaelis-Menten binding constant for
LAT1 inMBECs relative to the corresponding value at the outside
of MBECs in the ISF and in plasma. The LAT1 expression ratio
in MBECs is modeled as

Vmax,LAT1,abl = RELAT1 Vmax,LAT1,lum, (12)

where RELAT1 represents the relative ratio for the maximum
transport rate of LAT1 at the abluminal membrane of the

MBECs to the corresponding value at the luminal membrane.
Eqs. (5-12) and Eqs. (1-4) can be combined to describe the
intercompartmental rate of change in the concentration of

the test LNAAs, ( d[TL]
i

dt
), as a system of nonlinear ordinary

differential equations of the following general form:

d[TL]i

dt
= function ([TL]i , [CL]i , Vi , Km,AAT,TL

i, Km,AAT,CL
i,

Vmax,AAT,TL, Vmax,AAT,CL, RKLAT1, RELAT1) (13)

The intra-compartmental concentration change rate of the

competing LNAAs ( d[CL]
i

dt
) can be formulated similarly. Values

for kinetic parameters of individual AATs (Km,abs,AAT,TL
i,

Km,abs,AAT,CL
i, Vmax,AAT,TL and Vmax,AAT,CL) and volumes of

compartments (Vi) used in Equations (1–13) are listed inTable 1.

Model Initialization and Numerical Model
To capture the responses of individual NVU compartments
(MBEC, ISF, astrocyte, and neuron) to perturbations in
plasma LNAA concentration, the baseline (pre-stimulus or pre-
injection) state of the system needs to be determined. To this end,

we first obtain the steady-state solution of Equation 13 ( d[TL]
i

dt
=

d[CL]i

dt
= 0) by prescribing constant plasma concentrations

of LNAAs as NVU system input (Figure 1 and Supplementary
Table 2) and solving the resulting system of equations whose
unknowns are the baseline LNAA concentrations in the
individual compartments. To do so, we are required to initialize
the LNAA concentrations in individual NVU compartments.
The LNAA concentrations in the ISF, astrocytes, and neurons
are initialized according to baseline values reported in the
literature ([TL]ib and [CL]ib) (Supplementary Table 2). Such
information is not available for MBECs, however. Therefore,
we initialize the corresponding LNAA concentration based on
a parametric study obtained with random values of the initial
baseline concentration (Supplementary Table 2). It has to be
noted that once the LNAA concentrations in the different
compartments have been prescribed, the solution of the steady-
state problem is constrained in the total amount of LNAAs
in the NVU. We examined whether this amount reflects
in vivo conditions by extrapolating the calculated compartmental
LNAA concentrations to the brain as a whole and comparing
these values to experimental results reported in Kandera et al.
(1968) and Amorini et al. (2017), finding very good agreement
(Supplementary Table 2). Once the baseline or pre-stimulus
state of the NVU system is determined, we calculate the post-
stimulus state of the NVU in response to perturbations of LNAA
concentrations in the plasma.

All amino acid transport models were implemented in Matlab
(R2015a). To calculate the concentration of LNAAs in the
individual NVU compartments (pre- and post-stimulus states),
we performed the time integration of Equation 13 using the
ode23s function (Bogacki–Shampine method) (Bogacki and
Shampine, 1989; Shampine and Reichelt, 1997). The source code
from Panitchob (2015) has been used as a starting point for our
implementation.
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TABLE 1 | Model input parameters.

L-tyrosinea L-phenylalanineb

Parameters Value Unit References

LAT1 (MBEC)

Km,abs,LAT1,TL
P(ISF) 64 11 µM Smith et al., 1987

Vmax,LAT1,lum,TL 0.175 0.075 µmol/min Smith et al., 1987; Tilgmann et al., 1992

Km,abs,LAT1,CL
P(ISF) 37c 52.9c µM Smith et al., 1987

Vmax,LAT1,lum,CL 0.086c 0.129c µmol/min Smith et al., 1987; Tilgmann et al., 1992

LAT2 (Astrocyte)

Km,abs,LAT2,TL
ISF(Ast) 294d 110.2d µM Kim et al., 2004

Vmax,LAT2,TL 0.1128 0.1128 µmol/min Shank and Campbell, 1984; Segawa et al., 1999

Km,abs,LAT2,CL
ISF(Ast) 163.6c 185.9c µM Kim et al., 2004

Vmax,LAT2,CL 0.1452c 0.1494c µmol/min Shank and Campbell, 1984; Segawa et al., 1999

B0AT2 (Neuron)

K
m,abs,B0AT2,TL

ISF(Neu) NA 1,050 µM Bröer et al., 2006

Vmax,B0AT2,TL NA 0.0086 µmol/min Rao et al., 1995; Bröer et al., 2006

K
m,abs,B0AT2,CL

ISF(Neu) 123.5c 126.2c µM Bröer et al., 2006

Vmax,B0AT2,CL 0.0184c 0.0186c µmol/min Rao et al., 1995; Bröer et al., 2006

Km,B0AT2,Na
ISF(Neu) 1,050 1,050 µM Takanaga et al., 2005

19 −70 −70 mV Smith et al., 1981

β 0.6e 0.6e mV Takanaga et al., 2005; Panitchob, 2015

[Na]ISF 141 141 mM Mori et al., 2002

[Na]Neu 40 40 mM Fedoroff and Vernadakis, 1986

VOLUME

VMBEC 3.5 µl Mori et al., 2002; Licinio and Wong, 2009

VISF 352.6 µl Tilgmann et al., 1992; Syková et al., 2005

VAst 742 µl Ren et al., 1992; Anderova et al., 2011

VNeu 441.7 µl Ren et al., 1992; Setou et al., 2004; Hosseini-Sharifabad and Nyengaard,

2007

a In this column, TL and CL represent L-tyrosine and L-tyrosine competing LNAAs, respectively.
b In this column, TL and CL represent L-phenylalanine and L-phenylalanine competing LNAAs, respectively.
cThe kinetic parameters for the mixture of L-tyrosine and L-phenylalanine competing LNAAs are calculated based on Equation 10 (Supplementary Table 1).
dThe kinetic parameters are calculated based on Michaelis-Menten equation.
eEstimated based on data by Takanaga et al. (2005), Figure 7D. NA (not applicable) specifies the large neutral amino acid was not reported to be a substrate for the transporter. For

calculation of Vmax values, the total rat brain weight, volume and protein content are considered 1.81 g (Stewart, 1918), 1,737 µl (Tilgmann et al., 1992) and 105mg protein/g brain

(Banay-Schwartz et al., 1992), respectively.

RESULTS

Computational Model Combined With in

Vivo Brain ISF Measurements Support a
Functional Polarity of MBECs
To discriminate, using our new computational model of the
NVU, the hypothesized effects of asymmetry on bi-directional
kinetics and expression of LAT1 in MBECs (see Introduction),
we first searched the literature for kinetic parameters of LNAA
transporters of the individual NVU compartments (Table 1).
Most carefully measured kinetic parameters of transport at
the endothelial barrier reported by Smith et al. (1987) were
obtained by using in situ brain perfusion with short uptake
times and thus likely represent the kinetics of the first step
of LNAAs transport that is into MBECs across their luminal
membrane (Bongiovanni et al., 2003, 2010; Pardridge, 2006;
Dolgodilina et al., 2015) and are thus not representative
of steady-state trans-MBEC transport. Using these kinetic

parameters, we first considered the bidirectional kinetics of
LAT1 to be symmetric in MBECs (RKLAT1 = 1) and also
assumed LAT1 to be symmetrically expressed at the luminal
and abluminal membranes of MBECs (RELAT1 = 1). Under
these assumptions of symmetry, we compared the output of
our computational model with in vivo measurements made by
Bongiovanni et al. (2003). In their study, they had increased
the plasma level of L-tyrosine (test LNAA) by intraperitoneal
(IP) injection in awake rats and simultaneously measured
the post-stimulus response in the brain ISF by microdialysis.
Using their measured plasma-stimulus profiles of the test
LNAA L-tyrosine ([TL]P) and of the L-tyrosine competing
LNAAs (competitive inhibitors) ([CL]P) as input to the model
(Figure 2A, results reported as a percentage of baseline), we
calculated the corresponding post-stimulus responses in the
brain ISF and found a significant mismatch between the
measured and our calculated results which showed a larger
excursion due to a much faster transport rate across MBECs
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FIGURE 2 | Plasma concentration and corresponding brain ISF concentration response after intraperitoneal injection of L-tyrosine and L-phenylalanine. (A) shows the

plasma concentration of L-tyrosine (TL) and L-tyrosine competing LNAAs (CL) after intraperitoneal administration of 200 mg/kg L-tyrosine as measured by

Bongiovanni et al. (2003) and used as input for the model calculation. (B,C) show the experimental data for the L-tyrosine (Tyr) post-stimulus response in the brain ISF,

measured in the prefrontal cortex (PFC). (B) shows the model calculations for various ratios of the bi-directional kinetic constant of MBEC LAT1 ( RKLAT1, Equation 11)

with symmetric distribution of LAT1 at both luminal and abluminal membranes of the BBB ( RELAT1 = 1). (C) shows the model calculations for various abluminal to

luminal expression distribution ratios of LAT1 ( RELAT1, Equation 12) with symmetric bi-directional kinetics (RKLAT1 = 1). The model results and experimental data are

represented as percent of the baseline value. In (A), the plasma baseline value for L-tyrosine and L-tyrosine competing LNAAs (constant input) are 112 and 535µM

(Currie et al., 1995; Bongiovanni et al., 2003), respectively. In (B,C), the ISF baseline value for L-tyrosine is 1.0 and 1.1µM (Supplementary Table 2), respectively. Each

experimental data point represents the mean ± SD for three (plasma) and four to eight (ISF) animals (Bongiovanni et al., 2003). In (A), the CL refers to a mixture of

L-tyrosine competing LNAAs (L-leucine, L-isoleucine, L-phenylalanine, L-tryptophan, L-valine, L-histidine, and L-methionine). The error bars associated with model

calculations indicate standard deviation with respect to concentrations obtained with the nominal model parameter set (see Methods). (D) shows the measured

plasma concentration of L-phenylalanine (TL) and L-phenylalanine competing LNAAs (CL) after intraperitoneal administration of 200 mg/kg L-phenylalanine as

measured by Goldstein (1961) and Bongiovanni et al. (2010). (E,F) show the experimental data for the L-phenylalanine (Phe) post-stimulus response in the brain ISF,

measured in the prefrontal cortex (PFC) vs. model calculations for different ratios for the bi-directional kinetic constant of MBEC LAT1 ( RKLAT1, Equation 11),

assuming symmetric distribution for LAT1 at luminal and abluminal membranes of the BBB ( RELAT1 = 1) and the model calculations for various abluminal to luminal

expression distribution ratios of LAT1 ( RELAT1, Equation 12), assuming symmetric bi-directional kinetics of MBEC LAT1 (RKLAT1 = 1). In (E,F), the ISF baseline value

for L-phenylalanine is 0.4µM (Supplementary Table 2). The data are represented as percent of baseline. In (D), the plasma baseline value for L-phenylalanine and

L-phenylalanine competing LNAAs (constant input) are 77 and 562µM (Currie et al., 1995; Bongiovanni et al., 2003), respectively. In (D), the CL refers to a mixture of

LNAAs competing with the test amino acid L-phenylalanine (L-leucine, L-isoleucine, L-tyrosine, L-tryptophan, L-valine, L-histidine, and L-methionine). In (B–E), the

differences between the concentrations calculated with the symmetric model (RKLAT1 = 1 and RELAT1 = 1) and the experimental measurements are statistically

significant at all post-stimulus time points (p < 0.001, Supplementary Table 4). In contrast, there is no significant difference between the experimental measurements

and the model calculations with RKLAT1 = 160 and RELAT1 = 1 (B), RKLAT1 = 1 and RELAT1 = 0.18 (C), RKLAT1 = 80 and RELAT1 = 1 (E) and RKLAT1 = 0.11 and

RELAT1 = 1 (F) with the exception of the 30min post-stimulus time point in (C,E,F) (Supplementary Table 4).
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(see results of statistical analysis in Figure 2B and Supplementary
Table 4).

We then evaluated whether asymmetric bi-directional kinetics
of LAT1 in MBECs could explain the slower and less
important impact of plasma L-tyrosine perturbation on its
ISF concentration observed in vivo, compared to our first
calculations made assuming symmetric transport properties of
LAT1. To this end, we varied the ratio of extracellular to
intracellular Michaelis-Menten binding constants of LAT1 in
MBECs, named here RKLAT1, from 1 (representing the symmetric
bi-directional kinetic) to 1300 (highly asymmetric bi-directional
kinetics as described for LAT1 in Meier et al. (Meier et al.,
2002) and considered LAT1 to be symmetrically distributed at
the BBB (RELAT1 = 1). We calculated the post-stimulus LNAA
concentration response and compared the results with the in vivo
measurements (shown as percentage of baseline in Figure 2B).
Under consideration of asymmetric bi-directional kinetics for
LAT1 in MBECs, the numerical results agreed well with in vivo
experimental data, best for a bi-directional kinetic constant of
RKLAT1 = 160. Thus, the results obtained with our model
support the hypothesis that LAT1 displays a strong asymmetry
in bi-directional kinetics in MBECs.

We then evaluated the alternative or complementary
hypothesis that an asymmetry of LAT1 expression at the
luminal and abluminal membranes of MBECs could explain the
observed equilibration kinetics. To this end, we varied the LAT1
expression constant at the BBB (RELAT1) between 0.01 and 10
(representing highly symmetric abluminal to luminal expression
ratio) and compared the numerical calculations with the in vivo
measurements assuming symmetric bi-directional kinetics of the
MBEC LAT1 (RKLAT1 = 1) (plotted as percentage of baseline in
Figure 2C). The error bars associated with model simulations
are calculated based on sensitivity studies (see Sensitivity analysis
section). In contrast to the symmetric case, the numerical results
obtained for asymmetric transporter expression agreed well with
in vivo experimental data, best for an expression kinetic constant
of RELAT1 = 0.18 (see Figure 2C). These results are compatible
with the hypothesis of a strong asymmetry in the expression
of the LAT1 in MBECs with lower expression at the abluminal
membrane. Taken together, the computational model, combined
with in vivo measurements supports a functional polarity of
MBECs with either asymmetry in bi-directional kinetics and/or
expression distribution of LAT1 in MBECs.

Cross-Substrate Versatility
We next evaluated whether our conclusion on the functional
polarity of MBECs described in the previous section depends on
the substrate by comparing our calculations with in vivo data
published by Goldstein (1961) and Bongiovanni et al. (2010) in
which the ISF response was measured after IP administration
of L-phenylalanine in awake rats (Figure 2F). Just as with the
L-tyrosine case, the model failed to reproduce the experimental
measurements when assuming symmetric bi-directional kinetics
for LAT1 inMBECs, whereas we found a closematch between our
model calculations and experimental measurements assuming
asymmetric LAT1 bi-directional kinetics (best with RKLAT1 =

80). Similarly, the numerical results obtained when assuming an

asymmetric transporter expression also agreed well with in vivo
experimental data, best for an expression kinetic constant of
RELAT1 = 0.11. Taken together, the comparison of model output
with experimental measurements supports the hypothesis that
the MBECs show a functional polarity for both L-tyrosine and
L-phenylalanine which could be explained by either asymmetric
distribution of LAT1 at the luminal and abluminal membranes
of the MBECs (lower abluminal expression) and/or a strong
asymmetry in its bi-directional kinetics in MBECs (lower
intracellular affinity) as previously shown in Xenopus oocytes.

To further evaluate the dependence of our results on the
asymmetric function of LAT1 suggested for MBECs, we checked
whether considering LAT1 as dominant astrocytic AAT instead
of LAT2 would modify our conclusion on the functional polarity
of the MBECs. Calculations presented in the Supplementary
Material (Supplementary Figure 1) showed that this is not the
case.

Calculating the Post-stimuli Responses in
MBECs, Astrocytes, and Neurons
The in vivo standardmethods have so far not been able to address
the effects of plasma LNAA perturbations on the dynamics of
LNAA concentrations in individual NVU compartments.
To close this gap, we employed the computational model
considering either an asymmetry in bi-directional kinetics of
LAT1 or an asymmetry in the expression pattern of LAT1
in MBECs as determined for the best cases in Figure 2. The
dynamic responses of L-tyrosine (TL) and L-tyrosine competing
LNAAs (CL) and of L-Phenylalanine (TL) and its competitor
LNAA (CL) in MBECs, ISF, astrocytes, and neurons are shown
in Figures 3, 4 for asymmetric bi-directional kinetics and
asymmetric expression of LAT1, respectively. The same plasma
perturbations of the test LNAAs (L-tyrosine or L-phenylalanine)
used also for Figure 2 are shown to first propagate into the
MBECs (Figures 3A,E, 4A,E). The dynamics of this propagation
depend on the competitions between the test and competing
LNAAs through MBEC LAT1 and the kinetics for each substrate.
Since MBEC LAT1 functions as an antiporter, the elevated level
of the test LNAA in the MBECs leads to an initial reduction in
the MBEC level of the competing LNAAs (Figures 3A,E, 4A,E).
Subsequently, the test and competing LNAAs compete for efflux
via LAT1 across the abluminal membrane of the BBB MBECs
and eventually gain entry into the brain ISF in exchange for
competing LNAA of the ISF (Figures 3B,F, 4B,F). The observed
delayed response in the concentration of the test LNAAs in
brain ISF in response to the plasma perturbations is mainly
due the low inter-endothelial affinity of LAT1 (Figure 3B)
and/or a low expression of LAT1 at the abluminal membrane
of the BBB (Figure 4B) both of which would strongly limit the
trans-endothelial transport of LNAAs across the BBB. Once
the test (and competing) LNAAs enter the brain ISF, they are
differentially co-transported together with sodium ions into
neurons via B0AT2 (Figures 3D,H, 4D,H) and exchanged
back into the MBECs (Figures 3A,E, 4A,E) and astrocytes
(Figures 3C,G, 4C,G) via LAT1 and LAT2, respectively. The rate
of these transports depends on LNAA concentration, on that
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FIGURE 3 | The post-stimulus response in MBECs, ISF, astrocytes and neurons after intraperitoneal administration (IP) of L-tyrosine and L-phenylalanine for

asymmetric bi-directional kinetics of LAT1 in MBECs. (A–H) show the model calculations for the post-stimulus responses in the NVU individual compartments after IP

administration of L-tyrosine (RKLAT1 = 160 and RELAT1 = 1) and L-phenylalanine (RKLAT1 = 80 and RELAT1 = 1), respectively. The error bars associated with model

calculations indicate standard deviation with respect to concentrations obtained with the nominal model parameter set. In (A–D), CL refers to a mixture of L-tyrosine

competing LNAAs (L-leucine, L-isoleucine, L-phenylalanine, L-tryptophan, L-valine, L-histidine, and L-methionine). In (E–H), CL indicates a mixture of L-phenylalanine

competing LNAAs (L-leucine, L-isoleucine, L-tyrosine, L-tryptophan, L-valine, L-histidine, and L-methionine). The ISF post-stimulus response for TL in (B,F) are

replotted from Figures 2B,E, respectively. In all panels, the baseline concentration for L-tyrosine, L-tyrosine competing LNAAs, L-phenylalanine and L-phenylalanine

competing LNAAs are reported in Supplementary Table 2.
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FIGURE 4 | The post-stimulus response in MBECs, ISF, astrocytes and neurons after intraperitoneal administration (IP) of L-tyrosine and L-phenylalanine for

asymmetric expression distribution of LAT1 at luminal and abluminal membranes of the BBB. (A–H) show the model calculations for the post-stimulus responses in

the NVU individual compartments after IP administration of L-tyrosine (RELAT1 = 0.18 and RKLAT1 = 1) and L-phenylalanine (RELAT1 = 0.11 and RKLAT1 = 1),

respectively. The error bars associated with model calculations indicate standard deviation with respect to concentrations obtained with the nominal model parameter

set. In (A–D), CL refers to a mixture of L-tyrosine competing LNAAs (L-leucine, L-isoleucine, L-phenylalanine, L-tryptophan, L-valine, L-histidine, and L-methionine). In

(E–H), CL indicates a mixture of L-phenylalanine competing LNAAs (L-leucine, L-isoleucine, L-tyrosine, L-tryptophan, L-valine, L-histidine, and L-methionine). The ISF

post-stimulus response for TL in B,F are replotted from Figures 2C,F. In all panels, the baseline concentration for L-tyrosine, L-tyrosine competing LNAAs,

L-phenylalanine and L-phenylalanine competing LNAAs are reported in Supplementary Table 2.

of competitor LNAAs and on the kinetics of the transporters
expressed at the interface to the other NVU compartments
(Table 1). For example, LNAA transport from ISF to MBECs
is comparably low due to the relatively low concentration
of the LNAAs compared to their Michaelis-Menten binding

affinities (Table 1 and Supplementary Table 2). As shown in
Figures 3C,G, 4C,G, astrocytic elevation of the test LNAAs is
associated with the reduction of intracellular competing LNAAs.
This behavior is due to the exchange mechanism of LAT2
localized at the membrane of astrocytes. In Figures 3D, 4D,
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while L-tyrosine transport is shown not to be mediated by B0AT2
(Table 1), this LNAA could nonetheless be transported to some
extent into neurons by other, less expressed transporters
(see Discussion section). Taken together, the difference
between the response of L-tyrosine and L-phenylalanine
results from various factors such as their differing original
perturbation dynamics in plasma (Figures 2A,D) and
the transport kinetics differences of the NVU-AATs for
these substrates and their competitors (Equation 13 and
Table 1).

The Trans-stimulation of the Test LNAA
Uptake Across the BBB Upon ISF Perfusion
With a LAT1 Competitive Inhibitor
Finally, we employed the established computational model
to investigate the induced effects of brain ISF perfusion
with 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH, a
transported competitive inhibitor of LAT1 and LAT2) on the
dynamics of test LNAAs in the brain ISF (Taslimifar et al.,
2017). We have shown recently that continues perfusion of
20mM BCH [∼ 2mM local concentration near the perfusion
probe (Dolgodilina et al., 2015)] into the brain ISF of freely
moving mice trans-stimulates the LAT1 functions at the BBB
and consequently changes the dynamics of LNAAs in the brain
ISF in exchange for the perfused BCH (Dolgodilina et al., 2015).
To mimic the experimental conditions, we have prescribed the
brain ISF concentration of BCH as constant input to the model
(considering BCH as competing LNAA (CL) with the same
kinetics Taslimifar et al., 2017) and consequently calculated the
post-stimulus responses in the concentration of test LNAAs.
Considering the fact that measuring the global concentrations
of BCH in the entire brain ISF compartment is experimentally
challenging, we compared the numerical calculations with
the in vivo measurements for different values for the global
concentrations of BCHwhich aremuch lower than the local BCH
concentrations near the probes. The computational results for the
dynamic changes of L-tyrosine and L-phenylalanine calculated
using the kinetic and expression ratios of LAT1 (RKLAT1

and RELAT1) determined above are plotted in Figures 5A,B,
respectively as percentage of the baseline. The error bars
associated with model simulations are calculated based on
sensitivity studies described below. As shown in all panels, the
elevation of perfused BCH concentration leads to increased
stimulation of the transport of test LNAAs into the brain ISF
which is due to the stimulated exchange of the perfused BCH
with the test LNAAs via MBEC LAT1 and astrocyte LAT2 (trans-
stimulation of efflux from these cells). The model calculations for
the stimulated test LNAAs eventually reach a plateau consistent
with our previous experimental observations. The best match
between model and experimental measurements was observed
for global BCH concentrations of 17–30µM in the brain ISF.
It has to be noted that our model, by assuming a homogenous
mixture of LNAAs within the individual NVU compartments,
disregards the delayed diffusion time of the perfused BCH
from the probe site into the ISF which already explains the

initial difference between model calculations and experimental
measurements in all panels (see Discussion).

Sensitivity Analysis and Statistical Testing
We assessed the sensitivity of the reported results with respect
to the choice of literature-reported values of model parameters.
To accomplish this goal, we simultaneously varied the nominal
model input parameters (Michaelis-Menten binding constant,
maximum transport rate of AATs Table 1 and the initialized
baseline concentration of LNAAs in individual compartments
Supplementary Table 2) within realistic bounds (±20% for
each parameter), and then assessed the model output for 100
random parameter sets. The results of the sensitivity analysis
are presented in Supplementary Tables 2, 3, as well as in
Figures 2–5 and Supplementary Figure 1, where error bars
indicate standard deviation of the computed concentrations
from those obtained under nominal parameter conditions. We
then assessed whether differences in the set of calculated and
experimentally measured concentration profiles are statistically
significant. To this end, we performed at each post-stimulus
time point Student’s unpaired t-test with Holm-Sidak correction
for multiple comparisons using GraphPad Prism 5.0 (GraphPad
Software, USA). P < 0.01 were considered indicative of statistical
significance (see Supplementary Table 4 for test results).

DISCUSSION

In this study, using a computational model and experimental
input data, we obtained results that strongly suggest a functional
polarity of MBECs for the trans-endothelial transport of LNAAs,
and characterized a potential strong asymmetry in bi-directional
kinetics and/or an asymmetry in membrane expression of
MBEC LAT1, which could so far not be addressed with current
standard in vitro and in vivomethods. The robust computational
model of NVU-LNAA transport we have built and used in
this study is based on the fluxes mediated by the respective
dominant transporters expressed in MBECs, astrocytes and
neurons, namely LAT1, LAT2 and B0AT2. This allowed us
to test different symmetric and asymmetric hypotheses about
the bi-directional kinetics and/or the expression of LAT1 in
MBECs. The comparison of our computational results with
published in vivo microdialysis measurements obtained in
rat brain supports the hypothesis that MBEC LAT1 either
exhibits strong asymmetric bi-directional kinetics for LNAAs
(lower affinity inside the MBECs) and/or is asymmetrically
expressed at the BBB (lower expression at the abluminal
membrane of the BBB). This observation is shown to be
independent of the substrate considered (i.e. L-tyrosine and
L-phenylalanine).

After the characterization of the functional polarity ofMBECs,
we aimed at understanding the response of the individual
NVU cells to IP administration of LNAAs, which has not been
addressed so far by in vivo standard methods. To accomplish
this, we employed the computational model to calculate the
changes in the concentrations of NVU-LNAAs in response to
IP administration of L-tyrosine and L-phenylalanine, considering
asymmetry in either bi-directional kinetics and/or expression
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FIGURE 5 | Trans-stimulation of the test LNAA uptake across the BBB during ISF perfusion with BCH. This figure shows the ISF concentration of the test LNAAs

during ISF perfusion with 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) started at time zero. In all panels, the experimental data are measured by

Dolgodilina et al. (2015) for trans- stimulation of test LNAA (L-valine) during 170min continues ISF perfusion with 20mM BCH into a group of freely moving mice (four

animals). (A,B) show the model calculations for L-tyrosine trans-stimulations upon perfusion of BCH with different global concentration levels. In (A,B), the

bidirectional kinetic constant and the expression ratio of LAT1 are considered, (RKLAT1 = 160, RELAT1 = 1) and (RKLAT1 = 1, RELAT1 = 0.18), respectively. (C,D)

show the model calculations for L-phenylalanine trans-stimulations during perfusion of BCH with different global concentration levels in the entire brain ISF

compartment. In (A,B), the bi-directional kinetic constant and the expression ratio of LAT1 are considered, (RKLAT1 = 80, RELAT1 = 1) and (RKLAT1 = 1,

RELAT1 = 0.11), respectively. The model simulations and the experimental data are represented as percent of the baseline value. The error bars associated with model

calculations indicate standard deviation with respect to concentrations obtained with the nominal model parameter set. For all panels, the calculated baseline

concentrations of the test LNAAs are reported in Supplementary Table 2. The differences between the experimental measurements and model calculations with

BCH = 10 and 100µM (A,B) as well as BCH = 5 and 100µM (C,D) are statistically significant at all post-stimulus time points (p < 0.001, Supplementary Table 4). In

contrast, model calculations with BCH = 30µM (A,B) and BCH = 17µM (C,D) are not significantly different from the experimental measurements with the exception

of the 20min post-stimulus time point (Supplementary Table 4).

distribution of LAT1 in MBECs. We thereby captured the
interactive dynamics of LNAAs as they traverse the blood-brain
barrier (BBB) from the capillary lumen into the brain interstitial
fluid and from there eventually into astrocytes and/or neurons.
Finally, we employed the model to explain also the trans-
stimulation of LNAA uptake across the BBB upon ISF perfusion
with BCH, a competitive inhibitor of LAT1.

LAT1 is the primary entry way to the brain for a broad range
of the essential LNNAs and their analogs, such as L-DOPA,
gabapentin and L-melphalan (Killian and Chikhale, 2001; Cundy
et al., 2004; Rautio et al., 2013). Hence, our finding of its
asymmetric kinetics and/or expression in MBECs provides novel
insight that may help advance our understanding of LAT1-
mediated prodrug delivery (i.e., meta-substituted phenylalanine
prodrugs) to the brain (Gynther et al., 2008; Rautio et al., 2008;
Peura et al., 2011). In addition, our computational model could
be employed to provide insight into the amino acid transport
processes in brain disorders associated with perturbations of
LNAAs in the plasma, e.g., phenylketonuria (PKU) or Maple

syrup urine disease (MSUD). This could be achieved by using
the plasma LNAA perturbations observed in patients as input
to the model to calculate the corresponding responses in the
NVU-LNAA concentrations, which are challenging to measure
experimentally (Dixon et al., 2015).

We note a number of simplifying assumptions made for the
development of our computational model. For instance, the
assumption of a homogenous mixture of LNAAs within the
individual NVU compartments disregards the local differences
in the intra-compartmental concentration of LNAAs. In
reality, however, regional distribution of amino acids in
NVU compartments may affect the binding of LNAAs to
the corresponding transporters, and therefore also the local
transport fluxes. Moreover, we have considered competitive
LNAAs as a single entity rather than accounting one by one
each individual competitor for the transport of L-phenylalanine
or L-tyrosine, such as L-leucine, L-tryptophan and others
(Supplementary Table 1). This assumption, however, has already
been experimentally validated for multi-substrate enzymatic
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reactions (Alberty, 1956). In addition, we focused on a single
carrier per NVU compartment membrane, specifically on the
antiporters (obligatory exchangers) LAT1 and LAT2 for MBECs
and astrocytes, respectively, and a symporter (cotransporter
B0AT2) for neurons, not taking into consideration diffusive
pathways which have been shown, however, to be of lesser
importance for LNAAs in the NVU (Smith and Takasato, 1986).
Moreover, we did not include LNAA metabolism, which is not
completely known and understood in the CNS (Sperringer et al.,
2017; Yudkoff, 2017). However, it has been shown that the brain
metabolic fluxes of LNAAs (such as L-phenylalanine, L-histidine,
etc.) are small compared to the carrier-mediated fluxes
(Sadasivudu and Lajtha, 1970). Additionally, our model relies
on literature-reported parameter values, which are inevitably
associated with the reported uncertainty. Nevertheless, our
sensitivity analysis has shown that the conclusions drawn in this
study hold within reasonable parameter variations. Furthermore,
it has to be pointed out that the established computational model
takes only into account the interactions between the dominant
NVU-LNAA transporters mentioned above and disregards the
contribution of other transporters, such as for instance y+LAT2
and ASCT2, which have been shown to be expressed in adult
brains, though at a lower level (Utsunomiya-Tate et al., 1996;
Deitmer et al., 2003; Gliddon et al., 2009). Beyond that, it has
to be highlighted that the structure and function of many (SLC)
transporters have yet to be fully characterized and that some
of them may also transport LNAAs, such that further research
is required (Rautio et al., 2013). The contribution of newly
discovered NVU transporters could then be included in the
computational model upon sufficient characterization of their
kinetics.

SUMMARY

We have characterized a functional polarity for MBECs which
are the key NVU element for the control of LNAA homeostasis
in the brain ISF. For this purpose, we have developed a
robust computational model of NVU-LNAA homeostasis and
combined it with published in vivo measurements obtained in
rat brain. We have shown that either strong asymmetrical bi-
directional kinetics of LAT1 in MBECs and/or an asymmetric
distribution of LAT1 at both membranes of MBECs is required
to reproduce available in vivo measurements. This conclusion is

strengthened by the fact that it is supported by data obtained for
two tested LNAAs, L-tyrosine and L-phenylalanine. Important
characteristics of LAT1 function in MBECs have not been tested
satisfactorily up to now by experimental means. In addition,
based on our findings on the functional polarity of MBECs, we
employed our computational model to investigate the dynamic
behavior of LNAAs in astrocytes and neurons in response to
IP-administered L-tyrosine and L-phenylalanine, values which
are challenging to determine experimentally. Finally, we used
the model to explain the trans-stimulation of LNAA uptake
across the BBB upon ISF perfusion with a LAT1 competitive
inhibitor. While we employed our computational platform to
answer fundamental physiological questions about homeostatic
regulation of LNAAs in the NVU, it could also be used to test
strategies designed to improve the treatment and management of
LNAA-related brain disorders.
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