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ABSTRACT

Microarray-based analysis of single nucleotide poly-
morphisms (SNPs) has many applications in large-
scale genetic studies. To minimize the influence of
experimental variation, microarray data usually need
to be processed in different aspects including
background subtraction, normalization and low-
signal filtering before genotype determination.
Although many algorithms are sophisticated for
these purposes, biases are still present. In the
present paper, new algorithms for SNP microarray
data analysis and the software, AccuTyping, devel-
oped based on these algorithms are described. The
algorithms take advantage of a large number of
SNPs included in each assay, and the fact that the
top and bottom 20% of SNPs can be safely treated
as homozygous after sorting based on their ratios
between the signal intensities. These SNPs are then
used as controls for color channel normalization
and background subtraction. Genotype calls are
made based on the logarithms of signal intensity
ratios using two cutoff values, which were deter-
mined after training the program with a dataset
of ~160000 genotypes and validated by non-
microarray methods. AccuTyping was used to
determine >300000 genotypes of DNA and sperm
samples. The accuracy was shown to be >99%.
AccuTyping can be downloaded from http:/www2.
umdnj.edu/lilabweb/publications/AccuTyping.html.

INTRODUCTION

Microarray is a powerful technology for detecting and resolv-
ing a large number of nucleic acids simultaneously. cDNA

microarrays (1-6) for large-scale analysis of gene expression
and DNA copy number changes have been used extensively.
Computer programs for all steps involved in analyzing cDNA
array data have been developed. Microarrays used for geno-
typing are receiving more and more attention, especially after
the discovery of millions of single nucleotide polymorphisms
(SNPs). To meet the strong demand in high-throughput SNP
genotyping, we (7) and several other groups (8-13) have
developed high-throughput multiplex genotyping systems,
which have been used in many studies (14—17). With these
systems, a large number of SNP-containing sequences can
be amplified in one or a few tubes followed by the analysis
with oligonucleotide microarrays; and thousands of SNPs in
a large number of samples can be genotyped in a highly
efficient and affordable way. However, the immense amount
of data generated from even a single microarray precludes
manual processing. Automation of data analysis is an essen-
tial prerequisite for routine genotyping with microarrays.

Experimentally, data from oligonucleotide microarrays
are obtained by hybridizing sample sequences to correspond-
ing probes arrayed on solid supports. Detection of specific
sequences is accomplished by either labeling the sample
sequences with fluorescent dyes before hybridization or label-
ing the probes after hybridization. The fluorescent intensities
on the probes are determined by digitizing the images of
arrayed spots after scanning.

When data are obtained in good quality, the accuracy of
genotyping results is usually affected by two factors, back-
ground signal and color channel bias. Normally, signal from
each array spot consists of signal from specific labeling that is
predominant and non-specific signal as a small portion. The
amount of non-specific signal may vary depending on experi-
mental performance. To ensure a high degree of genotyping
accuracy, it is necessary to separate the non-specific noise
from the specific signal.

When more than one fluorescent dye is used to label
sequences of different natures, the signal intensities from
different dyes could differ even if the same amounts of
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sequences are present in the sample. Variation may be caused
by the differences in fluorescent emission and scanning effi-
ciency of the dyes. When an array is scanned, the ‘gains’ used
for different fluorescent channels may vary, depending on the
users’ experience and the scanner performance. These factors
may result in a global difference between signal intensities
of the fluorescent dyes. Therefore, the microarray data from
different color channels need to be normalized so that the
intensities of different colors can be compared. In the case
of SNPs, the two allelic sequences of a heterozygous SNP
may not necessarily incorporate equal amounts of fluores-
cence. Therefore, a highly accurate normalization method is
required to separate such a bias from the difference caused
by the amounts of DNA.

Several methods for channel normalization and back-
ground estimation have been reported. One of the commonly
used methods for the normalization of RNA expression data
is to correct the systematic bias by using the channel signal
means of all spots assuming that the average gene expression
levels in the genome have little changes (18-21). However, in
an SNP analysis, the number of allelic molecules labeled
in one color may not be equal to those in the other color.
In this case, the channel signal means would be biased.
Intensity-dependent normalization methods have also been
used, such as Lowess smoothing method (18,20). When the
logarithms of intensity ratios [Ln(R)] are plotted against the
logarithms of intensity products [Ln(/)], the Lowess method
detects the systematic bias in the plot by carrying out a
local weighted linear regression. The bias is corrected when
the Ln(R) value of each spot is subtracted by its fitted
value. This method is not ideal for analyzing SNP genotyping
data either, because the amounts of signals from unequal
amounts of allelic sequences present in the sample may
also contribute to the local bias in an Ln(R) versus Ln(/)
plot, which could be incorrectly removed by local bias
subtraction.

Methods for background estimation have also been
reported previously. One method for background signal
estimation uses the fluorescence signal within the surrounding
area of a spot as a representation of its background (22,23).
This method only takes inter-spot background into considera-
tion, while intra-spot background is the real non-specific sig-
nal contributing to the spot signal intensities. Another method
involves using microarray spots containing only the printing
buffer as controls. Obviously, signals from these controls may
not reflect non-specific hybridization. Although printing buf-
fer with non-probe oligonucleotides can be used as controls,
these controls are always limited by the number of spots
allowable on the array and may also not be representative
of non-specific signal from real probes. Affymetrix genotyp-
ing microarrays use probes containing one or two mismatches
as controls for each SNP (12). Hardenbol ef al. (11) used
four probes for each biallelic SNP among which the two
non-allelic probes served as background controls. Di et al.
(24) developed dynamic model-based algorithms for genotyp-
ing. The authors calculated the likelihood of the possible
allelic states using signals from 56 perfect match and mis-
match probes for each SNP. Mismatch probes in this method
provide marker-specific assessment of background. However,
these probes can only be used to determine the ratio between
perfect match and mismatch probes, and not to define the
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background signal since in a microarray analysis, usually
the mismatches between the non-specific sequences and the
probes are more than one or two bases. In addition, the cost
for extra probes is another concern.

We have developed new algorithms for microarray-based
SNP analysis. Our algorithms take advantage of the large
number of SNPs analyzed in each high-throughput assay
and use signal intensities of SNPs that are very likely to
be homozygous as both negative and positive controls. There-
fore, these controls reflect the scenario in real samples.

MATERIALS AND METHODS
SNP microarray system

Our newly developed genotyping system can be used to
genotype >1000 SNPs in a single assay (7). With this system,
SNP-containing sequences are first amplified in a single tube
to a detectable amount by multiplex PCR, and then used as
templates to generate single-stranded DNA (ssDNA), which
is then hybridized to the probes on a microarray. The probes
are designed in such a way that their 3’ ends of the probes
are next to the polymorphic sites in the hybridizing ssDNA.
In this way, the probes can be labeled with the commonly
used single-base extension method (25-27) during which sin-
gle dideoxyribonucleotides (ddNTPs) are added to the probe
in an allelic-specific way depending on the hybridizing allelic
sequence(s). When the corresponding ddNTPs are labeled
with different fluorescent chromophores (cyanine dyes, either
Cy3 or C5, in our system), the allelic state of the SNPs can be
determined by analyzing the amount of incorporated fluores-
cence. Data used in the present study were obtained with
this two-color system. However, the algorithms described
below could also be used for four-color systems. In addition,
the genotypes of SNPs may be determined independently by
using the two DNA strands as templates separately so that
results from such dual-probe analysis could be compared to
ensure a high degree of accuracy.

Genotyping algorithms

Based on the fluorescence intensities of the spots on microar-
ray, genotypes of SNPs are determined in four steps: channel
normalization, low-signal filtering, background subtraction
and genotype determination with predicted homozygous
SNPs as controls.

Using homozygous SNPs as controls. When an SNP is in a
homozygous state, its probe should predominantly incorpor-
ate one color, which is designated as the signal color while
the other color should be considered as the background
color. The use of the signal and background colors for a
large number of homozygous SNPs as controls for channel
normalization and background subtraction should be a reli-
able method. This is because when the numbers of SNPs
are large, the means of signal color intensities of the two
groups of homozygous SNPs should be very close. Difference
between the two means reflects channel bias. The background
color for each group of homozygous SNPs would represent
the sum of noises contributed by all experimental factors
including the non-specific hybridization.
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According to binomial distribution, the 95% confidence
interval for the fraction of heterozygous SNPs in 1000 loci
for a given individual would be 0.5 = 0.031 when all SNPs
are at the maximal heterozygosity of 0.5. Practically, the
fraction of heterozygous SNPs should be smaller because
no individual has all pre-selected SNPs at the maximal
heterozygosity. Therefore, when SNPs are sorted based on
their intensity ratios of the two colors, it would be safe to
assume that 40% of SNPs with the highest or lowest ratios
are homozygous (or 20% at each end). To validate this
hypothesis experimentally, 469 SNPs at the extreme 20% of
each end of a panel of 1172 SNPs in a sample were re-
genotyped by the methods of restriction fragment length
polymorphism (RFLP) (28,29) and direct sequencing. All
these SNPs were shown to be homozygous.

Data normalization. After digitizing the image, SNPs on the
microarray are first sorted based on their ratios between the
two color intensities. The two 20% groups of SNPs with
the highest and lowest ratios are treated as homozygous and
used as controls. Signals for all spots are then normalized
using the following equation:

where S;; and §';; are the original and normalized signal inten-
sities of spoti (i = 1, 2,...,n spots on an array) in channel j
(g, green; or r, red) on the microarray. N j and N_,v are the
means of the signal intensities in the red and green channels,
respectively. If j/ is r and then j is g, and vice versa.

Low-signal filtering. After normalization, microarray spots
with low intensities for both colors are usually removed
from further analysis (12,30-33). In our program, the back-
ground intensities for the SNPs in each 20% homozygous
group are first trimmed by removing the extreme values
that are more than 1 SD from the mean. This step removes
the sporadic outliners in the control dataset. The mean, Bj,
and standard deviation, 6; (j = r or g), of the homozygous
subsets for channel j are then recalculated for each trimmed
set and is used to filter out the low-signal spots. For any spot i,
if the normalized signal intensities, S’ ;» in both channels match
the following condition:

S;] ng -+ noj, 2

where nis a user-defined value (that usually is 2), no genotype call
will be made and the corresponding spot is defined as undetected
with a flag of ‘L’ for ‘low-signal’.

Background subtraction. After filtering out the low-signal
spots, the ‘true’ signals in the remaining spots, S”;, are
computed by subtracting the background mean from the nor-
malized values. To avoid negative values for calculation of
Ln(R), any negative S”; are replaced by a small value,
1 (34). To be reasonable, all S”; smaller than 1 are also
set to 1.

Genotyping. A straightforward log-ratio cutoff method is
employed to determine the genotype calls. Two cutoff values
of Ln(R), L, and L, were determined using a training dataset
consisting of ~160000 genotypes obtained from the
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dual-probe analysis. During the training process, cutoff
values from 1 to 2.4 of the Ln(R) with a 0.1 increment was
tested to find the values that give the best concordance rate
by comparing the two datasets obtained from independent
dual-probe assays. The best concordant rate was obtained
when L, = —L, = 1.5 were used. As shown in Figure 1,
the two parallel lines, y; = L, and y, = L,, in the scatter
plot of Ln(R)’s, separate the data points into three groups.
SNPs with Ln(R)’s bracketed by the two lines are classified
as heterozygous, and those with Ln(R)’s outside of the brack-
eted range are classified as homozygous.

RESULTS

The above data preprocessing steps improve the data quality
in three aspects:

(i) Centering datasets with respect to the line y = 0 through
normalization. Although channel bias is not always
visually obvious, a significant portion of datasets are
biased to a certain extent and need to be normalized to
ensure a high degree of accuracy. Although not often,
results from a small portion of microarrays may be
highly biased. In these cases, the effect of channel
normalization becomes more visually obvious on the
scatter plots;

(i) Eliminating spots with signals that are not significantly
higher than background. As shown in Table 1, this step
eliminates 1.46 and 1.15% (low-signal rate = 1 —
detection rate) of spots in the assays with ‘AG’ and ‘CT’
probes, respectively; and

(iii) Separating the three groups of spots representing SNPs
in the different allelic states further away through
background subtraction. The original dataset falls
between the lines y = 5 and y = —6. After this step,
most data points for the homozygous SNPs are out of
this range. Such an effect is especially obvious for the
spots with signals that are low but significantly higher
than the background. As shown on the left side of the
lower scatter plot in Figure 1, spots with relatively low
signals are much better separated compared with the
unprocessed plot in the upper panel.

Spots falling between different genotype clusters on the
scatter plots are one of the major error sources. AccuTyping
has a ‘twilight zone’ function. The twilight zones are centered
by the cutoff lines. Users may adjust the width of the twilight
zones based on the data quality to further insure the genotyp-
ing accuracy.

A computer software, AccuTyping, was developed based
on the algorithms described above. AccuTyping takes inputs
of the two color intensities digitized from scanned microarray
images with one of the two popular software packages,
GenePix (Axon Instrument, Union City, CA) or ImaGene
(Biodiscovery, Inc., El Segundo, CA). The program may pro-
cess either single datasets separately or multiple datasets in a
batch. Figure 2 shows the Windows interface of the program.

When the probes are spotted in duplicate on the array, the
average signal intensities are used. Occasionally, the average
may not necessarily be an appropriate estimate of true signal
values. For example, the average of two duplicated spots with
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Figure 1. Scatter plots of data from a microarray for 1172 SNPs. The signal intensity log ratios, Ln(R)’s, are plotted against the signal sums of the two color
intensities (R + G, Cy3 + Cy5). Upper panel, plot using the original data. Lower panel, plot after data processing. Note, spots with both color intensities smaller
than the low-signal filtering values (Equation 2) were eliminated by the program and are not plotted in the lower panel. The two lines, y = £1.5, encompass the

heterozygous cluster.

predominant signals in opposite colors could give a heterozy-
gous call. The program detects such cases and excludes them
in the final genotyping step. Some spots could show apparent
abnormality in the microarray images because of mechanical
failure during experiment. AccuTyping excludes these spots
if the user flags them. After channel normalization, low-
signal filtering and background subtraction, genotype calls
are made. The program also checks reproducibility between
repeated assays and the accuracy by comparing the genotype
calls from independent genotyping methods.

AccuTyping outputs comma separated value (CSV) files
containing genotype calls, the original and processed data
as well as the numerical values for the parameters used for
normalization, background subtraction and low-signal filter-
ing. The statistics of detection, concordance and accuracy,
if available, are also appended in the output files. For a
batch run, output results are written into a separate file for
each dataset. All genotypes are pooled into an additional
file to facilitate further analysis. The program is available
for download from our website http://www2.umdnj.edu/
lilabweb/Publications/AccuTyping.html.

AccuTyping has been used routinely for SNP genotyping
with human genomic DNA and single-sperm samples
(7,17) in our laboratory. Table 1 shows part of the genotyping
results from typing 1172 SNPs in 24 human genomic
DNA samples. The program indicates a detection rate of

98.54% with probes that incorporate fluorescently labeled
nucleotides ddA or ddG (AG probes) and 98.85% with probes
in the other direction, which incorporate fluorescently labeled
ddC and ddT (CT probes). An average detection rate with
dual probes was 97.58%, which is 1.5 and 1.8% different
from the rates for single probes, respectively.

Since genotyping with probes in two different directions is
carried out in independent experiments, results generated in
this way can validate each other. After comparing the geno-
typing results obtained with probes in different directions, a
small portion of the genotypes may be found to be inconsis-
tent. As shown in Table 1, the average non-concordant rate is
2.94% with an SD of 0.36%. However, being non-concordant
does not mean incorrect. Since the system involves only two
colors, it is reasonable to assume that if only the probes in
one direction were used, half of the non-concordant geno-
types should be correct. This hypothesis was verified in our
recent publication (7). Based on this method, accuracy
based on the dual-probe approach is calculated and listed in
Table 1. It should be pointed out that the non-concordant
rates calculated in this way are used to estimate the error
rates for the results obtained with single probes. Practically,
non-concordant genotypes detected with dual probes will be
discarded. In this case, the error rate among the concordant
genotypes should be €2, where ¢ is the error rate for smgle
probes, and the issue Would be how accurate the remaining
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Figure 2. The graphic interface of AccuTyping.

genotype calls would be. Usually, results generated with
probes in two directions can be used to address this issue.
To take extra precaution, a panel of 1282 such genotypes
was retyped with the RFLPs and direct sequencing methods,
and all were shown to be consistent with the microarray
results. These results indicate the accuracy of the dual-
probe method is close or even equal to 100%.

DISCUSSION

Practically, all microarray data need to be normalized before
information extraction. However, normalizations for data
from SNP genotyping arrays and for those from gene expres-
sion profiling arrays are different concepts. Gene expression
profiling arrays are used to learn the quantitative features of
gene products in different samples. Normalization for these
arrays should include (i) intra-array normalization to make
intensities of different color channels comparable and
(ii) inter-array normalization so that the quantities of gene
products detected from different arrays can be compared. In
contrast, SNP genotyping arrays are used to discriminate
the allelic sequences differing by single bases. As long as
these sequences can be accurately and reliably distinguished,
inter-array differences may not be necessarily a major
concern. By using a large number of reliably predicted homo-
zygous SNPs as controls, we have developed very straightfor-
ward algorithms for analyzing microarray-based genotyping
data. In conjunction with the dual-probe assay, our approach
has achieved very high accuracy and reliability.
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Algorithms (24,33) have been developed to analyze geno-
typing data generated by the Affymetrix SNP microarrays
with very high degree of accuracy. Unfortunately, these algo-
rithms were specifically developed for the Affymetrix system
that use perfect match and mismatch probes. Such a require-
ment limits the application of these algorithms in three
aspects: (i) most non-Affymetrix arrays do not use the
mismatch probes; (ii)) Affymetrix arrays contain only a
small portion of known SNPs; and (iii) most genetic studies
use customized specific SNP sets depending on the chromo-
somal regions or genes under study and many studies may not
need as many SNP as those on the Affymetrix arrays. There-
fore, algorithms that can be used universally for different
platforms and for various SNP panels including the industri-
ally established panels are highly desirable. Our algorithms
require homozygous SNPs as controls which are abundant
in any large-scale microarray analysis, and are simple and
straightforward. Therefore, it can be used for this purpose.

A clustering-based algorithm for analyzing SNP genotyp-
ing data was reported by Rabbee and Speed (35) very
recently. The algorithm was implemented by training the
computer program with publicly available SNP genotyping
data. Although the training datasets were exclusively gener-
ated by the Affymetrix SNP arrays, the algorithm may be
used to analyze data generated by non-Affymetrix arrays
since it does not depend on the mismatched probes. However,
as pointed out by the authors, it is difficult to train the pro-
gram for SNPs with alleles at a low frequency because the
clustering method itself requires a certain number of samples
to reach sufficient statistic confidence. When an SNP allele is
at a very low frequency, the sample size required for this pur-
pose could be very large. The same issue is true for all SNPs
that do not have sufficient data available. Furthermore, when
a new genotyping method is to be established, there would be
not genotyping data available for training the program.

With our system, the non-concordant genotypes can be dis-
carded to ensure a high degree of accuracy. However, an
interesting issue would be how these errors are generated.
Based on the dual-probe analysis, the non-concordant geno-
types were found not to be randomly distributed among the
samples. A small fraction (~6%) of SNPs were found to be
associated with either non-concordant or undetectable signals
among >30% of the samples. More detailed analyses includ-
ing single-sperm analysis revealed that the majority of these
SNPs were either not real SNPs (showing as heterozygous in
most single-sperm samples) which could be caused by repeti-
tive sequences or were affected by other unknown genetic
variations located in the primer or probe regions. After elimi-
nating these SNPs from further analysis, the concordant rate
for the data in Table 1 would be increased from 97.06 to
98.65% with an accuracy of 99.9954%, indicating that not
only is our experimental approach robust but also that our
computer algorithms are highly reliable.

Other than being an appropriate method for channel nor-
malization and background subtraction, using homozygous
SNPs as controls has another advantage i.e. their large
numbers. Thousands of SNPs can be analyzed by a single
array, and the homozygous SNPs are in abundance. This
method enhances reliability and is much more comprehensive
in reflecting various factors that may contribute to data vari-
ability on the overall array as compared to using very few
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controls. The cost and effort of adding extra control oligonu-
cleotides is also eliminated. Owing to the ever-increasing
capability of a small or medium sized laboratory to generate
a large volume of microarray data routinely, it is expected
that AccuTyping will benefit many microarray users.
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