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Summary 

Background: Sporadic clear-cell renal cell carcinoma
(ccRCC) is associated with mutations in the VHL gene,
upregulated mammalian target of rapamycin (mTOR) activ-
ity and glycolytic metabolism. Here, we analyze the effect of
VHL mutational status on the expression level of mTOR,
eIF4E-BP1, AMPK, REDD1, and PDK3 proteins. 
Methods: Total proteins were isolated from 21 tumorous
samples with biallelic inactivation, 10 with monoallelic inac-
tivation and 6 tumors with a wild-type VHL (wtVHL) gene
obtained from patients who underwent total nephrectomy.
The expressions of target proteins were assessed using
Western blot.
Results: Expressions of mTOR, eIF4EBP1 and AMPK were
VHL independent. Tumors with monoallelic inactivation of
VHL underexpressed REDD1 in comparison to wtVHL
tumors (P = 0.042), tumors with biallelic VHL inactivation
(P < 0.005) and control tissue (P = 0.004). Additionally,
REDD1 expression was higher in tumors with VHL biallelic
inactivation than in control tissue (P = 0.008). Only in wt
tumor samples PDK3 was overexpressed in comparison to
tumors with biallelic inactivation of VHL gene (P = 0.012)
and controls (P = 0.016). In wtVHL ccRCC, multivariate lin-
ear regression analysis revealed that 97.4% of variability in
PDK3 expression can be explained by variations in AMPK
amount.

Kratak sadr`aj

Uvod: Sporadi~ni svetlo}elijski karcinom bubrega asociran je
sa mutacijama u genu VHL, povi{enom aktivno{}u mTOR
sig nalnog puta i glikoliti~kim metabolizmom. Cilj ove studije
bio je da se ispita efekat mutacionog statusa gena VHL na
nivo ekspresije proteina mTOR, eIF4E-BP1, AMPK, REDD1
i PDK3.
Metode: Ukupni proteini izolovani su iz uzorka tumorskog
tkiva sa bialelnom inaktivacijom gena VHL (n = 21), uzoraka
sa monoalelnom inaktivacijom (n =10) i tumora sa ne iz me -
njenim genom VHL (wtVHL) (n=6) dobijenih od bolesnika sa
karcinomom bubrega nakon totalne nefrektomije. Nivo eks-
presije ispitivanih proteina utvr|en je Western blot metodom.
Rezultati: Nisu detektovane razlike u nivou ekspresije prote-
ina mTOR, eIF4EBP1 i AMPK u zavisnosti od mutacionog
statusa gena VHL. Tumori sa monoalelnom inaktivacijom
gena VHL imali su povi{en nivo ekspresije proteina REDD1
u pore|enju sa wtVHL tumorima (P = 0,042), tumorima sa
bialelnom inaktivacijom gena VHL (P < 0,005) i kontrolnim
tkivom (P = 0,004). Dodatno, ekspresioni nivo REDD1 pro-
teina je bio vi{i u tumorima sa bialelnom inaktivacijom gena
VHL u odnosu na kontrolno tkivo (P = 0,008). Nivo ekspre-
sije proteina PDK3 u wtVHL tumorima je bio povi{en u
odnosu na tumore sa bialelnom inaktivacijom gena VHL (P
= 0,012) i kontrolno tkivo bubrega (P = 0,016). U tumo -
rima sa wtVHL genom, multivarijantnom linearnom regresio-
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Introduction

The von Hippel-Lindau tumor suppressor gene
(VHL) is frequently mutated in sporadic form of clear-
cell renal cell carcinoma (ccRCC) (1, 2). Inactivation
of the VHL gene contributes to early phases of renal
tumorigenesis by accummulation of hypoxia inducible
factors (HIFs) and deregulation of processes impor-
tant for renal epithelial cell morphology (3, 4).
Elevated activity of mammalian target of rapamycin
(mTORC1/mTORC2) signaling pathways were no -
ticed in different types of tumors including clear-cell
renal carcinoma (5, 6). It is well known that mTORC1
controls cellular growth, proliferation and metabolism
via its effector molecules p70S6K1 (Ribosomal pro -
tein S6 kinase beta-1) and eIF4E-BP1 (Eukaryotic
Translation Initiation Factor 4E Binding Protein 1) and
that it is under the control of AMPK (5’ adenosine
monophosphate-activated protein kinase) and
REDD1 (Regulated in Development and DNA
Damage Response 1) (7–15). Additionally, mTORC1
regulates ribosomal biogenesis and nucleolar size
(16). The Fuhrman nuclear grading system, an inde-
pendent prognostic predictor for ccRCC, is based on
nucleolar prominence and can be used as an indica-
tor of mTORC1 activity (17). It has been shown that
cancer cells utilize glycolysis as the main metabolic
pathway for energy production even under normoxic
conditions (18–20). The role of these molecules in
the regulation of pyruvate dehydrogenase kinases
(PDKs) is not well defined in ccRCC. Many studies
were focused on the PDK1 isoform in different carci-
nomas, but there is no information about the expres-
sion level of PDK3 isoform in ccRCCs (21–23). 

In the present study, we evaluated the effect of
VHL mutational status on the expression level of
mTOR, eIF4E-BP1, AMPK, REDD1, and PDK3 pro -
teins in ccRCC.

Material and Methods

This study was performed on 37 tumor and cor-
responding healthy renal tissue samples obtained
from patients who underwent nephrectomy due to
unilateral kidney tumor without history of hereditary
VHL syndrome. All the patients provided written in -

formed consent for participation and the study rece-
ived the permission from the local Research Ethics
Com mittee. Tissues were sampled after surgery,
immediately frozen in liquid nitrogen and stored at –
80 °C until use. All tumors were classified as clear-cell
renal cell carcinoma by the pathologist.

Protein isolation and Western blot

Proteins were extracted from tumorous and cor-
responding healthy renal tissue. Thirty mg tissue sam-
ples were dissected, homogenized and lysed in RIPA
buffer containing complete EDTA-free protease inhi-
bitor cocktails (Roche Applied Science, Mannheim,
Germany) and left on ice for one hour. Samples were
sonicated three times for 30 s followed by cooling for
one minute and stored for one hour on ice. Samples
were centrifuged for 20 min, 11 000 rpm at 4 °C.
Supernatants were pipetted into new tubes. Bio-Rad
Protein Assay was used for measurement of protein
concentration at 595 nm. Prior to SDS-PAGE separa-
tion, proteins suspension was mixed with loading and
sample buffer (NuPAGE LDS Sample Buffer, NuPAGE
Reducing Agent, Invitrogen Life Technol ogies, Grand
Island, New York, USA), denatured for 10 min at 90
°C and loaded into precast 4–12% Bis-Tris or 3–8%
Tris-acetate gels (Invitrogen Life Technologies, Grand
Island, New York, USA), depending on the molecular
weight of detected proteins. Separated proteins were
blotted on nitrocellulose/PVDF membranes using wet
electrotransfer devices. Membranes were blocked
with 5% nonfat milk in 1XTBST containing 0.1%
Tween 20 for one hour at room temperature and
incubated in primary antibody in 1XTBST overnight
at 4 °C. [anti–mTOR (1:1000, 7C10, Cell Signaling
Technology, Danvers, Massa chusetts, USA); anti–
eIF4EBP1 (1:1000, ab2606, Abcam, Cambridge,
UK); anti–AMPK (1:500, ab80039, Abcam,
Cambridge, UK); anti–REDD1 (1:500, H-110: sc-
67051, Santa Cruz Biotechnology, Dallas, Texas,
USA); anti–PDK3 (1:1000, LS-C111083, Lifespan
Biosciences, Seattle, Washington, USA); anti-b-actin
(1:1000, ab3280, Abcam, Cambridge, UK)] Then,
membranes were washed in 1XPBST, probed with
appropriate secondary HRP-conjugated anti-mouse
or anti-rabbit antibody for 1.5 hours at room temper -

Conclusions: Expressions of mTOR, eIF4EBP1 and AMPK
were VHL independent. We have shown for the first time
VHL dependent expression of PDK3 and we provide addi-
tional evidence that VHL mutational status affects REDD1
expression in sporadic ccRCC. 

Keywords: clear-cell renal cell carcinoma, mammalian
target of rapamycin, pyruvate dehydrogenase kinase 3, reg-
ulated in development and DNA damage responses, VHL
gene

nom analizom pokazano je da se 97,4% varijabilnosti nivoa
ekspresije PDK3 mo`e objasniti varijabilno{}u ekspresionog
nivoa proteina AMPK. 
Zaklju~ak: Ekspresioni nivo proteina mTOR, eIF4EBP1 i
AMPK nezavisan je od mutacionog statusa gena VHL. Ovom
studijom je prvi put pokazano da nivo ekspresije proteina
PDK3 zavisi od mutacionog statusa gena VHL i pru`eni su
dodatni dokazi da mutacioni status gena VHL uti~e na nivo
ekspresije proteina REDD1 u svetlo}elijskom karcinomu
bubrega. 

Klju~ne re~i: svetlo}elijski karcinom bubrega, PDK3,
mTOR, REDD1, gen VHL



J Med Biochem 2018; 37 (1) 33

ature  and washed in PBST. Proteins were visualized
by chemiluminescence (Lumi-lightPLUS Western
Blotting kit, Roche Applied Science, Mannheim, Ger -
many). After visualization, membranes were stripped
with 0.2 mol/L NaOH, and reprobed with another
primary antibody or anti-b-actin antibody. The inten-
sities of immunoreactive bands were determined
using ImageQuant 5.2 software (GE Healthcare,
Little Chalfont, UK). Protein loading was normalized
to b-actin (24).

Statistical analysis

All data are presented as mean ± SE. Differ -
ences between tumorous and corresponding non-
tumorous tissues were estimated using nonparame-
tric Kruskal Wallis analysis of variance followed by
Mann Whitney test or ANOVA with Bonferroni correc-
tion, depending on data distribution. Pearson’s test
was used to detect correlation between two variables.
Stepwise multivariate analysis was used to determine
causal relationships between variables. P value <
0.05 was considered statistically significant. Statistical
analyses were done using SPSS® 13.0, Inc., Chicago,
Illinois, USA.

Results

Tumor classification based on VHL gene muta-
tional status

We used tumor samples with known mutational
status in the VHL gene previously reported by our
group (25). Among 37 samples of ccRCCs, in 21
(56.8%) tumors biallelic inactivation of VHL gene was
detected (intragenic mutation plus loss of hetero -
zygosity on 3p locus), 10 (27.0%) tumors have shown
monoallelic inactivation of VHL (mutation or LOH on
3p locus) and in 6 (16.2%) tumors no alterations in
VHL were found (wt VHL). Also, mutations or LOH
were not found in all corresponding non-tumorous
tissues.

Tumors with wt VHL gene have shown signifi-
cantly higher Fuhrman’s nuclear grade (2.8 ± 0.2) in
comparison to tumors with monoallelic (1.8 ± 0.2; P
= 0.026) and biallelic (2.1 ± 0.2; P = 0.04) inacti-
vation of the VHL gene. 

Western Blot analyses: mTOR, eIF4E-BP1,
AMPK, REDD1, and PDK3 in tumorous and cor-
responding non-tumorous tissue

Intensities of immunoreactive bands normalized
to b-actin (expression level of examined proteins) are
presented in Table I. Irrespectively of the VHL gene
status, all tumorous tissues similarly expressed
mTOR, eIF4EBP1, and AMPK proteins (Figure 1,
Figure 2, Figure 3). Only tumors with biallelic inacti-
vation demonstrated lower mTOR and higher
eIF4EBP1 expression in comparison to control tissue
(P = 0.002 for both).

Expression level of REDD1 protein is influenced
by the VHL gene. Tumors with monoallelic inactivation
of VHL underexpressed REDD1 in comparison to both
wt tumors (P = 0.042) and tumors with biallelic gene
inactivation (P < 0.005) as well as to control tissue (P
= 0.004). On the contrary, REDD1 expression in
tumorous tissue with biallelic inactivation of VHL was
higher than in control tissue (P = 0.008) (Figure 4). 

Wild-type ccRCCs  expressed significantly higher
amounts of PDK3 protein in comparison to tumors with
biallelic inactivation of the VHL gene (P = 0.012) and
control renal tissue (P = 0.016) (Figure 5).

Correlations and multivariate linear regression
analysis

In tumors with wt VHL gene expression of PDK3
protein was in a positive correlation with AMPK pro-
tein (r = 0.987, P = 0.013). Multivariate linear re -
gression analysis has shown that 97.4% of variability
in the expression level of PDK3 can be explained by

Table I Expression level of mTOR, eIF4E-BP1, AMPK, REDD1 and PDK3 proteins in ccRCCs and control renal tissue.

aP < 0.05 vs. C; bP < 0.05 vs. WT; cP < 0.05 vs. M+LOH; WT, wild-type VHL; M/LOH, VHL-mutated or loss of heterozygosity
of 3p locus; M+LOH, VHL-mutated and loss of heterozygosity of 3p locus; C-control renal tissue.

VHL mTOR eIF4E-BP1 AMPK REDD1 PDK3

WT 0.83 ± 0.45 0.85 ± 0.35 0.59 ± 0.30 0.37 ± 0.15 1.06 ± 0.3a,c

M/LOH 0.41 ± 0.19 0.47 ± 0.17 0.39 ± 0.13 0.06 ± 0.03a,b,c 4.33 ± 3.79

M+LOH 0.21 ± 0.06a 0.80 ± 0.12a 0.70 ± 0.18 0.45 ± 0.10a 0.32 ± 0.08

C 0.50 ± 0.07 0.35 ± 0.05 0.50 ± 0.08 0.25 ± 0.05 0.36 ± 0.06
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Figure 1 Expression level of mTOR in ccRCCs and corresponding non-tumorous tissue samples. A) Western blot for mTOR in
tumorous and non-tumorous tissue. B) Tumors with biallelic inactivation underexpressed mTOR in comparison to control tissue.
There was no significant difference regarding VHL mutational status. WT, wild-type VHL; M/LOH, VHL-mutated or loss of
heterozygosity of 3p locus; M+LOH, VHL-mutated and loss of heterozygosity of 3p locus; C, control renal tissue. (*P = 0.002 vs.
control)

Figure 2 Expression level of eIF4EBP1 in ccRCCs and corresponding non-tumorous tissue samples. A) Western blot for eIF4EBP1
in tumorous and non-tumorous tissue. B) Tumors with biallelic inactivation underexpressed eIF4EBP1 in comparison to con-
trol tissue. Abundance of eIF4EBP1 was not influenced by VHL gene mutational status. WT, wild-type VHL; M/LOH, VHL-mutated
or loss of heterozygosity of 3p locus; M+LOH, VHL-mutated and loss of heterozygosity of 3p locus; C, control renal tissue. (*P =
0.002 vs. control)
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Figure 3 Expression level of AMPK in ccRCCs and corresponding non-tumorous tissue samples. A) Western blot for AMPK in
tumorous and non-tumorous tissue. B) Similar expression of AMPK irrespectively of VHL gene mutational status. WT, wild-type
VHL; M/LOH, VHL-mutated or loss of heterozygosity of 3p locus; M+LOH, VHL-mutated and loss of heterozygosity of 3p locus;
C, control renal tissue

Figure 4 REDD1 expression level in ccRCCs and corresponding non-tumorous tissue samples. A) Western blot for REDD1 in
tumorous and non-tumorous tissue. B) Tumors with monoallelic inactivation of VHL underexpressed REDD1 in comparison to
wtVHL and tumors with biallelic inactivation of VHL, and to control renal tissue. REDD1 expression was higher in tumors with bial-
lelic VHL inactivation than in control tissue. WT, wild-type VHL; M/LOH, VHL-mutated or loss of heterozygosity of 3p locus;
M+LOH, VHL-mutated and loss of heterozygosity of 3p locus; C, control renal tissue. (*P < 0.001 vs. control, #P = 0.042  vs.
wtVHL; ‡P < 0.005 vs. M+LOH)



variations in AMPK expression (Coefficient B ± SE,
0.778 ± 0.09, P < 0.001). 

Discussion

Tumors with biallelic VHL gene inactivation exhib -
ited higher expression levels of REDD1 than those
with monoallelic VHL inactivation and corresponding
control tissues. While mTOR expression was similar
among tumor tissues, it was lower in tissues with bial-
lelic inactivation than in controls. We also demonstra-
ted that biallelic inactivation is accompanied with
lower Fuhrman’s grade in comparison to wt ccRCCs.
This is in line with the results of Kucejova et al. (16)
who demonstrated that VHL gene inactivation is cru-
cial for REDD1 overexpression. They also provide
the evidence for the presence of a positive relation
between Fuhrman’s grade and mTORC1 activity.
Thus, underexpression of mTOR with upregulation of
REDD1 suggests dominant signaling through
mTORC2. This could be supported by the presence
of HIF-2a in VHL negative tumorous tissues, whose
synthesis is hinged on mTORC2 activity (26). Further -
more, these tumors have increased expression levels
of eIF4EBP1 in comparison to corresponding healthy
tissues. It has been shown that both hypo phospho -
rylation of eIF4EBP1 and overexpression of eIF4EBP1
as a cell-protective mechanism in stress conditions

inhibit mTORC1 activity and restrain protein synthesis
(27). The interplay between eIF4EBP1 and mTORC1
during energy deprivation appears to be the conse-
quence of REDD1 overexpression in VHL negative
tumors, indicating that balancing between mTORC1
and mTORC2 could depend on pVHL (28).  

Similar expression levels of REDD1 in wt VHL
and tumors with biallelic inactivation of VHL may indi-
cate functional inactivation of pVHL rendered by
hypoxia (29–31). Higher Fuhrman’s grade in wt VHL
tumors than in tumors with biallelic inactivation of
VHL accompanied with similar expressions of REDD1
and mTOR may reflect resistance of mTORC1 to
REDD1 inhibition (16, 32).

Along with incapability to increase REDD1
expression, VHL haploinsufficient tumors exhibited
unexpectedly decreased levels of the aforementioned
REDD1. In spite of the proposed regulation of HIFs
by negative feedback control (33), our results suggest
that decreased levels of REDD1 in tumors with
monoallelic inactivation of VHL are not only transcrip-
tionally regulated by the HIFs whose expression is
VHL independent (34). Possible explanations for the
depletion of REDD1 could be the presence of Redd1
mutations, which are apparently rare (16). Addition -
ally, it was reported that miR-221 which binds to 3’-
UTR of Redd1 transcript is overexpressed in patients
with ccRCCs (35–38). Besides, tumorous expression
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Figure 5 Expression level of PDK3 in ccRCCs and corresponding non-tumorous tissue samples. A) Western blot for PDK3 in
tumorous and non-tumorous tissue. B) wt VHL tumors expressed higher amounts of PDK3 in comparison to tumors with biallelic
VHL inactivation  and to control tissue. WT, wild-type VHL; M/LOH, VHL-mutated or loss of heterozygosity of 3p locus; M+LOH,
VHL-mutated and loss of heterozygosity of 3p locus; C, control renal tissue. (*P = 0.016 vs. control; #P = 0.012 vs. M+LOH)



of REDD1 and TSC1 (Hamartin) follows the same
pattern of expression and VHL dependency (25). Of
note is that REDD1, TSC1 and TSC2 (Tuberin) degra-
dation is regulated by the mutual ubiquitin-depen-
dent proteasomal system comprised of CUL4A-
DDB1-ROC1-b-TRCP E3 ligase complex mediated by
phosphorylation activity of GSK3b (Glycogen Syn -
thase Kinase 3b) (39, 40). Potential link between the
expression of REDD1 and TSC1 in ccRCC could be
GSK3b since it is also involved in pVHL phosphoryla-
tion that affects its HIF-independent functions (32,
41, 42).

Results of our study also implicate that the
meta bolic profile of ccRCCs depends on the VHL
mutational status. Expression of PDK3 in wtVHL
tumors was higher in comparison to tumors with bial-
lelic inactivation of VHL and corresponding control
tissue. Over expres sion of PDK3 in wt VHL tumors
suggests glycolysis as a dominant metabolic pathway
for ATP production. This finding highlights the impor-
tance of determination of VHL mutational status for
the most efficient therapeutic strategy (43). Almost all
(97.4%) variability in PDK3 expression is explained by
the amount of AMPK in these tumors reflecting a pos-

itive functional relation between the two molecules in
response to hypoxia (44). 

Although small sample size was a limitation of
the present study, significant differences in the
expression profile of wtVHL and tumors with biallelic
inactivation of VHL may provide advantages in the
therapy of ccRCC and should be considered for fur-
ther investigation.

In conclusion, expressions of mTOR, eIF4EBP1
and AMPK proteins were VHL independent in ccRCC.
Our study provides additional evidence that VHL
mutational status affects REDD1 expression in these
tumors. For the first time, we have shown that PDK3
has VHL dependent expression in sporadic ccRCC. 
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