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Abstract
Background: Cancer screening reduces cancer mortality when early detection allows successful treatment of 
otherwise fatal disease. There are a variety of trial designs used to find the best screening test. In a series screening trial 
design, the decision to conduct the second test is based on the results of the first test. Thus, the estimates of diagnostic 
accuracy for the second test are conditional, and may differ from unconditional estimates. The problem is further 
complicated when some cases are misclassified as non-cases due to incomplete disease status ascertainment.

Methods: For a series design, we assume that the second screening test is conducted only if the first test had negative 
results. We derive formulae for the conditional sensitivity and specificity of the second test in the presence of 
differential verification bias. For comparison, we also derive formulae for the sensitivity and specificity for a single test 
design, both with and without differential verification bias.

Results: Both the series design and differential verification bias have strong effects on estimates of sensitivity and 
specificity. In both the single test and series designs, differential verification bias inflates estimates of sensitivity and 
specificity. In general, for the series design, the inflation is smaller than that observed for a single test design.

The degree of bias depends on disease prevalence, the proportion of misclassified cases, and on the correlation
between the test results for cases. As disease prevalence increases, the observed conditional sensitivity is unaffected.
However, there is an increasing upward bias in observed conditional specificity. As the proportion of correctly
classified cases increases, the upward bias in observed conditional sensitivity and specificity decreases. As the
agreement between the two screening tests becomes stronger, the upward bias in observed conditional sensitivity
decreases, while the specificity bias increases.

Conclusions: In a series design, estimates of sensitivity and specificity for the second test are conditional estimates. 
These estimates must always be described in context of the design of the trial, and the study population, to prevent 
misleading comparisons. In addition, these estimates may be biased by incomplete disease status ascertainment.

Background
Breast cancer is the second most deadly cancer and the
sixth most common cause of death among American
women of all ages [1]. Widespread introduction of
screening mammography has reduced breast cancer mor-
tality [2]. Yet mammography still misses more than a
quarter of all cancers and results in a 50% cumulative
false positive rate after ten mammograms [3,4].

The problems with screening mammography have led
researchers to look for new screening modalities. In a
trial published in 2007, Lehman et al. [5] used magnetic
resonance imaging (MRI) to screen the mammographi-
cally normal, contralateral breast of 969 women with con-
firmed breast cancer. They detected additional cancers in
3.1% of the women. This is a series design, in which MRI
is used after a negative mammographic exam. In this pop-
ulation, they showed that MRI has a sensitivity of 91%
and a specificity of 88%.

Series designs, such as the one Lehman et al. used, are
common in cancer screening [5,6]. In a series design, all
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study participants undergo an initial screening test. Study
participants receive a second test if the first test is nega-
tive, a test if negative design, or positive, a test if positive
design. These designs are also referred to as believe the
positive and believe the negative, respectively [7]. In this
paper, we focus on the test if negative design used in the
trial conducted by Lehman et al. [5].

Because the decision to conduct the second test
depends on the results of the first test, estimates of sensi-
tivity and specificity for the second test are conditional on
the first test results. Conditional estimates may differ
from unconditional estimates, which are those observed
when the second test is conducted alone. Conditional
estimates should not be compared to unconditional esti-
mates since estimates from a series trial are correct only
within the context of that trial. When such conditional
estimates are taken out of context, researchers may make
the wrong inference about screening tests.

Estimating sensitivity and specificity may be further
complicated because some cases of cancer are clinically
occult, and are never identified during the trial period.
This problem is extremely common in cancer screening,
and may occur to a large extent. For example, in Pisano et
al. [8], 81 out of the 335 cancers were missed by both
screening tests, never observed during the one year usual
follow-up term, and only observed because the investiga-
tors had planned an additional follow-up period. Because
the number of observed cases of cancer is the denomina-
tor of sensitivity, failure to observe this many cases would
cause a strong inflation in the estimate of observed sensi-
tivity. This is referred to as differential verification bias
[9].

Screening trials are used to assess the diagnostic accu-
racy of screening modalities. In cancer screening, trials
are often subject to differential verification bias. These
trials may have a large impact on clinical decisions as to
how to screen people for cancer. In the test if negative
series design, it is important to understand the effect of 1)
differential verification bias, and 2) the conditionality of
Test 2 on Test 1. We provide formulae to quantify these
effects for a test if negative screening trial design based
closely on the design used in the study by Lehman et al.
[5].

This paper is organized into the following sections:
Background, Methods, Results, and Discussion. In the
Methods section, we describe the single test and series
screening trial designs, present our model assumptions,
and define notation. In the Results section, we outline the
derivation of the formulae for the observed bias in both
trial designs. Also in the Results section, we explore the
effect of three important factors on the observed esti-
mates of diagnostic accuracy. In the Discussion section,
we present the results in the context of previous literature
and propose future avenues of research.

Methods
We compare two screening trial designs in this paper: a
single test design and a two test series design where the
investigator is interested in the diagnostic accuracy of the
second test. The series design we consider is a test if nega-
tive design, based closely on the trial of Lehman et al. [5].

We consider the screening studies from two points of
view. The first is an omniscient point of view in which the
true disease status is known for each participant. We also
consider the point of view of the study investigator, who
can only see the observed results of the study. The study
investigator does not observe every case of disease. Cases
fail to be observed if 1) both of the screening tests miss
the case, and 2) the case is never diagnosed during the
follow-up period. Unless a participant is diagnosed with
disease during the study, the study investigator assumes
that the participant is disease free. In this way, the true
disease status can differ from the observed disease status.

The study investigator calculates observed sensitivity
using the number of observed cases of disease in the trial
as the denominator. Observed specificity is calculated
similarly. The observed sensitivity and specificity esti-
mates may not be the same as the true sensitivity and
specificity. We quantify the bias by comparing the true
and observed estimates of sensitivity and specificity. Here,
we use the word "bias" in the epidemiological sense, as
the difference between the observed estimates and the
truth.
Single test design
In a single test design, all participants are screened with
one test. A flowchart for this design is shown in  1. The
flowchart is presented from an omniscient point of view,
rather than from the point of view of the study investiga-
tor. The goal is to point out where the observed disease
status differs from the true disease status. If the screening
test is positive, the participant undergoes a reference test,
which is used to make the diagnosis. In cancer screening
the two reference tests are typically follow-up, or a fur-
ther diagnostic process, which may lead to biopsy. Defini-
tive diagnosis of cancer is made only through biopsy and
pathologic review, which we assume to be 100% sensitive
and specific.

In general, two sorts of mistakes can occur in screening
trials. The study investigator can declare that participants
have disease when they do not, or the study investigator
can miss cases of disease. In this trial, as shown in Figure
1, only the second sort of mistake occurs. Missed cases
occur because only some participants receive biopsy, and
definitive disease status ascertainment. Because the
biopsy is invasive and can be done only if a lesion is
observed, it is unethical and infeasible to do a biopsy
unless there are suspicious screening test results. Instead,
participants who have normal screening test results enter
a follow-up period. At the completion of the follow-up
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period, participants who have normal results on all
screening tests are assumed to be disease-free. This
assumption may be wrong. Some participants who are
assumed to be disease free may actually have disease.
Because the method of disease ascertainment differs
depending on the outcome of the index test, the trial is
subject to differential verification bias [9]. Differential
verification bias leads to overestimates of both the sensi-
tivity and specificity [10].

During follow-up, some participants may choose to
have a procedure that will allow diagnosis, even without a
suspicious test result. For example, in breast cancer
screening studies, women at perceived risk may choose to
undergo prophylactic mastectomy. Elective procedures,
like prophylactic mastectomy, do not occur as a planned
part of a screening study. However, elective procedures
do allow additional, and possibly random, ascertainment
of disease status.

Test if negative series design
The flowchart for the test if negative series design is
shown in Figure 2. The flowchart is presented from an
omniscient point of view. The test if negative design
described below is modeled after the trial conducted by
Lehman et al. [5]. In the test if negative design each par-
ticipant is screened with a first screening test (Test 1).
Participants who have negative results on the first screen-
ing test are given a second screening test (Test 2). Partici-
pants also get a second screening test if the first screening
test is positive, but the biopsy is negative. If either the first
or second test result is positive, a reference test is used to
ascertain the disease status. Participants who are negative
on both screening tests are followed for a defined time
period. Since we model this design on the trial conducted
by Lehman et al. [5], we do not expect women will
develop signs and symptoms during this period. All
women in the trial conducted by Lehman et al. [5] were
undergoing systemic therapy for cancer in their first
breast, which suppresses any occult cancer in the contral-

Flowchart for single test designFigure 1 Flowchart for single test design. Flowchart depicts a single test screening trial from an omniscient point of view. Dashed lines indicate a 
pathway that is unavailable to that class of participants (true case or true non-case) due to the assumptions of our model. The gray box indicates cases 
that are misclassified as noncases by the study investigator.

� � � � � � � � �

Infallible reference 
test

Disease 
detected

Yes

test

Screening by
Test 1

Subject without 
disease

Yes

Screen 
positive 

on Test 1

detected

No

Yes

No Diagnosis 
during 

follow-up

No observed 
disease

Follow Up

No

� � � � � �
Yes

Infallible reference 
test

Yes

Disease 
detected

No

Observed disease

Screening by
Test 1

Subject with 
disease

No

Screen 
positive 

on Test 1

Diagnosis 
during 

follow-up

No observed 
disease

Follow Up

Yes

No



Ringham et al, BMC Medical Research Methodology 2010, 10:3
http://www.biomedcentral.com/1471-2288/10/3

Page 4 of 11
ateral breast. However, there is a chance participants will
choose to mitigate their risk through prophylactic mas-
tectomy, a procedure which allows determination of their
disease status and leads to diagnosis during the follow-up
period. Participants who have two negative screening
tests, and who are not diagnosed during the follow-up
period are assumed to be disease-free. Like the single test
design, the test if negative design can result in missed
cases of disease but no false diagnoses.
Assumptions, notation, and definitions
We assume that the goal of the investigator is to estimate
the diagnostic accuracy of Test 2. It is important portant
to point out that this was not the stated goal of the trial
published by Lehman et al. [5]. However, estimating the
diagnostic accuracy of MRI is one possible use of their
results.

We make four additional, simplifying assumptions for
our model: 1) the screening test results for different study
participants are independent, 2) the chance that a partici-
pant screens positive on each screening test depends only
on disease status, 3) the reference test given to partici-
pants who screen positive is 100% sensitive and specific,
and 4) participants will not spontaneously show signs and
symptoms during follow-up but may elect to have a pro-
cedure that allows ascertainment of their true disease sta-
tus. The elective procedure occurs randomly, rarely, and
independently of the screening test results.

Results of the first and second screening tests, Test 1
and Test 2, are T1 and T2, respectively. The proportion of
true cases in the sample is denoted by pD. The proportion
of participants in the sample who undergo an elective
procedure or have a similarly definitive evaluation of the
breast is denoted pE. We define the proportion of cases
that test negative on Test 1 as FN(1), the proportion of
cases that test positive on Test 1 as TP(1), the proportion
of non-cases that test negative on Test 1 as TN(1), and the
proportion of non-cases that test positive on Test 1 as
FN(1) Similar notation is used for Test 2. FN(1, 2) is the

proportion of cases that test negative on both Test 1 and
Test 2, or the double negative cases. FN(1, 2) is a measure
of agreement between Tests 1 and 2. Sensitivity is defined
as the proportion of cases that screen positive out of all
cases [[11]; pg. 15]. Specificity is defined as the propor-
tion of non-cases that screen negative out of all non-cases
[[11]; pg. 15]. TP(1) and TN(1) are the true sensitivity and
specificity of Test 1, respectively. TP(2) and TN(2) are the
true sensitivity and specificity of Test 2, respectively.

Results
We present formulae for the observed sensitivity and
specificity for Test 2 in the single test and test if negative
trial designs.
Single test design
All possible outcomes of the single test design are shown
in Table 1. We refer to the single test as Test 2, since we
are going to compare it to the second test in a series
design. Table 2 provides the probability of each cross-
classification of test result and true disease status that can
occur.

Table 3 gives the probability of each combination of test
result and observed disease status that can occur.

The observed sensitivity, sens(O), for a single test
design is

with bias specificity, spec(O), given by

The bias in observed sensitivity for the single test
design, Bsen(O), is the difference between the observed and

sens( )
( )

( ) ( )
,O

TP
pEFN TP

=
+
2

2 2 (1)(1)

spec( )
( ) ( ) ( ) ( )

( ) ( )
.O

pD pE FN pD TN
pD pE FN pD

= − + −
− + −

1 2 1 2
1 2 1

(2)(2)

Table 1: Outcomes for a single-test cancer screening trial

True Disease Status Test 2 Result Elective Procedure Observed Disease Status

+ + -- +

+ - Yes +

+ - No -†

- + Yes -

- + No -

- - Yes -

- - No -

A double dash indicates an event that will not occur under the assumptions of our model. †Cases misclassified as non-cases.
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true sensitivity. The percent bias in sensitivity is 100
[Bsens(O)/TP(2)].

Calculations are similar for specificity.
Test if negative series design
All possible outcomes of a test if negative series design are
shown in Table 4.

Table 5 is the probability of each combination of test
result and observed disease status that can occur for the
test if negative series design. These results are dependent
on the quantity, Q, the probability that a participant pro-
ceeds to Test 2 after being screened with Test 1. The
quantity, Q is the sum of two probabilities: 1) the proba-
bility that a participant screens negative on Test 1, and 2)
the probability that a non-case screens positive on Test 1.
The sum simplifies to

The observed sensitivity for the series design, sens(O-),
is

Note that the observed sensitivity, like the true sensitiv-
ity, does not depend on the disease prevalence since pD
cancels from both the numerator and denominator.
Observed specificity, spec(O-), is given by

The bias in the observed sensitivity for the series

design,  is the difference between the observed

and true sensitivity. The percent bias in sensitivity is 100

[ /TP(2)]. Calculations are similar for specificity.
Three factors affecting bias
Our results demonstrate that the amount of bias is
affected by three factors: 1) disease prevalence, 2) the
proportion of study participants who undergo an elective
procedure, and 3) the chance that the two tests miss the
same case. The bias arises from two sources, the series
design and the lack of complete disease status ascertain-
ment.

Figures 3, 4, and 5 show the percent bias in the
observed sensitivity and specificity under different
assumptions. In these graphs, we show three lines. The
first line, "Unbiased", represents the true sensitivity and
specificity of Test 2. The second line, "Single", represents
the observed results for a screening trial with only one
screening test. The third line, "Test 2 Series", represents
the observed results for Test 2, when Test 2 is the second
of two tests conducted in series.

Parameter definitions for each of the plots are as in
"Parameters" (Table 6), except that the indicated parame-
ter of interest is allowed to vary. The parameters were
chosen to represent a realistic cancer screening trial with
low disease prevalence and low disease status ascertain-
ment during follow-up. We chose the true sensitivity and
specificity of Test 1 and Test 2 to approximate the diag-
nostic properties of mammography and MRI, respec-
tively [12,13]. We chose the proportion of double
negatives based on those seen in Lehman et al. [5]. In the
trial conducted by Lehman et al. [5], 3 out of 33 women
had cancers that were missed by both mammography and
MRI screening.

Each graph shows that the observed sensitivity and
specificity of Test 2 for both the single test and series
designs are inflated relative to the true sensitivity and
specificity, though there is less inflation for the series
design. Estimates for both the single test and series
designs are biased upward due to differential verification
bias [10]. Differential verification bias arises when some
true cases are misclassified as non-cases because they
never receive definitive disease status ascertainment [9].
We refer to the missed cases as "misclassified cases". Esti-
mates for the series design are lower than those for the
single test design because, in the series design, only a por-
tion of the cases, the Test 1 false negatives, proceed to
Test 2. We refer to the portion of cases that do not pro-
ceed to Test 2 as the "absent cases". The numerator and
denominator of the sensitivity of Test 2 in the series
design are decreased by the same number, that is, the
number of absent cases. The numerator decreases pro-

Q p TPD= −1 1( ) (3)(3)

sens( )
( ) ( , )

( ) ( ) ( , )
.O

FN FN
FN pE FN

− = −
− −

1 1 2
1 1 1 2 (4)(4)

spec( )
( ) ( ) ( ) ( , )

( ) ( , )
.O

pD TN pD pE FN
pD pE FN pD

− = − + −
− + −

1 2 1 1 2
1 1 2 1

( )( )

B
sens O( )−

B
sens O( )−

Table 2: True disease status and Test 2 results in a single 
test trial design

True Disease Status

+ -

Test 2 + pDTP(2) (1 - pD)FP(2)

- pDFN(2) (1 - pD)TN(2)

Table 3: Observed disease status and Test 2 results in a 
single test trial design

Observed Disease Status

+ -

Test 2 + pDTP(2) (1 - pD)FP(2)

- pDpEFN(2) pD(1 - pE)FN(2)+(1 - pD)TN(2)
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portionately more than the denominator since it is
smaller, which results in an overall decrease in sensitivity.
The same phenomenon occurs for the observed specific-
ity since it includes misclassified cases, some of which
become absent cases in the series design.
Disease prevalence
Figure 3 shows the relationship between the percent bias
in the observed sensitivity and specificity and disease
prevalence. The bias in the observed sensitivity is unaf-
fected by disease prevalence. The bias in observed speci-
ficity, however, increases with increasing disease
prevalence.

Observed specificity increases with disease prevalence
because both the numerator and denominator of the
observed estimates of specificity include misclassified
cases. As the disease prevalence increases, so does the
number of misclassified cases. A larger number of mis-
classified cases increases both the numerator and denom-
inator of observed specificity, though the numerator
increases proportionately less since it is numerically

smaller than the denominator. The overall effect is an
increase in the observed specificity.
Proportion elective procedure
Figure 4 shows the relationship between the percent bias
in the observed sensitivity and specificity and the propor-
tion of participants who undergo an elective procedure.
As more participants undergo an elective procedure, the
bias in the observed sensitivity and specificity for both
the single test and series designs decreases.

As the proportion of participants who undergo an elec-
tive procedure increases, the number of misclassified
cases decreases. These cases are detected by the elective
procedure, not by the test. This causes the denominator
of observed sensitivity to increase while the numerator
remains constant.

Table 4: Outcomes for a test if negative cancer screening trial

True Disease Status Test 1 Result Test 2 Result Elective Procedure Observed Disease Status

+ + -- -- +

+ - + -- +

+ - - Yes +

+ - - No -†

- + + Yes -

- + + No -

- + - Yes -

- + - No -

- - + Yes -

- - + No -

- - - Yes -

- - - No -

A double dash indicates an event that will not occur under the assumptions of our model. †Cases misclassified as non-cases.

Table 5: Observed disease status and Test 2 results in a test 
if negative trial design

Test 2 Observed 
Disease Status

Probability

+ + pD [FN(1) - FN(1, 2)]/Q

+ - (1 - pD)FP(2)/Q

- + pDpEFN(1,2)/Q

- - [(1 - pD)TN(2) + pD(1 - pE)FN(1, 2)/Q

Table 6: Parameters

Parameter Chosen Value

pD 0.01

pE 0.10

TP(1) 0.69

FN(1) 0.31

FP(1) 0.24

TN(1) 0.76

TP(2) 0.86

FN(2) 0.14

FP(2) 0.24

TN(2) 0.76

FN(1, 2) 0.09
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In Figure 4A, as the proportion elective procedure
increases to one, the observed sensitivity for the single
test design decreases to the true sensitivity. The observed
sensitivity of Test 2 for the series design, however, falls
below the true sensitivity. As the proportion of partici-
pants who undergo an elective procedure increases, the
deflation in observed sensitivity caused by the absent
cases eventually outweighs the inflation caused by the
missing cases. As a result, the observed sensitivity of Test
2 in the series design drops below the true sensitivity and
the percent bias goes from positive to negative.

The relationship between the proportion of partici-
pants who undergo an elective procedure and the
observed sensitivity of Test 2 in the series design leads to
an important observation. When a large number of cases
are diagnosed during the follow-up period, the effect of
the conditionality of Test 2 on Test 1 will have a greater

influence on the estimates of observed sensitivity for Test
2 than differential verification bias.

This plot (Figure 4B) also shows that the observed spec-
ificity very slightly decreases as the proportion of partici-
pants who undergo an elective procedure increases.
When few study participants undergo an elective proce-
dure, there are more misclassified cases. Thus, the
observed specificity is inflated compared to the true
specificity.

Figure 4B shows the effect of proportion elective proce-
dure on the observed specificity using an enlarged scale
for the y-axis. The magnitude of the effect of proportion
elective procedure on the observed specificity is very
small due to the low disease prevalence.
Proportion double negative
Figure 5 shows the relationship between the percent bias
in observed sensitivity and specificity and the proportion

Flowchart for test if negative series designFigure 2 Flowchart for test if negative series design. Flowchart depicts a test if negative series screening trial from an omniscient point of view. 
Dashed lines indicate a pathway that is unavailable to that class of participants (true case or true non-case) due to the assumptions of our model. In 
A, non-cases who screen positive on Test 1 are given a reference test. The results of this test are negative. The study investigator then goes on to screen 
the participant with Test 2, in case the reference test has failed. In B, cases who screen positive on Test 1 are given a reference test. The results of this 
reference test are positive and the study participant is observed to have disease. The gray box indicates cases that are misclassified as non-cases by 
the study investigator. The design is similar to that of Lehman et al. [5].
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of cases that screen negative on both tests, or the propor-
tion of double negative cases. In general, as the propor-
tion of double negatives increases, the percent bias in
observed sensitivity for the series design decreases and
the percent bias in observed specificity increases.

Recall that differential verification bias inflates sensitiv-
ity. The series design slightly reduces that bias. As the
proportion of double negative cases increases, the pro-
portion of true positives on Test 2 decreases since more
and more cases screen negative. This causes the observed
sensitivity of Test 2 in the series design to decrease, while

Effect of disease prevalence on percent biasFigure 3 Effect of disease prevalence on percent bias. Effect of disease prevalence on percent bias in observed sensitivity (A) and specificity (B). 
Parameter definitions are as in "Parameters" (Table 6), except that the disease prevalence is allowed to vary. Percent bias is the bias in observed sensi-
tivity or specificity divided by the true sensitivity or specificity. The observed results for Test 2 in a test if negative series design are denoted by "Test 2 
Series". The observed results for a single test design are denoted by "Single". The observed sensitivity is biased upwards by 14% for the single test 
design and 12% for the series design.

Effect of proportion elective procedure on percent biasFigure 4 Effect of proportion elective procedure on percent bias. Effect of the proportion of participants who undergo an elective procedure on 
percent bias in observed sensitivity (A) and specificity (B). Note that the scale of the y-axis of the specificity graph (B) is enlarged to show minute chang-
es. Parameter definitions are as in "Parameters" (Table 6), except that the proportion elective procedure is allowed to vary. Otherwise as Figure 3.
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the observed sensitivity in the single test design remains
constant (Figure 5A).

In Figure 5B, the percent bias in the observed specific-
ity of Test 2 in the series design very slightly increases as
the proportion of double negative cases increases. Recall
that, in the test if negative series design, all non-cases will
proceed to Test 2. The observed specificity depends on
the proportion of misclassified cases. As the proportion
of double negative cases increases, more of the cases who
tested negative on Test 1 will also test negative on Test 2.
As a result, there will be more misclassified cases and the
observed specificity of Test 2 for the series design will
increase. Note that the change in observed specificity in
Figure 5B is very small. As in Figure 4B, this is because
the disease prevalence is very small, which results in a
large number of noncases relative to cases.

Discussion
In this paper, we discuss the bias that can arise in cancer
screening trials due to incomplete disease status ascer-
tainment in a test if negative series trial design. The
design we considered was modeled closely after a recently
completed and published trial by Lehman et al. [5]. The
goal of this trial was to assess the diagnostic yield of MRI
over mammography. It was not to assess the diagnostic
accuracy of MRI for comparison to other screening
modalities. However, it is easy to take the results of the
trial out of context. Other researchers may be tempted to
cite their results as historic estimates of the diagnostic
accuracy of MRI or emulate the test if negative trial
design to estimate the diagnostic accuracy of Test 2. It is,

therefore, important to explore the effects of the test if
negative trial design on the estimates of the diagnostic
accuracy of Test 2.

Although we modeled our design on real trials, we
made simplifying assumptions. We assumed that biopsy
was essentially infallible. In real cancer studies, even
biopsy makes diagnostic errors. In addition, we assumed
that no study participant would show signs and symp-
toms of disease, because they were receiving systemic
therapy. In fact, recurrences of cancer and new primary
cancers can occur even during chemotherapy and radia-
tion.

We have been unable to find other research that simul-
taneously considers how conditioning and incomplete
disease status ascertainment affect estimates of sensitiv-
ity and specificity. The majority of literature focuses on
estimating the accuracy of a diagnostic program compris-
ing several tests [7,14-16]]. In contrast, we are interested
in estimating the diagnostic accuracy of the in second test
a series of two tests. Most authors also assume that the
true disease status of each participant is known [7,14-
16]]. We do not make this assumption, as it is unlikely to
be true in cancer screening trials.

Rutjes et al. [9] provides a thorough discussion of the
pitfalls faced by clinicians when evaluating medical tests
in the absence of a true gold standard. Whiting et al. [10]
also catalogues biases that can occur in screening trials.
Neither Rutjes et al. [9] nor Whiting et al. [10] discuss the
additional effect of using a series screening trial design to
estimate diagnostic accuracy.

Effect of proportion of double negative cases on percent biasFigure 5 Effect of proportion of double negative cases on percent bias. Effect of the proportion of double negative cases on percent bias in ob-
served sensitivity (A) and specificity (B). Note that the scale of the y-axis of the specificity graph (B) is enlarged to show minute changes. Parameter 
definitions are as in "Parameters" (Table 6), except that the proportion double negative cases is allowed to vary. Otherwise as Figure 3.
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Lehman et al. [5] point out that the estimated diagnos-
tic accuracy of MRI is higher in their study than in other
published studies. They posit that this could be due to
advances in breast cancer screening technology and
increased skill at analyzing imaging results. As noted in
this paper and in the papers by Whiting et al. [10] and
Rutjes et al. [9], biases resulting from trial design may
also cause an inflation in the observed estimates of diag-
nostic accuracy. While the results of the trial conducted
by Lehman et al. [5] may have been affected by differen-
tial verification bias, we suspect that the results were not
affected by bias due to the conditionality of Test 2 (MRI)
on the results of Test 1 (mammography). We give our
rationale below.

The figures presented in the results section use param-
eters that are consistent with what we would expect for
the trial conducted by Lehman et al. [5]. Using the
parameter values estimated from this trial and the formu-
lae presented in this paper, we calculated the percent bias
in the observed sensitivity and specificity for each trial
design. The percent bias in the observed specificity of
Test 2 relative to the true specificity is near zero. How-
ever, the percent bias in the observed sensitivity of Test 2
relative to the true sensitivity is 14% for the single test
design and 12% for the series design. Since there is little
difference between the single test and series designs, the
detected upward bias is mainly due to differential verifi-
cation of disease status, rather than the conditionality of
MRI on the results of mammography.

In some circumstances, the test if negative trial design
may be the best choice available, due to external con-
straints. An investigator can use the formulae presented
in this paper to conduct a sensitivity analysis of their esti-
mates of the diagnostic accuracy of Test 2. For the trial
conducted by Lehman et al. [5], an example of this sort of
sensitivity analysis is given in the immediately preceding
paragraph. The investigator can choose a range of reason-
able values for the disease prevalence, the proportion of
participants who undergo an elective procedure, and the
agreement between Test 1 and 2 results for cases, in order
to place bounds on the amount of bias that may arise
from their choice of study design. An investigator may be
able to directly estimate the portion of bias due to differ-
ential verification by estimating the number of missing
cases. This number can be estimated by looking at the
number of participants who are determined to be cases
out of those who tested negative on both tests and chose
to undergo an elective procedure. In practice, as the per-
centage of subjects who choose an elective procedure is
usually low, the stability of this estimate may be question-
able.

Aside from the series trial design, there are two further
characteristics of the trial conducted by Lehman an et al.
[5] that should be noted. First, the results of the trial are

presented per breast, rather than per lesion, which is
more common [8,12,17]. Second, all of the participants in
the trial had already developed cancer in one breast
before being screened for cancer in the second breast.
The development and treatment of cancer in that first
breast will affect screening practices and treatment of the
second breast. For example, when screening the contral-
ateral breast, we noted that participants are less likely to
show signs and symptoms during follow-up since they are
undergoing systemic therapy for cancer in the first breast.

In this paper, we have shown that estimates of diagnos-
tic accuracy for the second test in test if negative series
screening trials with incomplete disease status ascertain-
ment can be subject to bias. Glueck et al. [18], showed a
similar bias in screening studies conducted in parallel. If
both designs are flawed, what design should be adopted
by researchers seeking to characterize screening modali-
ties? The answer is unclear. Because screening trials
affect the health of millions of people, methods for bias
correction for both parallel and series screening trial
designs are needed.

Conclusions
We have shown that estimates of diagnostic accuracy for
the second test in a test if negative screening trial are dif-
ferent than estimates obtained from a trial design that
utilizes only a single test. Because of this, researchers
must be careful to always cite estimates of diagnostic
accuracy within the context of the trial that supplied
them. Observed estimates of the diagnostic accuracy are
also subject to differential verification bias because some
cases do not receive definitive disease status ascertain-
ment. Further research is needed to derive methods to 1)
obtain unconditional results from a series trial design,
and 2) correct for differential verification bias.
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