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Abstract: Information thermodynamics has developed rapidly over past years, and the trapped ions,
as a controllable quantum system, have demonstrated feasibility to experimentally verify the theoreti-
cal predictions in the information thermodynamics. Here, we address some representative theories of
information thermodynamics, such as the quantum Landauer principle, information equality based
on the two-point measurement, information-theoretical bound of irreversibility, and speed limit
restrained by the entropy production of system, and review their experimental demonstration in
the trapped ion system. In these schemes, the typical physical processes, such as the entropy flow,
energy transfer, and information flow, build the connection between thermodynamic processes and
information variation. We then elucidate the concrete quantum control strategies to simulate these
processes by using quantum operators and the decay paths in the trapped-ion system. Based on them,
some significantly dynamical processes in the trapped ion system to realize the newly proposed
information-thermodynamic models is reviewed. Although only some latest experimental results
of information thermodynamics with a single trapped-ion quantum system are reviewed here, we
expect to find more exploration in the future with more ions involved in the experimental systems.

Keywords: trapped ion; quantum information; thermodynamics; entropy production; Maxwell
demon; Landauer principle

1. Introduction

As an important subject in modern science, thermodynamics provides a basic under-
standing for the heat-work natural phenomena, where the most famous are the four laws
of thermodynamics, particularly, the second law elaborating the time arrow and entropy
production. After discovery of the second law of thermodynamics, a fictive experiment,
well known as Maxwell’s demon, was proposed by James Clerk Maxwell to challenge the
second law by means of the information of the demon [1,2]. The paradox of Maxwell’s
demon revealed, for the first time, the relationship between entropy and information, and
elaborated the physical nature of information [3]. Then, Léo Szilárd designed a single parti-
cle version of the Maxwell’s demon [4,5], quantizing the work extraction from a thermal
reservoir at temperature T as kBT ln 2 with kB denoting the Boltzmann constant. Today, the
information thermodynamics, as an interpretation of the physical nature of information, has
extended to different fields, such as the information erasure [6,7], nonequilibrium equality
for free energy differences [8,9], irreversibility [10], and quantum fluctuation theory [11].

With the progress of thermodynamics, Maxwell’s demon has gradually formed differ-
ent modalities. For instance, Maxwell’s demon can be used to design an engine to extract
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work from quantum measurements [12,13], to realize a steering heat engine in quantum
systems [14], and to appear in nonequilibrium systems [15]. Besides, Maxwell’s demon
has been produced in different physical systems, such as the superconducting quantum
circuits [16], ultracold atoms [17], and solid-state spin degrees of freedom [18]. Meanwhile,
the quantum version of Léo Szilárd engine has also been proposed in Ref. [19], while the
classical Szilárd engine was experimentally demonstrated in single electron systems [20,21].
So far, Maxwell’s demon connecting thermodynamics and information has seemed to
be solved. However, more conundrums still remain, such as quantum information era-
sure [22,23], thermodynamic uncertainty relation [24,25], and speed limit [26–28].

As one of most important theories in information thermodynamics, the Landauer prin-
ciple stipulates the lower bound of energy dissipation when bit information is
erased [3,6,7,29,30]. However, the Landauer bound can only be obtained under the quasi-
static condition [31], not for the minimal energy cost [32–36] of the information erasure and
for an erasure process [37–39]. Due to the experimental difficulties in the single particle ma-
nipulation and work measurement, the single particle demonstration of Landauer principle,
after many years’ exploration, had been realized by a colloidal particle trapped in a mod-
ulated double-well potential [31], by the colloidal particle feedback in a time-dependent
virtual potential [40], and by single-bit operations of the nanomagnetic memory bits [41].
The last one of the abovementioned work has not only verified the link between information
and thermodynamics through erasure, but also further highlighted the physical limit of ir-
reversible computation. Moreover, the recent development of quantum information has led
to more connection of quantum information erasure to different quantum properties, such
as the finite heat reservoirs [22,23], squeezed characters [42], quantum fluctuations [43],
and zero temperature limit [44]. Due to difficulties in the measurement of heat, coherence,
and correlation, the experimental verification of quantum Landauer principle was first
implemented until recently by a trapped-ion system [45], where an equality relation, based
on the entropy or information conservation of unitary evolution [46], is associated with the
energy cost of information erasure in conjunction with the entropy change of the associated
quantized environment.

One essential feature of quantum thermodynamics is the fluctuation [8,9,11,47–50].
Recently, more equality relations have been presented for the fluctuation theorem, such as
a new uncertainty related to the fluctuation [51], fluctuation beyond two-point measure-
ments [52], Jarzynski equality in stochastic resetting [53], Jarzynski relation in stochastic
dephasing [54], nonequilibrium in the open quantum system [55], and a new interpretation
based on the Maxwell’s demon [56]. To experimentally demonstrate the fluctuation theo-
rem, the most important quantity is the measurement of the fluctuated work in a quantum
system by an accessible method, for instance, by measuring the characteristic function
of work to obtain the average work [57], and by structuring a qubit interferometry to
extract the work statistics population [58]. Experimentally, the colloidal particles captured
in an optical trap [59] and a time-dependent nonharmonic potential [60] were used to
demonstrate the fluctuation theorem and Jarzynski equality; a non-equilibrium feedback
Brownian particle [61] has simulated the Szilárd engine and verified the generalized Jarzyn-
ski equality [62]. There are other works in this aspect, e.g., RNA folds for free energies [63],
the single-molecule pulling experiments [64] to reconstruct the free energy, nonequilibrium
measurements [65] to test the Jarzynski equality, and the trapped cold ions system to verify
the quantum Jarzynski equality [66,67]. Besides, the Jarzynski equality is related to an
information equality [68] by the mutual information between the two-point measurements,
which has also been verified by the trapped-ion experiment [69].

Another bridge between information theory and thermodynamics is the information-
theoretical bound on irreversibility [70] through the mutual information or relative entropy
in the information theory [71,72]. The bounds on irreversibility occur in the open quantum
system [73] and thermal relaxation process [74], showing the geometric properties [70,75]
of the relative entropy. Due to the negative entropy property of quantum systems induced
by coherence [76], entanglement [77], and quantum correlation [78], the information-
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theoretical bound, quantized by the classical Kullback–Leibler divergence, can be violated
in the quantum relaxation process [74,79], which has experimentally witnessed the trapped-
ion experiment [79].

As one of the basic characteristics in quantum systems, the uncertainty relation also re-
stricts the non-equilibrium fluctuations of quantum thermodynamic systems [80]. Over the
past two years, the thermodynamic uncertainty relations have been proposed in different
quantum systems and processes, such as the continuous measurement [81], arbitrary initial
states [82], time-dependent driving [83], open quantum systems [84], and the quantum heat
engines [85]. Especially, the speed bound of thermodynamic processes exists for the system
and is from the dissipation [86], fluctuations [87], and entropy production [88], etc. Then, a
new uncertainty relation, linking the speed limit of the processes and entropy production
rates [89,90], is put forth, called the dissipation-time uncertainty relation [91], which can be
applied to expound the transport precision bound [92], the time measurement limit [93],
and the seed bound of molecular motors [94]. In addition, this uncertainty and the speed
bound have been verified by a trapped ion quantum system [95,96].

As an admirable platform for the quantum information process, the ion trap systems
have been employed as a quantum information processor [97,98] to implement universal
quantum logic gates [99–101], to demonstrate quantum algorithms [102], and to realize the
scalable quantum computation [103–107]. In addition, due to the dual nature of quantum
mechanics [108] and thermodynamics [104,109], the ion trap systems can also be applied
to create multi-qubit entanglement [110], to verify the Heisenberg uncertainty [111], to
prepare nonclassical states [112] and quantum bath [113], and to demonstrate single atom
engines [114–116]. Moreover, by jointly making use of the electronic state structure, decay
channels, and vibrational modes, a single trapped ion can behave as a standard quan-
tum thermodynamic system, verifying or demonstrating some newly developed theories
in the information thermodynamics, such as the quantum information erasure [45], the
information-theoretical bound of irreversibility [79], the information-theoretic equality [69],
and the dissipation-time uncertainty relation in a quantum system [95].

The remaining parts of this paper are structured as follows. In Section 2, we review
the quantum operators in a trapped-ion system regarding the interaction, decoherence,
and dissipation. Section 3 is arranged to discuss how to define an effective temperature
for a two-level system, to build an accessible dissipative channel, and to simulate a heat
bath by the vibration modes and decay processes. In Section 4, we focus on the quantum
Landauer principle, showing the connection between information and thermodynamics by
monitoring the energy dissipation when a bit is erased, and then reviewing its realization
in a trapped-ion system. Next, we review the theory and experimental test of information-
theoretic equality as well as its Jarzyski equality version in Section 5. Section 6 describes
how the relative entropy bounds the irreversibility and how to realize an experimental
verification about this bound. In Section 7, we review the entropy production to impose
restrictions on the speed limit of physical processes, and then discuss how to produce
stochastic trajectories in a practical quantum system. Finally, we offer a brief conclusion.

2. The Operators in Ion Trap

When the ion confined in the ion trap is cooled down to the vibrational ground state,
the system can behave as a two-level system coupled to a harmonic vibration. Quantum
operations based on this model can be performed in such a system. In this section, we
introduce the qubit system encoded by the internal electronic states of the ion and create a
general quantum operation between the internal states and vibrational states using lasers.

2.1. Interaction between Lasers and a Single Ion

The Hamiltonian of an ion experiencing the travelling wave field of laser can be
expressed as (h̄ = 1)

H = ωka†a +
ωz

2
σz +

Ω
2
[σ+eiη(a+a†)ei(φ−ωl t) + h.c.] (1)
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where a (a†) is the annihilation (creation) operator of the vibration with the vibrational
frequency ωk, σ− (σ+) is the lowing (raising) operator of the two-level system encoded
by two internal electronic states, ωz denotes the corresponding resonance frequency, and
Ω (φ and ωl) is the Rabi frequency (phase and frequency) of the laser. The Lamb–Dicke
parameter of the laser is given by η = kz0 with the zero-point amplitude of vibration
z0 =

√
h̄/2mωk, where k denotes the wave number of laser and m is the mass of ion. In the

interacting picture with respect to H0 = ωka†a + ωzσz/2, the Hamiltonianin in Equation (1)
is rewritten as

H =
Ω
2
[σ+eiη(ae−iωkt+a†eiωkt)ei(φ−δt) + h.c.] (2)

with the detuning of laser δ = ωl −ωa. In the Lamb–Dicke regime (η � 1), keeping to the
first order of η, the Hamiltonian is reduced to

H =
Ω
2

σ+[1 + iη(ae−iωkt + a†eiωkt)]ei(φ−δt) + h.c. (3)

Under the weak coupling condition, i.e., ωk � Ω, Equation (3) is further simplified under
the rotating wave approximation.

1. When δ = 0, the Hamiltonian is reduced to

Hc =
Ω
2
(σ+eiφ + σ−e−iφ) (4)

which describes the process of carrier transition where only the internal state of ion
is controlled by the laser. Then, based on the Schrödinger’s equation, a general
operation, defined as Rc ≡ exp(−iHct), is realized by the carrier Hamiltonian, as

Rc(θ, φ) = cos(
θ

2
)I − i sin(

θ

2
)(σ+eiφ + σ−e−iφ) (5)

where θ = Ωτ with τ denoting the pulse duration, and the vibrational state of ion
is decoupled from the two-level system. Utilizing this process, we may achieve a
universal single qubit phase gate and the population transition between the internal
levels of ion by a single pulse or several pulses with different shapes.

2. When δ = −ωk, the first red-sideband transition, Hamiltonian is obtained as

Hr =
ηΩ
2

(aσ+eiφ + a†σ−e−iφ) (6)

which, as a Stokes process [117,118], has the same form as the coupling term in the
Jaynes–Cummings (JC) model [119]. In this process, the quantum number is conserved
that one phonon increase in the vibrational state of ion is accompanied by a photon
transferred from the excited state of the ion to its ground state, reflecting the coupling,
induced by the laser, between the internal electron spin state and external vibrational
state of the ion. The coupling operation is then realized as

Rr(θ, φ) = cos(
θ

2

√
a†a)σ−σ+ + cos(

θ

2

√
aa†)σ+σ− − i

sin( θ
2

√
aa†)√

aa†
aσ+eiφ

−i
sin( θ

2

√
a†a)√

a†a
a†σ−e−iφ (7)

with the pulse length of the red-sideband laser θ = ηΩτ. One application of this
operator is to perform the sideband transfer of the population between the vibrational
state and internal state, exchanging information between the two degrees of freedom.
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3. When δ = ωk, it reduces to the first blue-sideband transition Hamiltonian to

Hb =
ηΩ
2

(a†σ+eiφ + aσ−e−iφ) (8)

which shows an anti-Stokes process [117], and the quantum number is not conserved
in this process that the vibrational state and the internal state simultaneously obtain
or lose a quantum number. Then, the quantum operation under a duration τ can be
realized as

Rb(θ, φ) = cos(
θ

2

√
a†a)σ+σ− + cos(

θ

2

√
aa†)σ−σ+ − i

sin( θ
2

√
a†a)√

a†a
a†σ+eiφ

−i
sin( θ

2

√
aa†)√

aa†
aσ−e−iφ. (9)

This operator can be used to construct the blue-sideband Rabi oscillations, and applied
to measure the phonon number of the vibrational state.

2.2. Decoherence and Dissipation Process

There are mainly three different decoherence processes in the trapped ion system, i.e.,
the decay and dephasing processes of the internal electronic state induced by the level
lifetime and magnetic field noise, respectively, and the other one is the heating effect of the
vibrational state, coming from the electric field noise of the trap and the background gas
collision. In the trapped-ion system, the dynamic process for the decay from the excited
state |1〉 to |0〉 can be described as

Ld[ρ] =
Γ
2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) (10)

with the rising operator σ+ = |1〉〈0| and lowering operator σ− = |0〉〈1|. The decay rate
Γ = 1/τ with τ denote the lifetime of excited state, and ρ denotes the density matrix of
system. If there are many decay channels, the total dynamic process is the summation of
them, that is, Ld[ρ] = ∑k Lkd[ρ] with Lkd[ρ] corresponding to the dynamics of kth decay
channel with the decay rate Γk. The dephasing process of a qubit encoded in a two-level
system can be written as

Lp[ρ] = κ(σzρσz − ρ) (11)

with the dephasing rate κ. Same as the decay process, a total dephasing effect contains all
the possible dephasing channels. Generally, the qubit in a trapped ion is encoded in the
hyperfine structure or the metastable states to resist the decoherence. Thus, the lifetime
is very long. However, the dephasing effect induced by the magnetic field noise is the
prime factor of decoherence. For example, the qubit system of trapped 40Ca+ is encoded
in the ground state and metastable state, owning a lifetime about one second while an
accessible dephasing time less than one millisecond. In some cases, the large decoherence
is indispensable if the task is to obtain a mixed state, where the fast dissipative channel is
designed by introducing an excited state to the system.

The dynamics regarding heating effect for the vibrational states can be described by
the following Lindblad master equation

La[ρ] =
[N(ωk) + 1)γ

2
(2aρa† − a†aρ− ρa†a) +

N(ωk)γ

2
(2a†ρa− aa†ρ− ρaa†) (12)
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where γ is the vibrational decay rate and N(ωk) = [exp(h̄ωk/kBT)− 1]−1 is the Boltzamann
distribution with the temperature T. In the low temperature limit, i.e., h̄ωk/kBT � 1,
N(ωk) ∼ 0 and the above equation can be reduced to

La[ρ] =
γ

2
(2aρa† − a†aρ− ρa†a). (13)

If the cooling approaches the vibrational ground state, the effective temperature of the ion
always satisfies the low temperature condition and an accessible vibrational decay rate is
about dozens of Hertz. Thus, the heating is negligible. However, in the high temperature
limit, i.e., h̄ωk/kBT � 1, N(ωk)� 1, the Lindblad master equation can be written as

La[ρ] = γ̃(aρa† + a†ρa− a†aρ− ρa†a− ρ) (14)

with the effective heating rate γ̃ = N(ωk)γ. Therefore, the high temperature of the system
accompanies the large effective heating effect and worsens the fidelity of quantum operators.
In this sense, the heating effect can be used to prepare a thermal state of the vibrational mode.
Therefore, the total dynamic process of a single ion, under the decoherence, dissipation,
and the Hamiltonian of ion, can be expressed in the Lindblad form as

ρ̇ = −i[H, ρ] + Ld[ρ] + Lp[ρ] + La[ρ], (15)

where H denotes the Hamiltonian of system and the commutator [H, ρ] = Hρ− ρH.

3. Thermodynamic Process of a Trapped Ion

In a trapped ion system, there are two degrees of freedom, i.e., the two-level system
formed by the internal electronic states and vibrational mode. Thus, there are two different
types of thermodynamic process created by the dissipation of the energy-level and the
thermal vibration of the ion.

3.1. An Effective Temperature in Two-Level System

Generally, the temperature of system is the representation of the thermal effect for the
particles’ motion. However, the thermal state of a two-level system is formed by the steady
state of the system, balanced by two dissipative processes of the internal state. Assume
that the decay rates Γ0→1 and Γ1→0 correspond to the dissipative processes, respectively,
from the state |0〉 to |1〉 and from the state |1〉 to |0〉. Then, the dynamic process of system
can be obtained as

d
dt

ρ11(t) = −Γ1→0ρ11(t) + Γ0→1ρ00(t), (16)

and ρ00 = 1 − ρ11 with the density matrix elements defined as ρij = 〈i|ρ|j〉. When
the system reaches the steady state, the populations in two states keep constant, i.e.,
t→∞dρ11(t)/dt = 0. Thus, the populations in the steady states are given by p1 = Γ0→1/Γ
and p0 = Γ1→0/Γ for states |1〉 and |0〉, respectively, with the total decay rate
Γ = Γ1→0 + Γ0→1.

The inverse temperature β in a two-level system is defined as

β =
1
ε

ln
p0

p1
(17)

where ε denotes the energy difference between the two energy levels. In the steady state,
we have β = ε−1 ln Γ1→0/Γ0→1. When Γ1→0 > Γ0→1, p0 > p1 and β > 0, and thus the
temperature is positive. However, if Γ1→0 < Γ0→1, p0 < p1 and β < 0, we have the negative
temperature. The negative temperature means the population in the excited state is higher
than that of the ground state. In the driven two-level system, the effective temperature can
be established by the steady state through considering the combinatory effect of the laser
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drive and dissipation. However, it generally has a complex form and is also defined in the
interaction representation formed by the coherent states basis.

3.2. Dissipative Channel Designed by Different Energy Structures

Unlike adding a dissipative process by the demand of the theoretical model, there
are no applicable direct dissipative channels for the experimental system to simulate the
necessary dissipative process required in the theoretical method, e.g., to simulate a ther-
modynamic relaxation process of the quantum system. Therefore, designing controllable
dissipative channels is essential to verification of the theories of information thermody-
namic in quantum systems. In what follows, we present two methods to construct effective
dissipative channels in the two-level system.

The simplest method, as shown in Figure 1a, is to create the dissipative channel by
using an excited state to enhance the decay rate from the state |1〉 to |0〉. The Hamiltonian in
the interaction picture is Hs = Ω(|2〉〈1|+ |1〉〈2|), with Ω being the Rabi frequency between
|2〉 and |1〉. We assume that the decay rate of exited state is much larger than the Rabi
frequency of the laser (Γ� Ω) and the evolution time is much longer than the time-scale
of the excited-state lifetime (t� 1/Γ). Then, the dynamic evolution of the population in
the state |1〉 is given by [79]

p1(t) = e−
1
2 t(Γ−

√
Γ2−4Ω2). (18)

Keeping the second order expansion of Ω, Equation (18) reduces to p1(t) = e−Ω2t/Γ.
Besides, the population in the excited state |2〉 is much less than 1. Therefore, we build a
dissipative channel from |1〉 to |0〉 with the effective decay rate Γeff = Ω2/Γ. Except the
above two restrictions, i.e., Γ� Ω and t� 1/Γ, there is also an additional weak coupling
restriction for the states |1〉 and |0〉, that is, the Rabi frequency between them should be
much smaller than Ω, implying that the dynamics between |1〉 and |0〉must be slower than
that between |1〉 and |2〉. Similarly, an inverse dissipative channel from |0〉 to |1〉 can be
obtained by an opposite process, as shown in Figure 1c, where the effective decay rate from
|0〉 to |1〉 is also also given as Γeff = Ω2/Γ. Figure 2a compares the analytical results with
the numerical results and shows that these results fit almost perfectly when the condition
Γ� Ω is satisfied.

ۧ|1

ۧ|0

(a)

Ω

Γ

ۧ|2

ۧ|1

ۧ|0

Ω1

Ω2

Γ

ۧ|2

ۧ|3(b)

ۧ|1

ۧ|0

(c)

Ω

Γ

ۧ|2

Γ1→0
Γ1→0 Γ0→1

Figure 1. (a) Three-level systems for building an effective dissipative channel between two ground
states |0〉 and |1〉 by an excited state |2〉 where a laser resonantly couples the ground state |1〉 to
the state |2〉 with a Rabi frequency Ω, and then the population decays to the ground state |0〉 from
the short-lived excited state. (b) Four-level systems for effective dissipative channels between two
ground states |0〉 and |1〉 via an intermediate state |2〉 and an excited state |3〉, where two lasers
are employed to resonantly couple the ground state |1〉 to the excited state |3〉 via the intermediate
state |2〉 with the corresponding Rabi frequency Ω1,2. (c) The inverse process to build the effective
dissipative channel from the state |0〉 to the state |1〉 based on the three-level system, with respect to
(a), for an opposite drive-decay process.
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Figure 2. Time evolution of population in the state |1〉 due to the effective dissipative channels
constructed in (a) a three-level system and (b–d) a four-level system presented in Figure 1. The dots
or dashed curves in each panel are the analytical results obtained by the equation p1 = exp(−Γefft),
and the solid curves are from the numerical calculation of the Lindblad master equation. The Rabi
frequency in (a) is set as Ω/2π = 560, 178 kHz for the red and black curves, respectively. In
(b,c), two Rabi frequencies of the black and blue curves correspond to Ω1/2π = 20, 80 kHz and
Ω2/2π = 2 MHz, and Ω1/2π = 50 kHz and Ω2/2π = 5, 2 MHz. In (d), the three parameters are
Ω1/2π = 50 kHz, Ω2/2π = 3 MHz, and Γ/2π = 8 MHz (black curve) and 16 MHz (blue curve). The
decay rate is set as Γ/2π = 10 MHz in (a–c).

A more complicated energy-level for creating an effective dissipative process is pre-
sented in Figure 1b, where an additional energy level is involved, together with an aux-
iliary laser. Then, the evolution of the population in the state |1〉 can be described as
p1 = exp(−Γefft) with the analytical result for an effective decay from state |1〉 to |0〉 as [95]

Γeff =
Ω2

1Γ
Ω2

2
. (19)

To make this relation valid, we have to set some restrictions for the dynamic evolution
between these states, e.g., the decay rate of an excited state much larger than all other
characteristic parameters, and the dynamic process between the two-level system (|0〉 and
|1〉) slower than other three processes. Thus, we have the following chain relationship, i.e.,
Γ � Ω2 � Ω1 � Γeff. The results are shown in Figure 2b–d, where the parameters to
produce a smaller effective dissipation rate always faultlessly satisfy the chain relationship
and the analytical and numerical results perfectly fit. In addition, the larger effective
dissipation rate needs larger Ω1 or smaller Ω2 according to Equation (19), otherwise,
the chain relationship is not fully satisfied and a small deviation between the analytical
and numerical results would appear, as shown in the beginning part of the evolution in
Figure 2b,c. Besides, the inverse dissipative processes can be realized by adjusting the laser
scheme in Figure 1b, to make the decay from the excited state to |1〉 and the laser irradiation
couple |0〉 to |2〉. Furthermore, if there are two decay channels from the excited state |3〉
to both states |0〉 and |1〉 with the decay rates Γ0,1 and Γ = Γ0 + Γ1, the solution becomes
more complicated and is written as [95],

Γeff =
Ω2

1Γ1√
Ω4

2 + 5Ω2
1Γ2

2

(20)
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with the modified chain condition Γ1 � Ω2 � Ω1 � Γeff. Specially, in the limit of
Ω4

2 � Ω2
1Γ2

2, we have Γeff = Ω2
1Γ1/Ω2

2, the same as that in Equation (19). Generally, the
chain conditions restrain a large effective dissipative rate, which should be about three
orders of magnitudes smaller than the decay rate of excited state. This leads to a much
slower dynamic evolution of the qubit system, such as, for Γ/2π = 30 MHz, the accessible
effective decay rate is smaller than 50 kHz, implying that the execution time of quantum
operations needs to be longer than 20 µs.

3.3. Quantum Heat Bath Simulated by the Vibrational Mode

In the quantum region, the vibration of ion is described by a quantum harmonic
oscillator that is written as HR = h̄ωka†a, where ωk is the vibrational frequency and a
(a†) is the annihilation (creation) operator of phonons. Then, we have a general form of
the density matrix for the vibrational state ρR = ∑∞

m,n=0 Rmn|m〉〈n| with Rmn denoting
the matrix elements and |n〉 being the nth Fock state. In particular, if the ion is in the
thermal state, the matrix elements are given by Rmn = 〈m|ρR|n〉 = (1− e−βh̄ωk )e−βh̄ωknδmn
with the inverse temperature β = 1/kBT. Then, the thermal state of the vibration is
reduced to ρR = ∑∞

n=0 pn|n〉〈n|, where the thermal probability distribution is defined as
pn = 〈n〉n/(〈n〉+ 1)n+1 with the average phonon number 〈n〉 = ∑∞

n=0 npn = 1/(eβh̄ωk − 1).
Thus, the average phonon number is employed to define an effective temperature as

T =
h̄ωk
kB

ln−1(1 +
1
〈n〉 ). (21)

In the limit of 〈n〉 � 1, the temperature is simply written as T = h̄ωk〈n〉/kB. If 〈n〉 � 1, it
turns to be T = −h̄ωk/kB ln〈n〉.

The first step to implement the further experiment is the ground state cooling of the
ions. The quantum heat bath can be simulated by the ions’ vibration, which is obtained
only after accomplishing the ground cooling of the ions. Cooling the ion’s vibration to
the ground state can be obtained using different cooling schemes, such as the sideband
cooling and electromagnetically induced transparency (EIT) cooling. After the cooling is
achieved, a lower average phonon number, about 〈n〉 ∼ 0.1, is obtained, and the state is
not in thermal state any more and the phonon distribution no longer obeys the thermal
distribution. In this case, to prepare the vibration mode into a thermal state, we execute
a thermalization process by utilizing the environmental thermal effect, which causes a
heating of the vibration mode. However, the intrinsic heating rate in an ion trap is very
small due to the good isolation of the ion from the environment. Enlarging the heating
noise and waiting for a long time are the straightforward ways to obtain appropriate
thermal states [45]. Despite some studies for the heating of ions [120], speeding up the
thermalization by feasible ideas is still challenging in the simulation of the heat bath using
the vibration modes.

To simulate a heat bath by the vibration mode, the thermodynamic quantities, such as
heat, entropy produce, and information changes, should be measurable, i.e., the probability
distribution pn of phonons in the vibrational mode can be experimentally measured. Pro-
vided that the system and reservoir are initially in a joint state ρSR = |0〉〈0| ⊗∑∞

n=0 pn|n〉〈n|,
under the evolution operator of the blue-sideband Hamiltonian in Equation (9), we are able
to measure the population in the state |0〉 of qubit system. Then, the probability to measure
the population in the internal state |0〉 of a single trapped ion is obtained as [45,67]

P0 = Tr[|0〉〈0|Rb(θ)ρSRR†
b(θ)] =

1
2 ∑

n
pn(1− cos θ

√
n + 1) (22)
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with the laser phase φ = 0. Considering experimental imperfections, such as the intensity
fluctuation of laser, imperfect state preparation, and detection error, the above equation is
amended as [67]

P0 =
1
2 ∑

n
pn(1− Ae−γt cos θ

√
n + 1), (23)

with the evolution duration t = θ/ηΩ. By fitting Equation (23) to the experimental data,
the parameters pn can be acquired.

3.4. A 40Ca+ Atom Confined in the Ion Trap

We take the trapped 40Ca+ ion system [111] as an example. Some internal electronic
state energy levels are plotted in Figure 3. When a magnetic field is applied, the energy level
is split into some sublevels due to the Zeeman effect. In general, an optical qubit (see the
energy levels denoted by the green lines in Figure 3), is encoded in a ground state sublevel
|0〉 = |S1/2, m = +1/2〉 and a metastable state sublevel |1〉 = |D5/2, m = +3/2〉, driven
by a narrow linewidth laser with the wavelength 729 nm. The initial state preparation
of the qubit is carried out by combining the irradiations of 729 nm, 854 nm, and 866 nm
lasers. Then, the detection/readout of population is realized by the electron shelving
technique, executed by the 397 nm and 729 nm lasers. The quantum operations of the
qubit are implemented by the 729 nm laser, and the coupling between the internal states
and vibrational mode is also made by the 729 nm laser. The Doppler cooling process of
vibration, implemented by the 397 nm and 866 nm lasers, is executed for about 2.5 ms while
the sideband cooling using the 729 nm laser is accomplished by for about 30 ms. Typical
quantum operations on the qubit or coupling qubit to the vibrational modes, related to the
Rabi frequency of the 729 nm laser, is much shorter than 1 ms. Moreover, the fluorescence
detection of the population needs about 10 ms. Therefore, a typical experimental sequence,
involving the initialization, preparation, quantum control, and detection, needs a time
window of 40 ms. In the following, we mainly review the development for the verification
of information thermodynamics based on the 40Ca+ quantum system.

42𝑆 Τ1 2

32𝐷 Τ5 2
42𝑃 Τ1 2

42𝑃 Τ3 2

32𝐷 Τ3 2

𝒎 = +𝟏/𝟐

𝒎 = −𝟏/𝟐

𝒎 = −𝟏/𝟐
𝒎 = +𝟏/𝟐

𝒎 = −𝟑/𝟐
𝒎 = −𝟓/𝟐

𝒎 = +𝟑/𝟐
𝒎 = +𝟓/𝟐

397nm

729nm

866nm

854nm

393nm

𝜏1=6.9ns

𝜏2 =7.1ns

𝜏3 =1.17s

𝜏4=1.2s

732nm

Figure 3. Schematic of the level structure, where one ground state |S〉, two excited states |P〉, and
two metastable states |D〉 are shown. A general laser scheme employed experimentally is presented,
where the double sided arrows denote the corresponding coupling lasers with the wavelengths
labeled. Next to the energy levels, the lifetimes of the excited states and the metastable states
are labeled.

The decay rate of qubit is about 1 Hz, implying negligible dissipation. To create an
effective dissipative channel, we have to introduce the sublevels of excited state |P3/2〉 based
on the methods presented in Section 3.2. Practically, there is a small population leakage
from |P3/2〉 to |D3/2〉, which thus limits the lifetimes of dissipative channels. On the other
hand, the dephasing time of the qubit is about 1 ms, and the heating rate of the vibrational
mode is about 10 ms; thus, both of them are much longer than most quantum operation
times. Therefore, if we need to prepare a mixed state of the qubit or a thermal state of the
vibrational mode for a quantum thermodynamic process, the large dephasing or heating
rate is a prerequisite. The mixed state of the qubit can be fast prepared by establishing
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two opposite dissipative processes [69]. However, the thermalization method of the ion is
absent, and experimentally it always needs to wait for about 10 ms to produce the thermal
state [45]. Alternatively, a quantum reservoir simulated by the harmonic vibration can be
designed by producing different couplings between the ion and its environment, based on
the absorption of a laser photon and subsequent spontaneous emission [113].

4. Landauer Principle under Quantum Condition

Information and thermodynamics were first connected by the well-known Maxwell
demon, and then extended to the single particle Szilárd engine situation [4,5,19]. The Lan-
dauer principle first elaborated the relation between the energy dissipation and information
erasure [6]. As the spring up of quantum information, the energy dissipation of quantum
information erasure comes out and becomes a hot issue [22,23].

4.1. Maxwell Demon and Information Thermodynamics

The Maxwell demon, as shown in Figure 4, is a famous thought experiment presented
by Maxwell in 1871. This hypothetical experiment consists of an intelligent demon and
an isolated system coupled to a heat environment at uniform temperature. The demon
can create the temperature gradient between the left and right parts of the container
by measuring the states of system, then extracts work from the system based on the
temperature difference, leading to the violation of the thermodynamic second law.

(a) (b)

Figure 4. Schematic of Maxwell demon, adapted from [121], where (a) the demon, regarding an
intelligent device, can measure the speed or kinetic energy of particle around the window in the
middle of container, and then determines whether the particle can pass through the window to the
other side or not. (b) After a period of time, the left part of container owns a higher temperature than
the right part, and thus the entropy of system decreases.

In actual fact, the isolated condition of system itself is invalid and the genuine isolated
system turns out to be the composite system including the demon and system. During
the process, the demon first measures the speed of particle, and then records the velocity
information into its memory. Next, the demon, depending on the information, controls the
window in the middle to be open or closed (see Figure 4). After repeating the cycle for many
times, the particles with a large speed or kinetic energy are populated in the left part of the
container while the particles with a small speed are transferred to the right part, together
with the temperature difference arising and the entropy of the system decreasing. Therefore,
the demon uses the system to do work by absorbing the heat from the environment. Due to
the information of particles’ speed recorded in the memory of the demon in every cycle,
the entropy of the demon is continuously accumulated. Thus, the decrease in the system’s
entropy is balanced by the entropy increase in the demon, implying that the total entropy
of the composite system never decreases. On the other hand, a demon does not have an
infinite amount of memory, and the memory needs to be reset or the information in the
memory needs to be erased after some cycles of processing.

To erase the information, the demon needs to contact the environment and power
source. In the erasure process, the entropy of the demon flows into the environment,
accompanied by the heat produced in the environment. Thus, there is at least the same work
consumption in the power source to compensate the heat due to the energy conservation.
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This process is also called the Landauer Principle [6]. For the thermodynamic process, the
particle absorbs the heat from the single environment to do work, and then the power
source does work to erase the information in the memory of demon, together with the work
converted into the heat of environment. Thus, the overall effect of the energy is that the
demon utilizes the power source to do work. In the information flow process, the decreased
entropy of particles flows into the demon and turns out to be the information of the demon,
and then does work. Furthermore, the demon utilizes the power source to erase its memory,
together with the information changing into the entropy and heat of environment. Thus,
the overall effect of the information is the entropy cycling among the particles, demon, and
environment. In short, the demon, as a bridge, connects information to thermodynamics.

4.2. Landauer Principle

Landauer principle [6], first proposed by Rolf Landauer, expounds a minimum amount
of energy required to be consumed in deletion of a classical bit of information, implying
an irreversibility of logical operations [3,7,36]. For a general logical operation process, as
shown in Figure 5, the system is initially in the blank state with zero entropy, then turns
into a mixed state with a higher entropy. Coupling the system to an environment with
temperature T, the system is reset to the blank state, together with the entropy of the system
transferred into the environment. After a logical process, the mixed state of system has
four possible results, i.e., ‘00’, ‘01’, ‘10’, ‘11’, and without loss of generality, their existing
probability can be assumed to be equal. Then, the Shannon entropy of system is written
as S ≡ −∑i,j=0,1 pij ln pij = 2 ln 2 with pij = 1/4. Thus, erasing the information on one bit
will transfer ln 2 entropy into the environment, corresponding to a kBT ln 2 heat increase
in the environment. This means that producing this heat requires at least kBT ln 2 energy
dissipation from the power source. Thus, the Landauer bound is stated as

Q ≥ kBT ln 2. (24)

In a general form, Landauer bound can be written as Q ≥ kBT∆S, with ∆S being the
amount of information erased from the system.

0

0

Logical Operators

𝑠

𝑟

0

0

Erasure

Figure 5. A scheme to illustrate the erasure process where two bits in the state ’0’ undergo some
logical operations with the terminal states in ‘r’ and ‘s’, respectively. After the erasure, the states of
the bits are reset into their initial states.

The Landauer Principle has been demonstrated in different systems, such as the
trapped colloidal particle [31,40], and the nanoscale magnetic memory bits [41]. A typical
information erasure process is presented in Figure 6 that the particle is initially prepared
in one of the double wells with equal probability, implying that the initial entropy of the
system is Si = kB ln 2. Then, by lowering the barrier height and applying a tilting force,
the particle is moved into the right-side well no matter whether the particle is initially
located in the left- or right-side well, together with a zero entropy owned by the system.
The process is finished by increasing the barrier to its initial situation. Thus, the minimum
entropy production of this erasure process is kB ln 2. If the erasure process is quasi-static,
the dissipated heat is equal to the Landauer value. However, if the erasure is accomplished
within a short/finite time τ, the heat change is asymptotically close to the Landauer limit as
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Q = QL + A/τ with A being a positive constant [31]. When the duration is very short, the
heat variation can be expressed as an exponential relaxation Q = QL + (Ce−τ/τk + 1)A/τ,
where the characteristic jumping time (Kramers’ relaxation time) and the experimental
timescale are τk = τ0 exp(∆U/kBT) and τ0, respectively, with the height of barrier ∆U and
temperature T.

Figure 6. The erasure protocol for a single colloidal particle trapped in a modulated double-well
potential, adopted from [31], where (a,b) a one bit information stored in a bistable potential is erased
by first lowering the central barrier and (c,d) applying a tilting force to drive the particle from the
left-hand well to the right-hand well. (e,f) Independent on the initial state of particle, the final state of
particle is always in the right-hand well.

4.3. Quantum Landauer Principle in Trapped Ion System
4.3.1. An Improved Landauer Principle in the Quantum System

As a typical example, an improved Landauer principle was developed in the quantum
system, which is an equality relationship with finite-size corrections [23]. As stated above,
Landauer process is supposed to erase or reset the state of a system coupled to a thermal
reservoir. Based on this conception and as the comparison with the classical version, the
erasure process in the quantum system should satisfy the following four conditions:

1. In the erasure process of quantum information, the system S and reservoir R should
be described by the Hilbert spaces;

2. The reservoir R is initially prepared in a thermal state described by ρR = exp(−βHR)/Z
with the partition function Z = Tr[exp(−βHR)], where HR denotes the Hamiltonian
operator of the reservoir and β is the corresponding inverse temperature, defined by
β = 1/kBT;

3. The system and the reservoir are initially uncorrelated, i.e., in the product state
ρS ⊗ ρR;

4. The erasure process is executed by a unitary evolution USR, i.e., ρ′SR = USRρSRU†
SR.

The first condition is the necessary intrinsic demand for quantum systems. The second
condition can apply to the quantum version of the classical thermal reservoir without
involving quantum coherence and quantum correlation, which provides the heat and
owns the maximum entropy. In contrast, under the same condition, an extra work can be
extracted by means of quantum coherence or quantum correlation [76]. The third condition
implies the analogy to classical erasure. In contrast, if the initial state is in the entanglement
state, the entanglement would work as the negative entropy to extract work [77]. The last
condition restricts the system and reservoir as an isolated composite system that no entropy
moves in or out from the composite system during the erasure process.

Under these conditions, an equality form of the Landauer Principle [23] can be ob-
tained as

β∆Q = ∆S + I(S′ : R′) + D(ρ′R ‖ ρR), (25)
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where the entropy decrease ∆S and the heat dissipation ∆Q are defined in Figure 7, the
mutual information and relative entropy are defined, respectively, as I(S′ : R′) = S(ρ′S) +
S(ρ′R)− S(ρ′SR), D(ρ′R ‖ ρR) = Tr[ρ′R ln ρ′R]− Tr[ρ′R ln ρR] with the von Neumann entropy
of a quantum state ρ defined as S(ρ) = −Tr[ρ ln ρ]. The relation in Equation (25) is relevant
to the Landauer bound, β∆Q = ∆S, since both the mutual information and relative entropy
are non-negative, i.e., I(S′ : R′) ≥ 0 and D(ρ′R ‖ ρR) ≥ 0. In the classical quasi-static limit,
both the mutual information and relative entropy are in proximity to zero, and the relation
returns to the Landauer bound.

𝜌𝑆
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⊗
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Figure 7. The formalization of the improved Landauer principle, adopted from [23], where the
system S and a thermal reservoir R are initially prepared in an uncorrelated state ρSR = ρS ⊗ ρR

with the thermal state ρR = eHR /Tr[eHR ], and then an erasure operator is implemented by a unitary
evolution USR, with the final state as ρ′SR = USRρSRU†

SR. The final states of the system and reservoir
are replaced by the marginal state as ρ′S = TrR[ρ

′
SR] and ρ′R = TrS[ρ

′
SR], where the Landauer Principle

relates the entropy decrease ∆S of system to the heat ∆Q dissipated to the reservoir with β∆Q ≥ ∆S.

4.3.2. Single-Atom Demonstration of the Improved Landauer Principle in the Trapped
Ion System

The first experimental verification of the improved Landauer principle was imple-
mented in the trapped-ion system [45]. In this experiment, as shown in Figure 8, the
two states of the qubit are encoded in the electronic levels as |↓〉 = |S1/2, mz = 1/2〉 and
|↑〉 = |D5/2, mz = 3/2〉, and the reservoir is simulated by the vibrational mode of the
ion. The system-reservoir coupling is controlled by the red- or blue-sideband operators
regarding the 729-nm laser, and the population readout is carried out by detecting the
fluorescence of the 397-nm spontaneous emission. In the erasure process, the qubit at the
starting point is prepared in a mixed state ρS = (|↑〉〈↑| + |↓〉〈↓|)/2, and the reservoir is
prepared in the thermal state with energy E0 by the thermalization process through waiting
for a period of time. In the intermediate step, the 729-nm laser adjusted to the red sideband
drives the unitary evolution of the system and reservoir, accompanied by the decrease in
system entropy and the increase in reservoir energy. At the end of the erasure, the system
is populated in |↓〉 and the reservoir ends at a higher energy level.
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Figure 8. A single trapped-ion system for verification of the improved Landauer principle. (a) The
energy-level scheme, adopted from [45], and (b–d). Erasure process of the information encoded in
the qubit system.
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The state of the reservoir is measured, as shown in Figure 9a, using the analytical
formula Equation (23) to fit the experimental data obtained by measuring the blue-sideband
Rabi oscillation of the ion. In Figure 9a, the reservoir is initially prepared in the thermal
state with an average phonon number 〈n〉 = 0.15(2), and this can be verified by the typical
Rabi oscillation curve induced by the thermal distribution pn, as defined in Section 3.3.
After the erasure, the Rabi oscillation behaves very differently from the curve caused by
the thermal state, displaying the non-thermal property. Besides, the mutual information,
denoting the entanglement produced between the system and reservoir, will appear or
disappear during the erasing process. However, the relative entropy of the reservoir always
increases with the erasing time, which means the enhancement of the nonclassical property
when more heat flows into the reservoir. Thus, although the Landauer bound is hard
to reach in the quantum system (see Figure 9b), the equality relationship produced by
the quantum Landauer principle in Equation (25), as shown by the inset of Figure 9b, is
always satisfied.
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Figure 9. (a) Blue-sideband Rabi oscillations before (red curve and data) and after (blue curve
and data) the erasure for a waiting time τ = 55 ms. (b) Test of the improved Landauer principle
at different reservoir temperatures, where the black curve (crosses), red curve (circlets), and blue
curve (dots) are corresponding to the numerical (experimental) results of ∆Q/kBT with ∆Q =

Q0(〈n〉 − 〈n〉0), ∆S + I(S′ : R′) + D(ρ′R‖ρR), and ∆S with the reservoir temperature defined by the
initial average phonon number 〈n〉0 as T = T0/ ln(1 + 1/〈n〉0) with T0 = h̄ωz/kB = 48.5 µK. Inset of
(b) shows the difference between the left-side (∆Q/kBT) and right-side (∆S + I(S′ : R′) + D(ρ′R‖ρR))
of Equation (25).

The quantum Landauer principle as an extension of the Landauer principle in quantum
systems, satisfying the above three constraints, has been verified in the ion system, and
the energy dissipation is always larger than the bound of the Landauer principle, i.e.,
Q > kBT∆S. Although in general the Landauer bound cannot be violated, there exist
possibilities to go beyond the Landauer bound in the quantum systems if the constraint is
broken. For example, if the system is entangled, the entanglement, as a negative entropy,
would make the last two terms in the left-hand of Equation (25) be negative. Thus, a
general quantum Landauer principle, containing entanglement and coherence, would
be a significative theme. Thus, further experimental exploration of the general quantum
Landauer principle is highly expected.

5. Connection between Information-Theoretic Equality and Jarzynski Equality

The Jarzynski relation, relating non-equilibrium quantities to the equilibrium free
energy, expresses a remarkably simple equality relation and holds in both classical and
quantum regimes [8,9]. It can be understood using the fluctuation theorem [47] under the
microscopically reversible and thermostat dynamics. So far, the behavior predicted by the
Jarzynski equality has been further confirmed in the ensuing investigations, such as the
single-molecule pulling experiment [64], mechanically stretching experiment of a single
RNA molecule [65] (see Figure 10a,b), and a colloidal particle system [60]. Besides, several
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attempts have been made to extend the Jarzynski relation to quantum regime [54,58,66],
and also verified by an ion-trap experiment [67] (see Figure 10c). From the quantum
perspective, the fluctuations originate from both the thermal and quantum effect, and
the amount of work itself, which needs to be quantized, is not observable in quantum
thermodynamics [58,66]. Besides, a general quantum mechanical process involving a tem-
poral evolution can be sandwiched by two projective measurements, where the measure-
ment process [68], updating the original state to a new state with information encoded [2],
can also be observed as a typical thermodynamics process of information. The updated
state is generally out of equilibrium after the measurement, even if the system is initially
prepared in an equilibrium state.

(a)

(b)

(c)

Figure 10. (a) Scheme to verify the Jarzynski Equality by the RNA molecules; (b) Verification of
Jarzynski equality by the dashed lines within the experimental errors. (a,b) are adopted from [65].
(c) Schematic of the trapped 171Yb+ system to verify the quantum Jarzynski equality in an isolated
system [67].

5.1. The Information-Theoretic Equality based on Two-Point Measurements

As shown in Figure 11, the two-point projective measurement process consists of
two-measurement bases and a completely positive trace preserving map. In an information
theoretic equality, the mutual information is associated with two measurements {Pn} and
{Qm} before and after a completely positive trace preserving map F (·) ≡ ∑i Λi(·)Λ†

i ,
defined as [68]

Inm = − ln qm + ln pm|n (26)

where the conditional probability, denoting the relevance of the second measurement
to the first measurement outcome, is given by pm|n = Tr[Qm ∑i(ΛiPnΛ†

i )], and the mth
measurement outcome of {Qm}, regardless of the results on the basis {Pn}, is given by
qm = Tr[Qm ∑i ΛiρΛ†

i ]. Thus, the mutual information quantizes the entropy difference be-
tween the mth outcomes of the measurement basis {Qm} with and without the knowledge
of the nth measurement result of the basis {Pn}. Then, an information-theoretic equality,
regarding the mutual information, is written as

〈e−Inm〉 := ∑
nm

pnme−Inm = 1, (27)

where the joint probability is pnm = pm|n pn = Tr[Qm ∑i Λi(PnρPn)Λ†
i Qm] with the proba-

bility pn = Tr[Pnρ] regarding the measurement basis {P}.

CPTP Map 

σ𝑖 Λ𝑖(∙)Λ𝑖
†

Final State 𝜌
Second Measurement 

Basis 𝑄𝑚

Initial State 𝜌
First Measurement 

Basis 𝑃𝑛

Figure 11. Scheme of the two-point measurement process with CPTP denoting the completely
positive trace preserving.
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Furthermore, if the system is initially prepared as a Gibbs state, the mutual information
can be related to the work 〈W〉 performed by the free energy difference ∆F between the
initial and final states as

Inm = −β(Wnm − ∆F) (28)

where the work is defined as Wnm = En − Em with the eigenenergies En and Em corre-
sponding to the measurement bases {Pn} and {Qm}, the free energy F = − ln Z/β with
the partition function Z = ∑k e−βEk and Ek denoting the corresponding eigenenergies of
these two bases. Inserting Equation (28) into Equation (27) produces the Jarzynski equality
exp(〈W〉) = exp(∆F), with the average work 〈W〉 = ∑ pnmWnm. Furthermore, by using
the framework of dynamic Bayesian networks, this theory has also been promoted to more
detailed and integral quantum fluctuation theorems in a quantum correlated bipartite ther-
mal system, which can capture quantum correlations and quantum coherence at arbitrary
times [52].

5.2. Verification of Jarzynski-Related Information-Theoretic Equality

As stated by the theory of information-theoretic equality, there are three main elements,
i.e., an applicable initial state, two measurement bases and a CPTP channel. Based on the
requirement, using a single qubit, combining the evolution process with the two-point
measurement can accomplish this task. Figure 12 sketches the experimental processes
based on a single qubit, including three laser pulses for two measurements and a CPTP
channel. In the first step, the system is initialized in the state |↓〉, and then one eigenstate
of the measurement basis is produced by applying a carrier-transition operator Uc(θ0, φ0)
on the state |↓〉, i.e., |ξ〉 = Uc(θ0, φ0) |↓〉 corresponding to the state of the system after the
measurement of {Pn}. The CPTP map is then executed by the second carrier-transition
operator. In this case, this map is a unitary operation. We mention that it is possible to use a
non-unitary evolution to create the CPTP map, such as using a dephasing or decay channel.
However, a non-unitary channel may be inconvenient to investigate this equality from both
analytical calculation and experimental measurement. Finally, similar to the first step, the
second carrier-transition operator combines with the projection measurement on the state
|↑〉, corresponding to the second measurement in the basis {Qm}. The information-theoretic
equality is then verified by inserting the data, obtained by this process, into Equation (27).

Initialization Preparation CPTP map Detection

𝑈𝐶(𝜃0, 𝜙0) 𝑈𝐶(𝜃1, 𝜙1) Projection on
𝟙

𝟚

𝑈𝐶(𝜃2, 𝜙2)

Measurement

𝑈𝐶(𝜃0, 𝜙0) 𝑈𝐶(𝜃1, 𝜙1) Projection on𝑈𝐶(𝜃2, 𝜙2)

Dephasing

Figure 12. The time sequence to verify the information-theoretic equality and the Jarzynski equality,
adopted from [69], where the two states of the qubit are defined as |↓〉 = |S1/2, mz = 1/2〉 and
|↑〉 = |D5/2, mz = 3/2〉, respectively. All the evolution processes, implemented by the carrier-
transition operator Uc(θk, φk) with the duration θk and phase φk (k = 0, 1, 2), are presented by the
same form as in Equation (5).

In the second process of Figure 12, the only difference from the first process is an
additional dephasing process involved in the initial state preparation for producing a
Gibbs state ρi = exp(−βHi)/Zi with the partition function Zi = Tr[exp(−βHi)]. Since the
dephasing time of the internal levels of ion is shorter than 1 ms, to make the non-diagonal
terms of the density matrix disappear, we wait for about 3 ms after the carrier-transition
operator Uc(θ0, φ0) is implemented. In this situation, the Hamiltonians corresponding to
{P±} and {Q±} are given, respectively, by Hi = ∑± Ei

±P± and H f = ∑± E f
±Q±, where
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Ei, f
± are the corresponding eigenenergies of Hi, f with |Ei, f

± | = E for the qubit system, and

the joint probability is obtained as pnm = Tr[QmPn]e−βEi
n /Z with n, m = ± and partition

function Z = e−βE + eβE. Then, the verification of the Jarzynski-related information-
theoretic equality can be made by inserting the experimental data into Equation (28) [69].

6. Information-Theoretical Bound of Irreversibility in Quantum Systems

A typical thermodynamic phenomenon of entropy production [10] is the irreversibil-
ity [70,73–75]. Generally, the irreversibility is embodied by the second law of thermody-
namics, and bounded by the principle of entropy increase. However, the bound imposed
by the second law is loose and trivial, and thereby some tighter bounds about irreversibil-
ity have been presented, such as, the geometrical bounds on irreversibility [73,75] and
the information-theoretical bound [70]. Furthermore, the information-theoretical bound
derived in the classical standard framework of stochastic thermodynamics was proven
to be violated due to coherence involved in quantum systems [79], and thus theoretical
exploration was generalized to quantum systems [74].

6.1. Classical Information-Theoretical Bound of Irreversibility

The characterization of thermodynamic irreversibility can be described by the entropy
production, which can be mathematically expressed by the Kulback–Leibler divergence
[70]. As a simple application, Ref. [70] provides an information-theoretical bound on
entropy production in thermal relaxation processes, which makes the thermal relaxation
processes bounded in terms of the information geometry. In the standard framework of
classical stochastic thermodynamics, a probability distribution pi(t) (for ith state) of the
system evolves as ṗi(t) = ∑k wik pk(t) with the transitional matrix element wik from the kth
state to ith state satisfying the detailed-balance condition wik exp(−βEk) = wki exp(−βEi),
where β and Ei are the inverse temperature and instantaneous energy of the ith state,
respectively. Then, the total entropy production at the final time τ of the evolution
process can be integrated as στ =

∫ τ
0 σ̇(t)dt, where the entropy production rate satis-

fies σ̇(t) = σ̇sys(t) + σ̇bath(t) with the entropy production rates σ̇sys(t) = dH(p)/dt and
σ̇bath(t) = −β ∑i Ei ṗi, and the Shannon entropy H(p) = −∑i pi ln pi. Then, the entropy
production rate can be expressed by the variational expression as [70,71]

σ̇(t) = max
q

[−Ḋ(p(t) ‖ q(t))], (29)

with the Kullback–Leibler relative entropy D(p(t) ‖ q(t)) = ∑i pi ln(pi/qi) [70] and q(t)
being the probability distribution of the inverse process for p(t). As a consequence of the
variational principle, Equation (29) is maximized when the inverse process is in the equilib-
rium distribution with instantaneous energies, i.e., q(t) = peq. By setting q(0) = p(τ) and
integrating Equation (29) from t = 0 to τ, we have

στ/2 ≥ D(p(0) ‖ p(τ)), (30)

which states a stronger constraint on the entropy production than the standard second
law of thermodynamics due to non-negativity of the relative entropy. As an example, the
stochastic thermodynamics based on a classical three-level system, as shown in Figure 13a,
demonstrated that this inequality bound works for the whole time region, where a signifi-
cant reduction of the difference between the entropy production and the relative entropy is
induced by the local thermodynamic equilibrium of the system. In addition, the prereq-
uisites of Equation (30) are: the time-independent transition matrix, no coherence in the
initial state of system, no entanglement between the system and bath, and no drive for the
system or bath.
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Combining the standard expression of entropy production στ = D(p(0) ‖ peq) −
D(p(τ) ‖ peq) and Equation (30), a nontrivial information geometry constraint can be
obtained as

D(p(0) ‖ peq) ≥ D(p(0) ‖ p(τ)) + D(p(τ) ‖ peq), (31)

which locates at the point forming the obtuse angle, as shown in Figure 13b, making the
relaxation path confined inside the circle with a diameter determined by p(0) and peq.
This bound is stronger than the conventional second law of thermodynamics defined by
the standard expression of στ . Moreover, if defining the average entropy production rate
σ̄ = στ/τ, we find that the speed limit of the stochastic thermodynamics process [89] can
be stated as τ ≥ D(p(0) ‖ p(τ))/σ̄, implying a large entropy production rate required for
a short relaxation time [91]. This result has been verified experimentally [95].

(a) (b)

Figure 13. (a) Numerical simulation of a classical three-level system for demonstrating Equation (30),
where the inset denotes the stochastic transitions between these states. (b) Schematic for the constraint
presented in Equation (29). The figures are adopted from [70].

6.2. Quantum Information-Theoretical Bound of Irreversibility
6.2.1. Violation of Classical Information-Theoretical Bound in a Two-Level System

In quantum systems, the first violation of Equation (30), as exemplified by a driven
two-level system, was observed experimentally in Ref. [79]. To view this violation, we
consider the balance parameter Υ(t) = σ[0,t] − D(ρsys(0)‖ρsys(t)) and see whether it is
smaller than zero or not: If Υ(t) < 0, the bound is violated. We focus on the simplest model
consisting of a drive and a decay channel, described by the Lindblad master equation
ρ̇ = −i[H, ρ] + Γ(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)/2 with the Hamiltonian H = Ωσx/2 and the
decay rate Γ. When t → ∞, the system reaches the steady state with the eigenspectrum
decomposition representation as ρs = λ−|φ〉−〈φ| + λ+|φ〉+〈φ| with λ− > λ+, that the
effective inverse temperature and Gibbs state can be obtained by the methods given in
Section 3.3. As shown in Figure 14, in the ultra-large DDR, Υ(t) is given by Υ(t) = −Ω2t2

in the short-time limit t� Ω−1, which thus demonstrates the violation of the information-
theoretical bound of irreversibility. Besides, we may also find the revival of the information-
theoretical bound as the evolution of the relaxation process, see Figure 14b, which originates
from the competition between coherence and relaxation regarding the system. However,
realizing the ultra-large DDR experimentally is very difficult and not accessible for the
40Ca+ system [79].

(a) (b)

Figure 14. (a) Minimum values of the balance parameter Υ(t) for different drive-to-decay ratio (DDR)
and (b) the balance parameter Υ(t) in the ultra-large DDR case where the black solid (red dashed)
curve denotes the numerical (analytical) time evolution of Υ(t). The figures are adopted from [79].
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6.2.2. Coherence as a Source to Invalidate the Bound of Irreversibility

To witness the violation of the bound, we may choose another method using coherence
as the source of negative entropy. An arbitrary quantum state of the two-level quantum
system can be expressed as ρi = (I + r · σ)/2 with the Bloch vector r = (x, y, z) and Pauli
operators σ = (σx, σy, σz). Thus, the initial entropies of the system and bath are obtained as

Ssys = − ∑
k=±

λk ln λk, Sbath = −β ∑
k=±

E±λ±, (32)

where the eigenvectors and eigenenergies of the initial state are given, respectively, as
λ± = (1 ± |r|)/2 and E± = [(|r| ± z)E2 + (|r| ∓ z)E1]/2|r| with the energy difference
∆E = z(E2 − E1)/|r|. Nevertheless, the analytical solution for the thermal relaxation
process from an arbitrary initial state is intractable. Instead, the numerical results for
different initial states (see Figure 15a) show that the bound violation would possibly
occur since the system evolves away from the initially mixed state, and the total entropy
production, being of negative values in some situations, will be smaller than the Kullback–
Leibler divergence, as witnessed in Figure 15b.

(a) (b)

Figure 15. (a) Minimum values of the balance parameter for different initial states for the DDR
Ω/Γ = 1.8, where the dashed curve is the zero line of mint Υ(t). (b) Experimental result for the time
evolution of the balance parameter for the initial state denoted by the red dot in (a). The figures are
adopted from [79].

6.2.3. A Bound for Irreversibility in a Qunatum Open System

The thermal relaxation process in a Markovian open quantum system is then described
by Ref. [74], where, based on the Lindblad master equation and unitary evolution operator,
a lower bound of the entropy production, as shown in Figure 16a, is stated as [74]

στ ≥ DM[Uτρ(0)U†
τ ‖ ρ(τ)], (33)

where the unitary Uτ = exp(−iHt) and projection measurement relative entropy
DM[σ ‖ ρ] = D(σ ‖ ∑n ΠnσΠn) with Πn denotes the eigenbasis of ρ. This bound also
strengthens the Clausius inequality in the conventional second law of thermodynamics and
is geometrical, tight, and can be saturated. In addition, it also elaborates a quantum speed
limit by τ ≥ DM[Uτρ(0)U†

τ ‖ ρ(τ)/σ̄ with the average entropy production rate σ̄ = στ/τ,
implying that a fast state transformation requires a high dissipation rate [75,89,91,95]. In
the classical limit, no coherence is involved and the lower bound reduces exactly to the
bound in Ref. [70]. Furthermore, considering to reset the qubit from a maximally mixed
state to its lower state, the minimal heat dissipation, related to the Landauer principle, is

∆Senv ≥ −∆Ssys −
1
2

ln[4δ(1− δ)] (34)

with δ = 〈0|ρ|0〉. This indicates that a higher resetting precision needs more heat dissipated
into the environment.
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(a) (b)
𝐷

Figure 16. (a) Schematic to show the information-theoretical bounds under the Lindblad (solid
line) and unitary (dashed line) dynamics, respectively, where the irreversible entropy production
στ is bounded from below by the information-theoretical distance DM[ρu(τ) ‖ ρ(τ)]. (b) Schematic
diagram of the two-reservoir machine where the three levels are {|εg〉, |εA〉, |εB〉} with the energy
0, ω1, ω2, respectively. The figures are adopted from [79].

Consider an autonomous thermal machine [50,93] with three levels as a simple exam-
ple (see Figure 16b), which is driven by two reservoirs at different inverse temperatures
β1 > β2. The Hamiltonian of the system, given by H = ω1|εA〉〈εA|+ ω2|εB〉〈εB|, has four
jumping operators describing the translations |εA〉 ↔ |εg〉 and |εg〉 ↔ |εB〉, respectively.
One example to verify Equation (33) is to set the initial state of system as a pure state
ρ(0) = |φ〉〈φ| with |φ〉 =

√
10− κ|εg〉/3 +

√
κ − 1|εB〉/3 and the parameter κ = β1/β2. If

κ = 1; the system relaxes to the equilibrium Gibbs state, while if κ > 1, coherence emerges
in the initial state and the finial state will be in a nonequilibrium steady state with an en-
tropy flow existing between the two baths. To verify experimentally the information-theory
bound of Equation (33) by the three-level system, we have to construct six decay channels
to simulate all the jumping operators that the decay channels can be established by utilizing
the method presented in Section 3.2. However, creating six decay channels is intractable or
inaccessible for the trapped calcium ion system [95].

7. Thermodynamic Speed Limit Restrained by the Entropy Production

The thermodynamic speed limit has been extensively investigated by the information-
theoretical bound of irreversibility [24,75,89], the thermodynamic uncertainty [24], and
quantum speed limits [26–28]. Recently, this study produced a new inequality, called
the dissipation-time uncertainty relation [91]. This new uncertainty relation was recently
checked in a trapped-ion experiment [95].

7.1. Dissipation-Time Uncertainty Relation

The dissipation-time uncertainty relation states that the rate of a physical process
performed in a stochastic system is bound by the entropy production rate. Specifically,
under the assumption of the reverse process of a nonequilibrium system to be tardy and
rare, the dissipation-time uncertainty principle is given by

〈Ṡe〉T ≥ kB (35)

where 〈Ṡe〉 and T correspond, respectively, to the mean entropy flow and mean exis-
tence time of a process. One typical model to witness the dissipation-time uncertainty
is the overdamped particle transport in one spatial dimension, as shown in Figure 17a,
described by the dynamics ẋ = −dU/dx +

√
2/βξ with ξ denoting the zero-mean Gaus-

sian white noise of the unit variance. In the stationary regime, the process is described as
O =

∫ t
0 ẋ(τ)dτ with the specific domain D = [2πN, ∞), and the trajectories of the reverse

process, described by Õ = −2πN, are much rarer for large N or β. This model can be
used to describe a wealth of transport processes between molecular motors and Josephson
junctions [94].



Entropy 2022, 24, 813 22 of 28

(a) (b)

Figure 17. (a) The scheme of a particle transport in a periodical skew nonconservative potential
U(x) = cos(x)− f x, adopted from [91]; (b) sketch of a two-level system connected by two heat baths
with the corresponding transfer rate given by ων

i→j = e−βν(εj−εi)/2 (i, j = g, e, ν = h, c), adopted
from [95].

Another model to witness the dissipation-time uncertainty is the energy transfer
between two heat baths with different inverse temperatures β1,2 as in Figure 17b and
intermediated by a two-level system. The process describing an energy E transferring into
the cold bath in a fixed time δ, is given by

O = ε
∫ δ

0

(dN c
e→g

dτ
−

dN c
g→e

dτ

)
dτ, D = [E, ∞], (36)

where ε = εe − εg, and the Poisson processes dN ν
i→j correspond to the Markovian jumps

between these two states. The reverse process in this model, i.e., extracting an energy
larger than E in the time duration δ from the cold reservoir and then injecting into the hot
bath, is negligible. Moreover, the entropy flow in this model can be analytically solved as
Ṡe = kBε(βh − βc)(eβhε/2 − eβcε/2)/[1 + e(βh+βc)ε/2]. Based on this model, an experiment
in a trapped-ion system has been implemented, verifying the dissipation-time uncertainty
in Equation (35).

7.2. Verification of Speed Limit in the Trapped-Ion System
7.2.1. Stochastic Trajectories of the Dissipative Processes in a Trapped-Ion System

To demonstrate the dissipation-time uncertainty experimentally, we have to first set
up the two-level dissipative model. Practically, producing two heat baths with different
temperatures and simultaneously coupling them to a two-level system is troublesome and
unrealistic. Instead, an accessible method is to simulate all the possible stochastic processes
by structuring four dissipative channels based on the energy-level structure of ion. The
channels in Figure 18 originate from the method for the effective decay channels presented
in Section 3.2.
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Figure 18. Level schemes to construct effective two-level systems in contact with two heat baths in
the trapped 40Ca+ ion, adopted from [95], with the dissipative channels regarding to the cold heat
bath (a) and hot heat bath (b).

After the decay channels are built, the next step is to produce stochastic trajectories
of the dissipative process. Due to the experimental drawback, such as the cross talk of
different dissipative channels, population leakages, and fluorescence detection, we have
developed a discretization-repetition ensemble average method by applying the quantum
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jump theory [122] to produce stochastic evolution trajectories in the data analysis [95].
By separating the whole duration of the evolution into n pieces, we quantify the energy
transfer in each piece, and connect all the durations to construct a stochastic evolution
trajectory over the time period nτ (Figure 19a). Then, the energy transfer process described
by Equation (36) is produced by the evolution trajectory. Since each of the stochastic
processes is independent from each other, an equilibrium process is then obtained by
averaging all the possible evolution paths.

(b)(a)

Figure 19. (a) Energy transfer (left panels) and net energy flow (right panels) in single stochastic
trajectories (top panels) and ensemble average trajectories (bottom panels) regarding the Markovian
jumps induced by the cold heat baths, where Nc

e→g and Nc
g→e correspond, respectively, to the total

energy quanta dissipated to the cold baths and the energy quanta transferred into the system from the
cold baths. (b) Dissipation-time uncertainty relation under different values of the activation energy E,
where the green dashed line indicates the lower bound, i.e., kB. The figures are adopted from [95].

7.2.2. Experimental Verification of Speed Limit

Based on the stochastic evolution trajectories, the survival probabilities of the processes,
representing the probability of the trajectory’s first passage time τ longer than the threshold
time t, can be obtained by the ensemble average of all the possible trajectories. Then, a rare
reverse process can be experimentally confirmed by the approximately exponential decays
of the survival probabilities with respect to the evolution time. Besides, as an auxiliary
substance of the dissipation-time uncertainty, the entropy flux also sets an upper bound on
the time-averaged rate r̄(t) of the process as

〈Ṡe〉/kB ≥ r̄(t). (37)

Violation of the entropy flux bound can be experimentally witnessed during the non-
stationary dynamic process of the system. However, no violation is found from the ex-
perimental observation presented in Figure 19b. Nevertheless, if coherence is involved
in dissipative process, the dissipation-time uncertainty presented in Equation (35) might
be modified. Therefore, a more general dissipation-time uncertainty relation, containing
coherence and other quantum properties, is expected for describing quantum relaxation
and nonequilibrium processes.

8. Conclusions

In this paper, we have addressed several informational issues connecting the thermo-
dynamics to some experimental works for information thermodynamics in a trapped-ion
system. We have briefly reviewed the quantum and thermodynamic properties of a trapped-
ion quantum system, and elaborated how to construct decay channels as well as how to
create dissipative processes to simulate heat baths. We have also reviewed some recently
proposed and experimentally accessible information thermodynamic theories, such as the
quantum Landauer principle, the information-theoretical bound of irreversibility, and the
speed limit bounded by entropy production. Moreover, we have mentioned the conditions
to test them experimentally and then reviewed the relevant experimental demonstration in
a trapped-ion system. We anticipate that more experimental works would appear in the
flourishing field of information thermodynamics, with not only a single trapped ion, but
also a multi-ion system, as well as other quantum qubit systems, such as the superconduct-
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ing quantum circuits [16,123,124], solid-state spins [18], and ultra-cold atoms [17,125,126],
and the microscopic [64] or mesoscopically thermodynamic system [31,40,41,60,61,63,65].
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