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Abstract 
Objective: To investigate how missing data in the patient problem list may impact racial disparities in the predictive performance of a machine 
learning (ML) model for emergency department (ED) triage.
Materials and Methods: Racial disparities may exist in the missingness of EHR data (eg, systematic differences in access, testing, and/or treat-
ment) that can impact model predictions across racialized patient groups. We use an ML model that predicts patients’ risk for adverse events to 
produce triage-level recommendations, patterned after a clinical decision support tool deployed at multiple EDs. We compared the model’s pre-
dictive performance on sets of observed (problem list data at the point of triage) versus manipulated (updated to the more complete problem 
list at the end of the encounter) test data. These differences were compared between Black and non-Hispanic White patient groups using multi-
ple performance measures relevant to health equity.
Results: There were modest, but significant, changes in predictive performance comparing the observed to manipulated models across both 
Black and non-Hispanic White patient groups; c-statistic improvement ranged between 0.027 and 0.058. The manipulation produced no 
between-group differences in c-statistic by race. However, there were small between-group differences in other performance measures, with 
greater change for non-Hispanic White patients.
Discussion: Problem list missingness impacted model performance for both patient groups, with marginal differences detected by race.

Conclusion: Further exploration is needed to examine how missingness may contribute to racial disparities in clinical model predictions across 
settings. The novel manipulation method demonstrated may aid future research.

Lay Summary 
Machine learning (ML) can be used to leverage existing clinical data—like in the electronic health record (EHR)—to predict future events. ML 
algorithms are developed and trained using data collected and stored during prior healthcare encounters. Thus, they are prone to bias that exists 
within these datasets, including bias that drives more reliable predictions for one racialized group than another. A critical source of potential bias 
is missing data. EHR data are often incomplete; when more data are missing in more significant ways for one group than another, this can result 
in less reliable predictions for that group. In this study, we developed and tested a method for measuring the impact of missing data on ML pre-
diction reliability. We used this method to measure effects of missing medical problem information on the accuracy of ML predictions used to 
guide an emergency department triage decision support tool, and compared these effects across racialized groups. Missing medical problem 
data had a small effect on prediction accuracy across all racialized groups and in this setting, impacted predictions for non-Hispanic White 
patients slightly more than Black patients. The method we describe here is useful for future studies that interrogate bias from missing data.
Key words: decision support systems; clinical; health equity; triage. 

Background and significance
Racism, a broad social system that assigns and ranks people 
in socially/politically invented racial groups and underpins 
their differential treatment,1 may influence clinical decision- 
making technology in many ways. This includes via interlock-
ing institutions that affect individual health status to produce 

health care data (eg, formerly incarcerated people have 
greater health needs and experience discrimination in health 
care2) and in normative model specification decisions (eg, 
non-Hispanic White patients’ kidney selected as “normal” 
for eGFR calculators3). Racism also acts more broadly to pat-
tern which stakeholders are involved in the creation and 
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regulation of such systems4 as well as what problems are con-
sidered appropriate or achievable to target. In this study, we 
use a novel data manipulation method to examine whether 
missing data in the electronic health record (EHR)—which 
may be shaped by racism—impacts racial disparities in a clin-
ical prediction model trained upon them.

One area of health care where machine learning (ML)- 
based decision-making tools leveraging EHR problem list 
data have been implemented into practice is for emergency 
department (ED) triage.5–9 ED triage is the process by which 
patients are quickly evaluated for their severity of illness or 
injury and assigned to triage levels which prioritize their care. 
The most common method of ED triage used in the United 
States is the Emergency Severity Index (ESI), a heuristic algo-
rithm designed to consider patients’ acuity and anticipated 
resource use in order to assign them to a 5-point scale.10

However, ESI is limited in its ability to differentiate patients 
based on acute outcomes,7,11 and substantive evidence exists 
of inequities in triage decision-making using ESI.12–16 More 
recently, several ML-based clinical decision support (CDS) 
tools have been developed for this process. As an exemplar, 
we use an electronic triage CDS tool (TriageGO)7 that uses 
routinely available EHR data (patient age, mode of arrival, 
vital signs, chief complaint, and active problems) to predict 
risk of adverse outcomes. The predicted probabilities for each 
outcome are cross-walked to a 5-point triage scale (1 highest 
risk and severity of illness to 5 the lowest) that serves as a tri-
age acuity recommendation; see Levin et al. TriageGO was 
first implemented as real-time CDS in October 2016 at Johns 
Hopkins Hospital (JHH) and has subsequently been deployed 
to multiple EDs across the United States.

Data within the EHR reflects many complex processes 
aside from a patient’s true physiological state.17,18 Recently, 
researchers have demonstrated that social and institutional 
factors shaping EHR data (eg, heterogeneity in measurement) 
can impact the performance of clinical prediction models in 
practice.19–21 Where data generation processes differ by 
patient race, there is potential for racial disparities in predic-
tive performance to occur.22–24 One mechanism of particular 
interest is missing data, which is ubiquitous in EHR data. 
Missing data are particularly common in the patient problem 
list, a section of the EHR that contains patient medical condi-
tions (eg, medical history, chronic disease) that are longitudi-
nal tracked.25 Racial disparities in diagnosis of a variety of 
medical conditions are pervasive and well-documented26,27; 
patterns of missingness in the problem list may be influenced 
by racism (eg, marginalized patients receive more fragmented 
medical care, differential ordering of tests or treatment, and/ 
or organization- and policy-level factors).28–33 However, the 
problem list is commonly utilized for medical decision- 
making and is available to generate inputs for EHR interoper-
able CDS tools, including TriageGO. In this study, we 
demonstrate a novel method to manipulate missingness in the 
problem list to examine whether it contributes to disparities 
in predictive performance across racialized patient groups.

Methods
TriageGO
For this study, we use TriageGO, an EHR-based ML model 
to support ED triage, as an exemplar.7 The version of Tria-
geGO used for this study is composed of 3 random forests 
models in parallel, trained separately. Each model uses the 

same set of predictors drawn from the EHR which are com-
monly available at the point of ED triage: patient age, sex, 
mode of arrival to the ED (via ambulance or walk-in), vital 
signs (temperature, heart rate, respiratory rate, systolic blood 
pressure, and oxygen saturation), chief complaint, and active 
medical history. Least absolute shrinkage and selection oper-
ator (LASSO) is used to select predictors with significant pre-
dictive value in chief complaint and medical history variables. 
The outcomes for each random forest are inpatient hospital-
ization (admission to any inpatient care site including direct 
transfer to external hospital), emergency procedure (any sur-
gical procedure including cardiac catheterization that occurs 
within 12 hours of leaving the ED), and critical outcome (a 
composite outcome of either in-hospital mortality or direct 
admission to the ICU). Each model generates a probabilistic 
prediction for each outcome which are then mapped to a sin-
gle triage-level recommendation (eg, �15% predicted risk of 
critical outcome and/or �15% predicted risk of emergent 
procedure results in a level 1 score, the highest acuity) cali-
brated to the distribution observed at the study site, which 
uses TriageGO.

Data and variable definitions
EHR data from encounters at the JHH ED between October 
2016 and October 2017 were used. We collected TriageGO’s 
predictors, outcomes, and patient race from the EHR (race is 
not included as a predictor in the TriageGO model). The 
same inclusion criteria employed for the original evaluation 
of TriageGO were used for this study: patients <18 years of 
age, those with psychiatric complaints, and those missing any 
triage vital signs.7

The EHR variable for patient race contained 8 categories 
(“American Indian or Alaska Native,” “Asian,” “Black or 
African American,” “Native Hawaiian or Other Pacific 
Islander,” “White or Caucasian,” “Other,” “Unknown,” and 
“Declined to Answer”). EHR racial categorization data are 
different than data on self-reported racial identity. Patient 
race data from the EHR are a combination of self-report and 
health care worker-ascribed racial categorizations con-
strained by a small number of a priori and often mutually 
exclusive categories determined by the Office of Management 
and Budget.34–36 Thus, we understand the patient race varia-
ble is more reflective of how patients are racialized by health 
care institutions, and therefore a patient’s experience of rac-
ism, both structural and interpersonal, in health care deliv-
ery.37–40 Given the heterogeneity of peoples labeled 
“Hispanic” and the limitation of a single ethnic category, we 
use the EHR ethnicity variable (“Hispanic or Latino” vs 
“Not Hispanic or Latino”) as distinct from race and a proxy 
for position within society rather than sociocultural charac-
teristics (eg, referring to a specific diet or language).40–42

Patients with race coded as “Black or African American” we 
assume to be racialized as Black (including patients recorded 
as both “Hispanic” and “non-Hispanic”). We use non- 
Hispanic White patients as the reference group in our 
comparisons based on existing evidence of inequities in tri-
age13–16 and in ED care more broadly.43,44 We focus specifi-
cally on potential drivers of predictive performance between 
Black and non-Hispanic White patients due to a prevailing 
culture of anti-Black racism in healthcare and other health- 
impacting institutions in the United States, which may mani-
fest in what information is encoded in the EHR.45
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The data on patient medical history were drawn from the 
problem list section of the EHR. The EHR problem list was 
originally designed to be a unified list of all the patient’s diag-
noses and symptoms, past and present,46 but there is signifi-
cant variation in present-day clinicians’ understanding and 
use of it.47,48 Problem lists are maintained by clinicians (as 
opposed to populated automatically from other sections),49

and there is significant variation in the medical history data 
stored in problem lists versus elsewhere in the EHR or alter-
native data sources (eg, diagnoses suggested by EHR elec-
tronic phenotypes, patient self-report).25,50–52 The problem 
list data are organized as a series of binary variables corre-
sponding to ICD-10 codes in the study EHR. Missing medical 
history data and a patient who truly does not have a given 
condition appear the same within the EHR; data for both sit-
uations are simply absent. In the training data for the model, 
both situations would be represented by zeroes. We utilized 
only problem list entries indicated to be “active” at the time 
of ED triage, of which there were 1409 discrete conditions 
listed in our dataset.

Missing data manipulation and comparisons
Use of problem list data as a source of the patient’s medical 
history data is widespread in clinical prediction models. 
However, despite recent advancements in healthcare IT, 
patient problem lists are frequently incomplete.25,53 System-
atically identifying missing data in this common input to clin-
ical prediction models is challenging for several reasons, 
including a lack of gold-standard comparator medical history 
data (other studies use other EHR data such as laboratory 
tests to determine missingness, which only identifies a portion 
of truly missing data for a subset of conditions). Thus, to 
evaluate how missing problem list data could impact the Tri-
ageGO predictive models, we executed a novel simulation 
approach: Problem list data were updated to the values at the 
end of each retrospective encounter, and this more complete 
problem list was used to generate counterfactual predictions 
(eg, if we knew all patients’ disease status at the point of tri-
age, such as a history of ischemic heart disease ascertained 
later in the hospitalization). Accordingly, the missing data 
manipulated in this study are problem list entries not present 
at triage but added throughout the course of the encounter.

This manipulation enabled comparisons regarding the 
impact of these missing problem list data stratified by race. 
We compared the models’ predictive performance on sets of 
observed (problem list data at the point of triage) versus 
manipulated (updated problem list data at the end of the ret-
rospective encounter) test data for Black and non-Hispanic 
White patients. “Encounter” refers to the entire health care 
episode until a patient is discharged or died in-hospital, 
including if they were admitted, sent for observation, trans-
ferred, or discharged from the ED. We used a non- 
parametric, pairwise bootstrapping approach to estimate 
confidence intervals for performance metrics. First, we per-
formed a 70/30 train/test split on our sample EHR data. 
Next, both the train and the test data were resampled with 
replacement 50 times. We then train the TriageGO model on 
each of the bootstrapped training sets in a manner similar to 
the original derivation of the TriageGO algorithm7–9 as 
described above: 3 parallel random forests (predicting hospi-
talization, emergency procedure, and critical outcome respec-
tively) to produce probabilistic risk predictions which are 
then mapped to a 5-point triage score.

For each bootstrapped test dataset, we retain 2 copies: One 
with the observed EHR data, and one that has been manipu-
lated to remove missingness via updating problem list predic-
tors with the values they contain at the end of the patient’s 
retrospective encounter. Both of these copies are further sub-
set to contain only Black patients or only non-Hispanic White 
patients. For each subset in each manipulation condition, we 
calculated 6 predictive performance metrics using the percen-
tile method to generate 95% CIs for each54: 3 Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis (TRIPOD)-recommended metrics55

(Brier score, c-statistic, integrated calibration index [ICI])56

and 3 threshold-specific performance metrics salient to health 
equity and clinical decision-making (accuracy, false positive 
rate [FPR], and false negative rate [FNR]). In our primary 
analysis, we employ the thresholds used to distinguish triage 
Level 2 versus triage Level 3. This is a clinically significant 
cutoff that determines whether a patient is safe to wait in a 
waiting room (Levels 3-5) or should receive care immediately 
(Levels 1 and 2).10 Although these metrics are not proper 
scoring rules,57 they provide meaningful comparisons 
between and within prediction models for the purposes of 
examining equity,58,59 and are particularly appropriate for 
cost-asymmetric analyses.60–62

In addition to the point estimates for each metric, we calcu-
late within- and between-group differences. The within- 
group differences are calculated via the performance in the 
manipulated data minus the performance in the observed 
data for Black and non-Hispanic White patients separately. 
The between-group differences are calculated by subtracting 
the absolute value of the within-group difference for Black 
patients from the absolute value of the within-group differ-
ence for non-Hispanic White patients. Finally, for each of the 
10 ICD10 codes with the highest variable importance (per-
cent increase in mean square error summed across the 3 com-
ponent models),63 we calculate the proportion of Black and 
non-Hispanic White patients who had the diagnosis at triage, 
at the end of the encounter, and the percent change between 
these 2 timepoints. We also calculate the proportion of 
patients who have no conditions listed in their problem list. 
All analyses were conducted in R version 4.1.0.

Sensitivity analyses
The ICI is a useful metric for measuring model calibration 
numerically and is defined as the absolute value of the differ-
ence between observed and predicted probabilities, weighted 
by the empirical density function of the predicted probabil-
ities.56 Thus, this statistic may be insufficiently smooth, 
resulting in a biased result from the non-parametric boot-
strap. In contrast, m-out-of-n bootstrap approach is appro-
priate for non-smooth statistics. We tested m¼1/3n, 1/2n, 
and 2/3n and compared the results to the naïve bootstrap. 
Furthermore, the equity-relevant metrics listed above are sen-
sitive to choice of threshold. Therefore, we also generate esti-
mates for accuracy, FPR and FNR for each outcome model at 
several additional thresholds and compare them to the results 
from the primary analysis. An important limitation of this 
study is that the updated problem list data do not distinguish 
between conditions that were present at triage but not 
recorded in the EHR from conditions that arose during the 
encounter. Thus, we repeat our analysis, but without manip-
ulating 2 important (according to percent increase in mean 
square error)64 problem list predictors that may arise during 
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encounters: sepsis and acute kidney injury (AKI). Next, the 
results may be hard to interpret when the evaluation sample 
includes all ED patients, who vary in acuity and presenting 
conditions. Thus, for additional clinical context, we repeat 
our analyses subset to patients with 2 common ED chief com-
plaints: chest pain and abdominal pain. Finally, patients who 
have no problem list entries at triage may represent a distinct 
subpopulation (eg, have never been seen at this health system 
previously). Therefore, we repeat the analysis subset only to 
patients that have at least one problem list entry at triage. We 
also calculate additional descriptive statistics on problem list 
diagnoses added by patient race group: the proportion of 
encounters that result in added diagnoses, the average num-
ber of diagnoses added per encounter, and the top 10 most 
commonly added diagnoses.

Ethics statement
The study protocol was received an expedited review and 
was approved by the Johns Hopkins Medicine Institutional 
Review Board.

Results
The study cohort included 61 782 encounters among 37 196 
patients (Table 1). The mean patient age was 45.0 years, 
19 668 (52.9%) were coded as female with very few individu-
als coded as “other” (n¼ 1) or “unknown” (n¼ 5) sex. The 
majority of patients in the study sample were categorized as 
Black (25 243, 67.9%) and 11 953 were categorized as non- 
Hispanic White (32.1%). One-third of patients did not have 
any active items in their problem list at the point of triage 
(11 003, 29.6%).

Diagnoses by race
The proportion of Black and non-Hispanic White patients 
with the diagnoses of highest variable importance are shown 
in Table 2. A similar proportion of Black and non-Hispanic 
White patients had no entries in their problem list at triage 
(36.3% for non-Hispanic White patients, 35.6% for Black 
patients, 95% CI of the non-Hispanic White-Black difference 
( − 0.012 to 0.005)); more Black patients still had no problem 
list entries at discharge (24.1% vs 20.4% of non-Hispanic 
White patients, 95% CI of the non-Hispanic White-Black dif-
ference ( − 0.051 to − 0.036)). For the majority of diagnoses, 
a higher proportion of non-Hispanic White patients had the 

condition added to their chart over the course of the encoun-
ter than Black patients (Table 2).

Within-group differences
The c-statistic was significantly higher using the updated data 
versus the observed data for all 3 model outcomes across 
both Black and non-Hispanic White patient groups. The 
range of c-static improvement was between 0.027 and 0.058 
as seen in Table 3. The c-statistic differences were largest for 
the admission model for both Black (bootstrapped difference 
0.0568, 95% CI (0.0532-0.0640)) and non-Hispanic White 
(bootstrapped difference 0.0580, 95% CI (0.0539-0.0617)) 
patients. These differences were of smaller magnitude for the 
critical care and emergency procedure models (Table 3). The 
manipulated Brier scores were significantly lower (improved) 
for Black patients in all 3 models as well (eg, admission 
[bootstrapped difference − 0.0085, 95% CI ( − 0.0092 to 
− 0.0078)]). The ICIs using manipulated versus observed 
data were not significantly different in any model for Black 
patients (Table 3, Figure 1). For non-Hispanic White patients 
in the admission model, both the ICI [bootstrapped difference 
− 0.0339, 95% CI ( − 0.0363 to − 0.0316)] and the Brier 
score [bootstrapped difference − 0.0163, 95% CI ( − 0.0176 
to − 0.0149)] were significantly lower using manipulated 
data. There were no differences in these metrics in the other 2 
models.

There were significant differences in additional equity- 
relevant metrics for both Black and non-Hispanic White 
patients. For both groups, at the threshold of 0.2 for the 
admission model and 0.1 for the emergency procedure and 
critical outcome models, FPR significantly increased, and the 
FNR significantly decreased when using manipulated data 
(Table 3, Figure 1). Accuracy significantly decreased for both 
groups of patients in the emergency procedure and critical 
outcome models.

Between-group differences
To assess for racial disparity in predictive performance, we 
compared the difference in the within-group differences as: 
the absolute value of the manipulated minus observed differ-
ence for non-Hispanic White patients minus the absolute 
value of the manipulated minus observed difference for Black 
patients. We refer to these as between-group differences.

There were scattered small between-group differences in 
performance measures, with greater change for non-Hispanic 
White patients. The c-statistic was not significantly different 

Table 1. Characteristics of the study cohort at the patient level.

Black Non-Hispanic White Overall
(n¼25 243) (n¼11 953) (n¼ 37 196)

Age
Mean (SD) 43.4 (17.2) 48.4 (18.4) 45.0 (17.7)
Median [Min, Max] 42.0 [18.0, 90.0] 48.0 [18.0, 90.0] 44.0 [18.0, 90.0]

Sex
Female 13 701 (54.3%) 5967 (49.9%) 19 668 (52.9%)
Male 11 538 (45.7%) 5984 (50.1%) 17 522 (47.1%)
Other 1 (0.0%) 0 (0%) 1 (0.0%)
Unknown 3 (0.0%) 2 (0.0%) 5 (0.0%)

Medical history at triage
Yes 17 225 (68.2%) 8968 (75.0%) 26 193 (70.4%)
No 8018 (31.8%) 2985 (25.0%) 11 003 (29.6%)

The cohort contained a total of n¼ 61 782 encounters across all patients.
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for either outcome. The difference in the ICI and Brier score 
for the admission model was significantly greater for non- 
Hispanic White patients versus Black patients (Table 4, Fig-
ure 2). For ICI in the admission model, the bootstrapped 
between-group difference was 0.0237, 95% CI (0.0185- 
0.0324). For Brier score in the admission model, the boot-
strapped between-group difference was 0.0078, 95% CI 
(0.0065-0.0090). The between-group difference in accuracy 
was greater for non-Hispanic White patients versus Black 
patients in the critical outcome model [0.0073, 95% CI 
(0.0030-0.0117)]. The between-group difference in FPR was 
greater in non-Hispanic White patients versus Black for the 
admission [0.0239, 95% CI (0.0176-0.0307)] and critical 
outcome models [0.0081, 95% CI (0.0037-0.0124)]. The 
between-group difference in FNR was not significantly differ-
ent for any model.

Sensitivity analyses
We compared the point estimates for ICI for all subgroups 
and models using a naïve bootstrap approach versus an m- 
out-of-n bootstrap with m¼1/3, 1/2, and 2/3 (Figure 3). 
When comparing these approaches, there were non- 
significant differences in the ICI point estimates. We also 
repeated the analysis with both higher and lower thresholds 
for the threshold-specific metrics (Appendix Tables S1-S4). 
Within- and between-group differences persist, in the same 
directions and similar magnitudes as at the selected thresh-
olds. Additionally, when we refrain from manipulating 2 
important problem list predictors (AKI and sepsis) most 
likely to occur during the encounter (rather than prior to tri-
age), we also find the within- and between-results unchanged 
(Appendix Tables S5 and S6). Chief complaint-specific results 
can be found in Appendix Tables S7-S10. Results when the 
analysis was limited only to patients with at least one prob-
lem list entry at triage can be found in Appendix Tables S11 

and S12. Additional information about added diagnoses by 
encounter and patient race group is in Appendix Table S13.

Discussion
EHR-based clinical decision-making applications can exacer-
bate health inequities. An important next step is to under-
stand how and why disparate impacts may arise. A primary 
motivation for this study was to examine a potential struc-
tural driver (eg, racism, which may inform patterns of miss-
ing data) of racial disparities in health data and clinical 
prediction model performance, going beyond an individual/ 
behavioral framework (eg, attributing disparities to innate 
differences between people in different race groups; attribut-
ing disparities solely to interpersonal discrimination by clini-
cians or data scientists).65 Specifically, we manipulated 
patterns of missingness in the EHR problem list for Black and 
non-Hispanic White patients, and examined how this 
impacted the predictive performance of a clinical decision- 
making model for ED triage.

In this study, manipulating the magnitude of missing data 
in the EHR problem list affected the predictive performance 
of a ML model for both non-Hispanic White and Black 
patients. The c-statistic significantly increased for both Black 
and non-Hispanic White patients for all models: eg, from 
0.77 to 0.83 for Black patients and 0.74 to 0.80 for non- 
Hispanic White patients in the admission model. There were 
also scattered small but statistically significant between- 
group differences for several metrics. For the majority of 
these, marginal changes in performance were greater for non- 
Hispanic White patients than for Black when missingness in 
the problem list was reduced. For example, the greatest mag-
nitude changes were in the FPR: for the admission model, the 
FPR increased by 2.79 percentage points for Black patients, 
and 5.18 percentage points for non-Hispanic White patients. 

Figure 1. Within-group differences (eg, Black in observed data—Black in manipulated data) in predictive performance, all outcomes. This plot shows the 
point estimates and bounds of all performance metrics for each model and patient group. Abbreviations: ICI, integrated calibration index; FPR, false 
positive rate; FNR, false negative rate.
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This is a large relative between-group change, but small in 
absolute terms. For this reason, missing data in the problem 
list are not likely to be driving large Black-non-Hispanic 
White disparities in predictive performance in the context of 
this particular model. However, the fact that there are signifi-
cant between-group differences, even if marginal in magni-
tude, is suggestive of differential missingness patterns by race 
due to disparities in access, treatment, and outcomes. These 
should be explored for other parts of the HER, in other clini-
cal contexts, and for other modeling approaches. This study 
demonstrates a novel method for examining the impact of 
missingness in the patient problem list.

In this particular cohort, our manipulation resulted in 
more missingness being filled and slightly larger changes in 
predictive performance for non-Hispanic White patients. 
This manipulation may not alleviate as much missingness for 
Black patients for several reasons. First, there simply may be 
more missingness at baseline in non-Hispanic White patients 
at this facility. This could occur if non-Hispanic White 
patients were more likely to travel or be transferred for terti-
ary care from outside the local catchment area (eg, residential 
and/or healthcare segregation). Moreover, Black patients are 
at higher risk for chronic disease accumulation than age- 
matched non-Hispanic White patients66; however, non- 
Hispanic White patients included in this study were older 
than their Black counterparts. The Black patient population 
at this particular facility may have on average fewer underly-
ing problems to diagnose than the non-Hispanic White 
patient population. At the same time, Black patients may be 
less likely to have their problem lists updated over the course 
of the encounter as compared to non-Hispanic White 
patients. In this sample, Black patients were more likely than 
non-Hispanic White patients to leave without being seen 
(15.1% vs 12.6%, 95% CI of Black-non-Hispanic White dif-
ference (0.019-0.031)) and more likely to be discharged from 
the ED (61.9% vs 51.6%, 95% CI of the Black-non-Hispanic 
White difference (0.094-0.112)). This missingness for 
patients who never saw a clinician would not be captured in 
the EHR and is therefore not included in our manipulation.

There is significant heterogeneity in the racial composition 
of patient populations at medical facilities in the United 
States67; access is shaped by both residential and healthcare 
segregation, among other factors.68–70 The implications for 
EHR training data should be explored further, particularly 
for facilities where marginalized patients comprise a smaller 
portion of the patient population. Relatedly, there is signifi-
cant heterogeneity, both across facilities and over time, in 
basic aspects of structured EHR data, including variable defi-
nitions, units of measurement, and frequency of measure-
ment19,71,72 shaped by provider-level, facility-level (eg, 
staffing),72 and institutional-level factors (eg, health care 
guidelines, medical education, diversity in the health care 
workforce).73,74 EHR can thus be conceptualized as 
“accurate, reliable, and consistent picture of what is happen-
ing at the point-of-care.”72 When that point-of-care practice 
is racially stratified,75 clinical prediction models trained on 
EHR data may entrench existing inequities.

This study has several important limitations. The primary 
limitation of our manipulation is that some conditions arise 
during a patient’s encounter and are genuinely not present at 
triage. Thus, it is possible our manipulation incorporated 
information that could never be known at triage. To mitigate 
for this possibility, we have included a sensitivity analysis T
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Figure 3. Point estimates and bounds for integrated calibration index (ICI) metric, naïve versus m-out-of-n bootstrap, all models and subgroups. This plot 
shows the point estimate and bounds of each ICI metric (for Black and non-Hispanic White patients, for each of the 3 models). We compare values 
estimated via naïve bootstrap versus those estimated via several m-out-of-n bootstrap approaches, which are robust to non-smooth statistics such as the ICI.

Figure 2. Between-group differences (non-Hispanic White—Black) in predictive performance, all outcomes. This plot shows the bootstrapped 95% CI of 
the difference between subgroups (the absolute value of the non-Hispanic White manipulated—observed difference minus the absolute value of the 
Black manipulated—observed difference) for each predictive performance metric and model. This between-group difference was statistically significant if 
the 95% CI did not cross zero (the vertical dotted line). Abbreviations: ICI, integrated calibration index; FPR, false positive rate; FNR, false negative rate; 
obs, observed data; manip, manipulated data; diff, manipulated-observed difference.
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withholding 2 of the most important problem list predictors 
for which this may occur (sepsis and AKI). Furthermore, liter-
ature suggests that for the majority of cases these conditions 
originate in the community (eg, 76.4% in a meta-analysis 
for sepsis and 67.3%-79.4% from single-site studies for 
AKI).76–78 Moreover, this is a single-site study using a single 
model as an exemplar. Results may not generalize to other 
healthcare sites or models. Relatedly, although this case uti-
lizes an ML model deployed in clinical use, it is not the exact 
model currently deployed in clinical practice, which is tail-
ored to each ED. Thus, depending on the degree of difference 
in the EHR data and model specification for each cite, the 
finding of between-racial group differences in predictive per-
formance by missingness may not be replicated. Importantly, 
this study examines disparities between non-Hispanic White 
patients and Black patients only. Research on clinical predic-
tion models and health equity impacts to patients of other 
races is critically important and must be pursued. Finally, 
many pathways by which racism can influence clinical mod-
els may not be appreciated using conventional health data 
sources. This study focuses on EHR data as an important 
quantitative preliminary step.

Conclusion
Investigating potential structural drivers of racial disparities 
in the predictive performance of CDS tools is of great impor-
tance. In this study, we use a novel approach to examine the 
impact of missingness in the patient problem list on potential 
disparities in predictive performance for a predictive model 
used at ED triage. Problem list missingness impacted model 
performance across both Black and non-Hispanic White 
patients, and there were small between-group differences for 
some performance measures, with greater change for non- 
Hispanic White patients. In settings where missing data differ 
by demographic group, the manipulation method demon-
strated may aid in detection and understanding of disparities 
for clinical ML models.
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