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ABSTRACT Previous studies indicated that populations consuming a Mediterra-
nean diet rich in fiber, vegetables, and fruits have a significantly lower risk of cardio-
vascular and metabolic diseases than populations of industrialized societies consum-
ing diets enriched in processed carbohydrates, animal proteins, and fats. To explore
the potential contributions of gut microbiota to the observed diet-related metabolic
effects, we conducted an integrative analysis of distal gut microbiota composition
and functions and intestinal metabolites in Egyptian and U.S. teenagers. All Egyptian
gut microbial communities belonged to the Prevotella enterotype, whereas all but
one of the U.S. samples were of the Bacteroides enterotype. The intestinal environ-
ment of Egyptians was characterized by higher levels of short-chain fatty acids, a
higher prevalence of microbial polysaccharide degradation-encoding genes, and a
higher proportion of several polysaccharide-degrading genera. Egyptian gut microbi-
ota also appeared to be under heavier bacteriophage pressure. In contrast, the gut
environment of U.S. children was rich in amino acids and lipid metabolism-associated
compounds; contained more microbial genes encoding protein degradation, vitamin
biosynthesis, and iron acquisition pathways; and was enriched in several protein-
and starch-degrading genera. Levels of 1-methylhistamine, a biomarker of allergic re-
sponse, were elevated in U.S. guts, as were the abundances of members of Faecali-
bacterium and Akkermansia, two genera with recognized anti-inflammatory effects.
The revealed corroborating differences in fecal microbiota structure and functions
and metabolite profiles between Egyptian and U.S. teenagers are consistent with the
nutrient variation between Mediterranean and Western diets.

IMPORTANCE The human gastrointestinal microbiota functions as an important me-
diator of diet for host metabolism. To evaluate how consumed diets influence the
gut environment, we carried out simultaneous interrogations of distal gut microbi-
ota and metabolites in samples from healthy children in Egypt and the United
States. While Egyptian children consumed a Mediterranean diet rich in plant foods,
U.S. children consumed a Western diet high in animal protein, fats, and highly pro-
cessed carbohydrates. Consistent with the consumed diets, Egyptian gut samples
were enriched in polysaccharide-degrading microbes and end products of polysac-
charide fermentation, and U.S. gut samples were enriched in proteolytic microbes
and end products of protein and fat metabolism. Thus, the intestinal microbiota
might be selected on the basis of the diets that we consume, which can open op-
portunities to affect gut health through modulation of gut microbiota with dietary
supplementations.
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Throughout human evolution, dramatic shifts in the lifestyle and geographical
distribution of the human species have led to periodic changes in consumed diets

and nutritional intakes. When the original human societies were primarily hunter-
gatherers, their diet was rich in lean wild animal meat and seafood as well as in what
we now call dietary fiber from roots, tubers, fruits, and leafy vegetables (1, 2). The
advent of agriculture about 12,000 years ago and the accompanying change from a
nomadic to a sedentary lifestyle (3) led to a dramatic shift toward the consumption of
large quantities of refined grains, seeds, and, eventually, simple sugars such as sucrose
and fructose (2, 4). Over time, animal husbandry also developed and became an
economically viable source of food, such that the diet of the modern industrialized
societies now contains significant amounts of animal proteins and fats.

These shifts in dietary habits in different geographical regions have historically given
rise to several different diet types. The typical “Western” diet consumed by the majority
of populations in most industrialized countries is rich in animal proteins and fats, dairy
products, and refined, starch-enriched grains, cereals, flour, and sugars (4–6). Modern
agricultural and husbandry methods coupled with the ability to preserve perishable
foods made these products profitable to produce on a large scale. The level of
consumption of fruits, nuts, and vegetables in the Western diet is generally low, and
intake of dietary fiber is well below recommended levels (7, 8). This diet, enriched in
refined carbohydrates, animal fat, and protein, has been postulated to be one of the
primary causes for the rising number of metabolic diseases in the industrialized
countries (4, 9). In contrast, the “Mediterranean” diet is considered the standard of
healthy nutrition and has been shown to be associated with an increased life span and
a low incidence of metabolic and cardiovascular diseases (10, 11). Consumed by
populations of the Mediterranean Sea region, it is high in fruits, vegetables, whole
grain, beans, nuts, and plant fats, with a low fraction of meats and sweets (12, 13).

In addition to the well-recognized direct effects of consumed nutrients on human
physiology, diet is also considered to be one of the main determinants of gut micro-
biota composition and diversity (14, 15). Switching from a diet rich in animal products
to one high in fiber and plant foods rapidly changes gut microbiota in humans and
animals (16, 17). Reciprocally, the gut microbiota plays a large and vital role in the
biotransformation of consumed foods. A significant proportion of ingested foods
escapes digestion and absorption in the small intestine and reaches the colon. These
include dietary fiber (nonstarch polysaccharides), resistant starch, small amounts of
simpler carbohydrates, and some proteins and fats, as well as bile acids and enzymes
released in the small intestine (18, 19). Most of these unabsorbed compounds are
fermented in the colon by gut microbes. The end products of microbial metabolism
have been shown to have many positive (short-chain fatty acids [SCFAs]) as well as
negative (trimethylamine, ammonia, hydrogen sulfide) effects on the host health (19,
20). Alterations of the gut microbial populations have been associated with the
development of metabolic disorders such as obesity and type 2 diabetes (21, 22), and
gut microbiota changes during childhood can have lifelong effects (23, 24).

In this study, we aimed to discover possible relationships between human gut
microbiota and consumed diets. To achieve that goal, we compared fecal microbiota
structures and functions as well as fecal metabolites in two cohorts of children:
teenagers from the United States consuming a typical Western diet and population
group age-matched Egyptians consuming a Mediterranean-type diet. Simultaneous
analyses of microbial community membership and functional gene pool data combined
with the quantification of metabolites in the same samples allowed integrative analysis
of these data sets and revealed links between the gut microbiota and the intestinal
environment.

RESULTS
Gut microbiota compositions differ between healthy U.S. and Egyptian teen-

agers. High-throughput 16S rRNA gene amplicon sequencing was used to analyze
microbial composition in fresh fecal samples collected from 28 Egyptian teenagers and
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14 age-matched teenagers from the Midwest region of United States. Exploratory
principal-coordinate analysis (PCoA) using phylogenetically defined weighted UniFrac
distance measure (25) distributed samples in the ordination space based largely on
their group identity. Figure 1A shows PCoA results based on the analysis of the genus
abundance data set; Fig. S1 in the supplemental material displays PCoA ordination
results for the phylotype data set. We also calculated Bray-Curtis (BC) beta diversity
distances among all samples. Consistent with the PCoA findings, average intersample
BC distances between samples from healthy preadolescent and adolescent male vol-
unteers from Giza, Egypt (designated egkHLT), and from Dayton, OH (designated
uskHLT), were significantly larger than the intragroup distances (0.640 versus 0.569 and
0.576; pU � 0.001). Using sample group, age, and body mass index (BMI) values as
explanatory variables, we then conducted constrained ordination analysis using
distance-based redundancy analysis (db-RDA) and a weighted UniFrac distance matrix
(Fig. 1B). The three explanatory variables together explained 32.1% of the overall
variability in the microbiota composition. Variation partitioning and sample dispersal in
the constrained ordination space indicated that sample group assignment was the
dominant gradient in the data set, accounting for 29.3% of the overall variability. In

FIG 1 Comparison of distal gut microbiota composition between Egyptian and U.S. groups. (A and B) Sample similarity was assessed by unconstrained
weighted UniFrac-based principal-coordinate analysis (A) and constrained weighted UniFrac-based redundancy analysis (B) run on the chord-transformed genus
abundance data set. The statistical significance of group separation in PCoA is based on the Davies-Bouldin index. Group clouds represent areas of three
standard errors around the group centroid (diamond), and dot sizes in PCoA are proportional to Shannon’s H= alpha diversity values for that sample.
Distance-based RDA used three explanatory variables (group, age, and body mass index). The age and the BMI of the subjects are represented by color gradients
and the size of each dot, respectively. Arrows in the db-RDA biplot denote the magnitudes and directions of the effects of explanatory variables. (C) A variation
partitioning diagram depicts the relative contributions of explanatory variables to the overall variability in the data set. (D) Results of random forest discriminant
analysis of chord-transformed genus abundances were visualized through multidimensional scaling of the sample proximity matrix. The statistical significance
of group separation is based on the Davies-Bouldin index. Group clouds represent areas of three standard errors around the group centroid (diamond). MDS,
multidimensional scaling. (E) The relative abundances of the top 12 RF discriminatory genera are depicted on a violin plot. Each violin shows the density
distribution of genus abundances among all samples in the group. (F) Community structure at the class level. Classes are ordered according to the phylum.
Where shown, single asterisks (*) and double asterisks (**) indicate statistical significance of taxon abundance differences between two groups (pu � 0.05 and
pu � 0.01, respectively) based on the FDR-adjusted Mann-Whitney U test.
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contrast, age and BMI displayed smaller effects (Fig. 1C). A large portion of the overall
microbiota composition variation was not accounted for by the available explanatory
variables. This finding is consistent with the previously observed high interpersonal
variability in human gut microbiota composition (26, 27).

Specific microbial genera are differentially abundant between Egyptian and
U.S. teenagers. To identify specific genera that contributed to the observed separation
of samples between groups in ordination analyses, random forest (RF) discriminant
analysis was performed on the genus abundance data set. The RF model clearly
separated the two groups of samples, as shown in Fig. 1D, and variable importance
scores (calculated as the increase in model error due to the permutation of the variable)
were used to define the major discriminatory genera (see Table S4 in the supplemental
material) (28). Figure 1E displays the distribution of abundances of the top 12 discrim-
inating genera among egkHLT and uskHLT samples; a list of all genus abundances
together with the P values of Mann-Whitney U test for significant differences between
groups is provided in Table S1. While many differences were observed at the genus
level, such distinctions between groups were less pronounced at the class level. Levels
of Gammaproteobacteria and Methanobacteria were statistically significantly higher in
egkHLT, while levels of Clostridia and Verrucomicrobia were higher in uskHLT (see Fig. 1F
and Table S2). Considering the differentially abundant genera, the higher abundance of
Prevotella in egkHLT samples and the reciprocal higher abundance of Bacteroides in the
uskHLT samples (both are members of class Bacteroidia) are consistent with several
previous studies that indicated a higher prevalence of members of Bacteroides in
samples from the United States, western Europe, and industrialized Asian countries
than in samples from less-industrialized and more-rural populations (29–33). Many
Bacteroides members can utilize proteins for growth (34, 35), which might explain their
prevalence in subjects from developed countries consuming typical Western diets
heavy in animal fats and proteins. On the other hand, Prevotella spp. are known
degraders of xylan and other fibrous polysaccharides (36), which is consistent with their
presence in ethnic groups where a large fraction of the diet is comprised of vegetables
and grains (29, 30). Other genera enriched in the adolescent Egyptian gut included
polysaccharide-degrading Megasphaera, Eubacterium, Mitsuokella, and Catenibacterium
(37–39). Catenibacterium and Mitsuokella were also found in the stool of Bangladeshi
children but not in the samples from the cohort of U.S. kids (31), and both Catenibac-
terium and Eubacterium were previously linked to the abundances of Prevotella (26, 32).
The gut microbiota of Egyptian children was also enriched in several genera typically
associated with pathogenicity and infections, including Succinivibrio and Treponema
(see Table S1) (29, 30). The presence of Treponema might relate to the ability of some
members of this genus to degrade xylan and cellulose (29, 33).

In comparison, species of several known starch-degrading genera, namely, Rumino-
coccus, Coprococcus, and Blautia (40), were more abundant in the stools of U.S. children,
possibly due to the high prevalence of starch as a dietary polysaccharide in the Western
diet (41). In addition, abundances of Bilophila, a genus that is associated with bile acids
and high-fat diets (42), mucin-degrading genus Akkermansia, and clostridial genus
Faecalibacterium were 1.5-fold to 4-fold higher in the uskHLT samples (see Table S1).
Akkermansia and Faecalibacterium were previously shown to exert anti-inflammatory
effects on the intestinal mucosa and adipose tissues (43, 44). Considering the signifi-
cantly higher incidence of autoimmune diseases in Western populations (45), the
higher abundance of this genus in the gut of U.S. teenagers might indicate a host-
driven adaptation to elevated inflammatory levels.

Egyptian and U.S. gut microbiotas belong to different enterotypes. Following
the recently described discovery of different enterotypes of human distal gut microbi-
ota (26, 46, 47), we assessed if any such enterotypes could be revealed in the microbial
communities profiled in the egkHLT and uskHLT samples. Calinski-Harabasz (CH) index
values (Fig. S5) indicated that microbial data set can be optimally distributed into two
enterotypes, and samples were separated into these enterotypes utilizing the parti-
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tioning around the medoid (PAM) clustering algorithm (48). With the exception of a
single uskHLT sample which had an unusually large representation of Prevotella (15.8%
compared with 7.7% average for uskHLT), all uskHLT samples clustered into the
“Bacteroides” enterotype, and all egkHLT samples clustered into the “Prevotella” entero-
type (see Fig. 2A and B). Previously, in a diet assessment study, the Bacteroides
enterotype was strongly associated with protein and fat consumption, whereas the
Prevotella enterotype was associated with carbohydrate consumption (26). These as-
sociations are consistent with the differences between the typical U.S. diet (Western
diet; high in animal protein and fats) and the typical Egyptian diet (Mediterranean diet;
high in plant polysaccharides). To confirm our sequencing results, we utilized fluores-
cent in situ hybridization (FISH) to visualize Bacteroides and Prevotella cells in select
egkHLT and uskHLT samples. As shown in Fig. 2C, a good concordance between
sequencing and FISH results was observed, lending additional support to the idea of
the significance of the observed Bacteroides-Prevotella reciprocity between the uskHLT
and egkHLT groups.

Distal gut microbiotas separate subjects from Western and developing coun-
tries. Extending our observation of the similarities of the gut microbiota differences
between U.S. and Egyptian children to the results of several previous studies, we sought

FIG 2 Enterotypes of the distal gut microbial profiles. (A) Relative abundances of the main enterotype drivers, Prevotella and Bacteroides, among the two
identified clusters. Each violin shows the density distribution of genus abundance among all samples within the cluster (thickness of the violin), median value
(black dot), and 25% to 75% range of values (black bar). (B) Sample clustering into different enterotypes based on the between-cluster ordination analysis. (C)
Comparison of Prevotella and Bacteroides relative abundances in four samples based on sequencing (Seq) and fluorescent in situ hybridization (FISH) results.
Representative fluorescent images are shown on the right; pink coloring corresponds to genus-specific fluorescent probes, and blue coloring represents DAPI
DNA staining. (D) Results of weighted UniFrac distance-based PCoA performed using OTU abundances showing separation of fecal samples between
industrialized and nonindustrialized countries. The statistical significance of group separation is based on the Davies-Bouldin index. Panels E and F display the
same PCoA space, with relative abundances of Prevotella (E) and Bacteroides (F) overlaid as dot color gradients.
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to carry out a cumulative ordination analysis of these data sets. Because it was shown
previously that the choice of the interrogated 16S rRNA gene variable region has an
impact on the estimates of microbial composition (49), we limited our comparison to
studies that used the same V4 variable region of prokaryotic 16S rRNA gene to obtain
a phylogenetic profile of gut microbiota. We combined our high-throughput amplicon
sequencing data set (Illumina MiSeq platform) with a U.S.-versus-Malawi-versus-
Venezuela subject comparison (Illumina HiSeq platform) (50), a Tanzania-versus-Italy
subject comparison (Roche 454 FLX titanium platform) (30), and a U.S.-versus-Peru
subject comparison (Illumina HiSeq platform) (33). UniFrac distance-based ordination
PCoA of the combined data set revealed a statistically significant separation of fecal
samples between industrialized countries (Italy and United States) and developing
countries (Egypt, Malawi, Venezuela, Tanzania, and Peru) (Fig. 2D). Discriminatory
random forest analysis and orthogonal projections to latent structures discriminant
analysis (OPLS-DA) separated these two groups of samples well and designated Pre-
votella and Bacteroides the top separating genera (see Fig. S2; note that the random
forest proximity matrix projection also separated our study samples from the others,
which was likely due to technical variations among studies). The abundance gradients
of these genera aligned along the primary axes of variability in the cumulative PCoA
(Fig. 2E and F). Thus, we can speculate that there is a general dissimilarity of human
distal gut microbiotas between industrialized populations and “developing” societies
illustrated by the Prevotella-Bacteroides dichotomy.

Differences in distal gut metabolites reflect dietary preferences. To assess
whether the differences in microbiota composition and consumed diets between
Egyptian and U.S. teenagers can alter luminal environment, we employed proton
nuclear magnetic resonance (NMR) to obtain metabolite profiles from all collected stool
samples. 1H NMR spectra were recorded for all water-soluble fecal extracts, and a
dynamic binning algorithm was utilized to digitize spectral data (overlaid 1H NMR
spectra are shown in Fig. S3). Exploratory principal-component analysis (PCA), as well
as discriminatory RF analysis and ordination OPLS-DA, separated the samples with
statistical significance according to the group assignment (see Fig. S4). A spectral
deconvolution algorithm was then utilized to robustly quantify the levels of 32 metab-
olites in all interrogated samples. Statistically significant differences between egkHLT
and uskHLT groups were observed for the fractional abundances of many metabolites
(Fig. 3A and Table S3). The three major short-chain fatty acids (SCFAs), acetate, butyrate,
and propionate, were the most abundant metabolites in every fecal sample and overall
showed significantly higher levels in the gut of Egyptian teenagers. Because SCFAs are
the end products of the fermentation of complex polysaccharides, the latter finding is
consistent with the higher fraction of dietary fiber in Mediterranean diet (51). On the
other hand, levels of seven of nine measured amino acids were higher in U.S. children
(see Fig. 3A), consistent with the higher protein consumption in subjects consuming a
Western diet (4, 52). One of the largest differences was observed for lysine, likely
because the levels of this indispensable amino acid are low in plant protein products
(53). Interestingly, tryptophan and glycine were somewhat more abundant in Egyptian
children. While levels of tryptophan are higher in seeds and nuts, which are consumed
more frequently in Mediterranean countries (53), this amino acid is not easily accessible
from many products such as cereals (54). Elevated levels of fecal glycine were previ-
ously noted after dietary supplementation of fructo-oligosaccharides (55), which are
found at high levels in fruits. Similarly to the majority of amino acids, we found that the
levels of metabolites related to lipid metabolism, including bile acids, taurine (which
can be derived through deconjugation of primary bile acids), and choline, were all
higher in the American volunteers. Because release of bile acids into the small intestine
is increased in subjects on a high-fat diet (56), more bile acids likely reach the colon in
subjects consuming fat-rich diets, which aligns with our observations. Levels of several
central metabolism and fermentation intermediates (ethanol, lactate, malate, pyruvate,
afnd succinate) were also higher in U.S. samples, possibly indicating incomplete
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fermentation of complex polysaccharides in the guts of these teenagers (57). Intrigu-
ingly, the abundance of 1-methylhistamine, a fecal biomarker of allergic response (58),
was also higher in uskHLT stools, consistent with the well-established higher prevalence
of allergic diseases in industrialized countries (59).

These differences in measured metabolite levels between studied cohorts were
sufficiently consistent within each group to distinguish the egkHLT and uskHLT sam-
ples. Exploratory PCA, as well as discriminant RF analysis, separated Egyptian and U.S.
samples in the ordination space based on the relative abundances of 32 measured
metabolites (Fig. 3C and D). Coinertia analysis (CIA) indicated that such sample sepa-
ration was congruent with the dispersion of the same samples in the genus-based
ordination analysis (Fig. 3E).

Utilizing the SparCC algorithm to account for the limitations of compositional data
(28), we also generated networks of intermetabolite correlations shared among all
samples (Fig. 3B). Not surprisingly, levels of SCFAs, nucleotide metabolites, and amino
acids all correlated strongly within each group. An overall negative correlation was

FIG 3 Comparison of distal gut metabolite profiles between Egyptian and U.S. groups. (A) Overall distribution of metabolite categories among egkHLT and
uskHLT samples shown on a stacked-column graph. The relative abundances of individual measured metabolites are represented as violin plots. Where shown,
single asterisks (*) and double asterisks (**) indicate statistical significance of taxon abundance differences between two groups (pu � 0.05 and pu � 0.01,
respectively) based on the FDR-adjusted Mann-Whitney U test. LDRMs, lipid degradation-related metabolites. (B) Statistically significant SparCC-based
correlations among individual metabolites and metabolite groups. The associations between metabolite categories represent the median of pairwise
correlations among individual metabolites from different categories. (C and D) Sample distribution in ordination space based on the centered log-ratio
transformed metabolite relative abundances from principal-component analysis (C) and random forest discriminant analysis (D). P values indicate statistical
significance of separation of sample groups based on the Davies-Bouldin index. Group clouds represent three standard errors around the group centroids
(diamond). MDS, multidimensional scaling. (E) Coinertia analysis showing congruency of sample dispersal in ordination space based on metabolite and genus
abundance profiles. The distance between the positions of each sample on two ordination plots is indicated by a connecting line. Shorter lines represent similar
sample positions in the plots. Statistical significance and the relative fit of the ordinations were assessed by P value and RV coefficient, respectively.
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observed between levels of SCFAs and amino acids (excluding tryptophan and glycine),
consistent with nutritional differences between Mediterranean and Western diets.

Abundances of gut microbial functions are consistent with the prevalent
Egyptian and U.S. diets. To establish a link between microbial composition in the gut
and the levels of luminal metabolites, we carried out functional metagenomic profiling
of both sets of stool samples. Statistically significant differences in the abundances of
many functional genes were observed between the egkHLT and uskHLT cohorts (the
full table of functional annotations is provided in Data Set S1 in the supplemental
material). Specifically, concordant with the high consumption of cereals by Egyptians,
many carbohydrate utilization pathways were more abundant in the egkHLT stools (see
Fig. 4A). These pathways included cellulosome complex; catabolism of D-galactarate,
D-glucarate, D-glycerate, and D-gluconate; mannitol and melibiose utilization; and en-
zymes of the pentose phosphate pathway. In contrast, many protein degradation
pathways, including general protein degradation modules, general aminopeptidases,
and degradation enzymes for specific amino acids such as lysine and histidine, were
more abundant in the gut microbiota of U.S. children. Interestingly, and in concordance
with our metabolite quantification, tryptophan catabolism-related genes were more
prevalent in the Egyptian fecal samples. Biosynthetic pathways for several vitamins,
including biotin, cobalamin, and vitamin K, were significantly more abundant in the
guts of the U.S. children (average ratio, 1.68), likely because consumption of many
refined products such as sugars, cereals, and vegetable oils, which are low in micro-
nutrients and vitamins, leads to lower vitamin consumption (60). Several iron acquisi-
tion systems were also more prevalent in the guts of U.S. teenagers (see Fig. 4A and
Data Set S1). It was shown previously that the intestinal barrier function in Egyptian
children is occasionally compromised and thus that more iron can leak from mucosal
tissues into intestinal lumen (61). At the same time, U.S. teenagers underconsume foods
rich in this metal (60).

The overall abundance of motility and chemotaxis operons and quorum-sensing
genes was higher in the Egyptian samples; this is consistent with the observed
differential abundances of members of phylum Proteobacteria, which contains many
known human gut pathogens (3.3% and 2.5% weighted mean relative abundances
among egkHLT and uskHLT samples, respectively). Clustered regularly interspaced
short palindromic repeat (CRISPR), restriction-modification, and DNA repair systems

FIG 4 Functional analysis of the distal gut microbiota metagenomes. (A) Differences in specific functional categories between Egyptian and U.S. gut microbiota.
Each category comprises several SEED level 3 entries, each represented as individual bars with results calculated as log2-transformed ratios of reads between
egkHLT and uskHLT metagenomes. All displayed entries are statistically significant, with FDR-corrected P of �0.01. (B) Relative abundances of specific
metabolites and the mean log2 ratios of reads of metabolic enzymes that produce and/or utilize the metabolites are compared. CoA/P, coenzyme A/phosphate.
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were also more abundant in the bacterial genomes in egkHLT samples (Fig. 4A),
indicating that the Egyptian gut microbiota is under heavier bacteriophage pressure
(62, 63). In contrast, levels of genes in the category of “resistance to antibiotics and toxic
compounds” (including resistance to vancomycin and �-lactam antibiotics) were sig-
nificantly higher in U.S. samples, a finding which is likely explained by the widespread
use of antibiotic treatments in the United States, resulting in selective advantages of
microbial genome-carried antibiotic resistance genes.

To further validate the observed links between the fecal microbiota and metabolites,
we also linked the differences in individual fatty acid, sugar, and amino acid levels
between egkHLT and uskHLT cohorts to the levels of enzymes producing or utilizing
these metabolites (see Fig. 4B). The abundances of all SCFA-producing fermentation
pathway enzymes were higher in the Egyptian samples, in agreement with higher SCFA
abundances in these samples. Interestingly, the abundances of sucrose- and galactose-
specific glucoside hydrolase enzymes as well as of sucrose- and fructose-specific
phosphotransferase systems (PTS) were higher in the uskHLT samples, matching the
higher fecal sucrose and galactose metabolite levels. Peptidases specific to the release
of alanine, leucine, lysine, tyrosine, and valine from proteins and peptides were also
more prevalent in the U.S. gut microbiota, concordant with the higher amino acid levels
in uskHLT stools (Fig. 4B).

DISCUSSION

The human physiological state is currently viewed as an interaction between a
person’s genotype and the environment. This might explain in part why gene variants
identified in many recent genome-wide studies can account for only a small proportion
of the heritability of most complex diseases (64). Similarly, a recent alarming increase
in the rates of obesity and excessive weight cannot be attributed to any genetic
changes occurring on such short evolutionary time frame, and environmental factors
such as diet, levels of physical activity, and compromised immune systems all contrib-
ute substantially to this obesity epidemic (65). The historic rate of dietary changes
during the development of human species far exceeded that of possible genotype
alterations (2). Thus, our genotype is presumably not well adapted to the current
abundance of refined grains and sugars, dairy products, and animal fats in the diets of
industrialized populations (1, 4, 66). These considerations are used to explain the
observations that a Mediterranean diet, which is rich in plant products and low in
animal fats, is associated with lower risk of cardiovascular diseases (11). The human gut
microbiota serves as an important bridge connecting diet to human metabolism, since
emerging evidence points to the metabolic mediation by the microbiota of both
harmful and beneficial effects of dietary nutrients on human health (67, 68).

In this study, we explored the microbial and metabolic differences in the gut
environment between two groups of adolescents—Egyptians consuming a Mediterra-
nean diet and U.S. teenagers fed a typical Western diet. Integrative analysis of micro-
biota composition and functional capacity coupled with quantitative measurements of
intestinal metabolites provided strong matching evidence of the differences between
these populations. It appears that the gut microbiota in each population has adapted,
at least in part, to the host’s prevalent diet. Thus, the Egyptian gut microbiota was
enriched in polysaccharide-degrading members and genome-encoded enzymatic func-
tions, whereas microbial communities in U.S. teenagers had higher counts of protein-
degrading microbes and were enriched in protein and fat utilization pathways as well
as in biosynthesis of the vitamins that are often found at low levels in Western diets.
Microbiota adaptation to each gut environment was also evident from the overabun-
dance of iron scavenging genes in the gut of U.S. children, consistent with the reports
of insufficient iron consumption in subjects on a Western diet (60). Such differences in
microbiota structure and function were reflected in the differences in the intestinal
metabolites. While the gut environment of Egyptian teenagers was characterized by an
abundance of short-chain fatty acids, intestines of U.S. children had increased amino
acid content, higher levels of lipid metabolism-associated compounds, and elevated
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concentrations of 1-methylhistamine, a biomarker for allergic reactions. SCFAs, espe-
cially butyrate, inhibit inflammation and protect against obesity (69, 70), whereas
products of protein and lipid degradation are associated with a risk of developing
atherosclerosis and colon cancer (67, 71). Thus, the observed differences in these
metabolites between our cohorts are consistent with the epidemiological data showing
higher rates of cardiovascular disease, metabolic syndrome, colorectal cancer, and
autoimmune and allergic diseases in industrialized populations (72).

While it is tempting to assume that gut microbiota transformation of dietary
nutrients plays a central role in the development of these diseases, other environmen-
tal, cultural, and genetic contributions, as well as study limitations, should also be taken
into account. Factors such as health care, hygiene practices, cultural variation, and
environmental exposures to toxins and pathogens are all likely to exert selection
pressures on the gut microbiome and metabolome. For example, while the diet appears
to be “healthier” in the Egyptian population, the rate of obesity is actually higher in
Egypt among the members of the adult population, especially women, than in the
United States. This seeming inconsistency can be potentially explained by several
factors: the recent proliferation of “junk food” outlets in Egyptian cities (all our Egyptian
teenagers were provided prepared meals and thus were not exposed to these sources
of foods); increasingly sedentary lifestyles; and the lack of opportunities to play sports
and to exercise (73). In this study, only male preadolescent and adolescent subjects
were recruited; the gut environment in female teenagers was not profiled. Children in
many developing countries, including Egypt, also often suffer from the environmental
enteric dysfunction that can lead to nutrient malabsorption, altered immunity, and
changes in the gut microbiota. In many cases, this enteric dysfunction might be caused
by altered barrier function and reduced absorptive surface of the intestinal epithelium,
and it is often associated with poorer hygiene and a higher prevalence of pathogens in
the environment (74). Finally, acquisition of more-detailed dietary data in future studies
should provide additional insights into associations of specific microbes and metabo-
lites with particular types of foods. Nevertheless, because microbes can evolve and
adapt to environmental changes much more rapidly than humans can, dietary modi-
fications are likely to be among the most efficient and, at the same time, low-cost
options for prevention and treatment of metabolic and immune diseases (75). Thus,
modulation of human gut microbiota with prebiotic, probiotic, and synbiotic dietary
supplementations, or through microbiota transplantation, can provide new approaches
to control the diet-microbiota-human health interactions in the near future.

MATERIALS AND METHODS
Study subjects. Fresh fecal samples were collected in sterile containers from healthy preadolescent

and adolescent male volunteers from Giza, Egypt (designated “egkHLT”; n � 28, average age � 13.9 �
0.6 years; average body mass index [BMI] � 18.9 � 2.5 kg/m2), and from Dayton, OH (designated
“uskHLT”; n � 14, average age � 12.9 � 2.8 years; average BMI � 21.2 � 3.4 kg/m2). Both cohorts were
living in the urban setting. Fresh fecal samples were homogenized immediately after collection and were
frozen within 0 to 2 h after defecation as described previously (76, 77). The subject enrollment was
limited to males to take advantage of the availability of a teenage male cohort in a welfare institution
in Cairo, Egypt. Healthy volunteers did not have any gastrointestinal symptoms and had not consumed
antibiotics or probiotics for at least 3 months prior to sample collection. For each volunteer, age and BMI
values were collected and used in data interpretation.

Isolation of gDNA and high-throughput DNA sequencing. Total genomic DNA (gDNA) was
isolated from 150 mg of fecal material using a ZR fecal DNA isolation kit (Zymo Research Corpora-
tion) according to manufacturer’s protocol. For the interrogation of microbial composition, the V4
variable region of the 16S ribosomal RNA gene was amplified using the universal primers 515F
(5=-GTGCCAGCMGCCGCGGTAA) and 806R (5=-GGACTACHVGGGTWTCTAAT). The forward primers con-
tained an 8-nucleotide barcode to permit sample pooling. PCR amplifications were performed in a 25-�l
volume with 25 ng of genomic DNA and 28 cycles of amplification. PCR products were cleaned and
purified using calibrated AMPure XP beads (Beckman Coulter, Inc.). Amplicons were equimolarly pooled
and processed using the Illumina TruSeq DNA library preparation protocol. Sequencing was performed
on an Illumina MiSeq platform using the 2� 250-nucleotide-paired-end sequencing protocol following
the manufacturer’s guidelines. An average of 72,039 � 34,259 reads were obtained per sample.
Paired-end sequence reads were joined together. Low-quality (average Q, �25) and short (�150-bp)
reads were removed from the data set. High-quality reads were analyzed in QIIME using the default
pipeline (78). Operational taxonomic units (OTUs) were defined by clustering at 97% sequence similarity.
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Taxonomic annotation of OTUs was performed with the UCLUST algorithm (79) against curated Green-
Genes database v13.8 (80). All OTU counts were adjusted to calculated taxon 16S rRNA gene copy
numbers using the rrnDB library (81) in order to represent true relative abundances (76, 77). Finally, the
adjusted reads from all samples were subsampled at the read level (rarefied) such that all samples were
represented by the same number of counts. This final data set was used for all multivariate analyses.

To analyze community functional capacity, shotgun metagenomic sequencing was employed.
Whole-community genomic DNAs from individual samples were equimolarly pooled within each group.
Each pooled DNA sample was fragmented and processed using the Illumina TruSeq DNA library
preparation protocol. Sequencing was performed on an Illumina MiSeq platform using the 2� 150-bp-
paired-end sequencing protocol. Totals of 17,655,028 and 14,534,774 reads were obtained for egkHLT
and uskHLT samples, respectively. All reads were uploaded into the MG-RAST analysis server (82). Paired
reads were combined and subjected to quality filtering, and host sequences were depleted. The data set
was then processed using the default MG-RAST analysis pipeline. The functional annotation was based
on the SEED hierarchical system (83). STAMP statistical software was used for visualization and statistical
hypothesis testing based on the two-sample Fisher exact test with P values adjusted for multiple-
hypothesis testing using the Benjamini-Hochberg false-discovery-rate (FDR) algorithm (84). The following
filters were used for the selection of level 3 entries from the SEED hierarchical annotation for in-depth
analysis: (i) entries with greater than 500 reads; (ii) entries with a value for fold change between sample
groups of at least 1.3; (iii) entries with consistent changes among functional genes within the same
group.

In order to determine the abundances of genes encoding carbohydrate active enzymes, the protein
sequences of all available glycoside hydrolases (GH), glycosyl transferases (GT), polysaccharide lyases (PL),
and carbohydrate esterases (CE) were downloaded from the CAZy database (85). A BLASTP search was
then used to match metagenomic sequence reads against this custom annotation database. Individual
families clustered in a manner depending on the enzyme class substrate specificity and function. A
similar approach was used to annotate gene reads encoding galactose- and-sucrose specific phospho-
transferase systems (PTS).

Fluorescent in situ hybridization (FISH). FISH was carried out based on the methods of Zhu and
Joerger (86). Bacteroides and Prevotella were visualized using newly designed fluorescein isothiocyanate
(FITC)-labeled probes Bfra602 (5=-GAGCCGCAAACTTTCACAA) and Prev743 (5=-AATCCTGTTCGATACCCG
CA). The probes were designed to be specific to each genus with no cross-hybridizing to any other
genera. The ability of each probe to detect members of the corresponding genus was checked via the
probe match function of the Ribosomal Database Project’s 16S rRNA gene database, and the correct
hybridization was validated using pure cultures of Bacteroides fragilis and Prevotella oralis. To carry out
FISH, bacterial cells were isolated from 100 mg of fecal material with phosphate-buffered saline
(PBS)– 0.1% SDS buffer and were fixed overnight with a 4% paraformaldehyde–PBS solution. Fixed cells
were treated with lysozyme and then hybridized with the appropriate fluorescent probe at 46°C for 16 h
using a probe-specific hybridization solution (86, 87). Fluorescent images of DAPI (4=,6-diamidino-2-
phenylindole)-stained and FITC-stained cells were captured through a 100� oil immersion objective
using Image-Pro 6.2 software. Eight fields were imaged per hybridization. Total cell counts were obtained
from images of DAPI-stained cells, and the ratio of probe-hybridized cells to total cells was determined
using FITC images.

Preparation of fecal water extracts and proton nuclear magnetic resonance (NMR) analysis. A
total of 250 mg of homogenized stool was used to prepare a metabolite water extract in phosphate
buffer following our previously described protocol (57). A 550-�l aliquot of the prepared fecal extract
sample was transferred to a 5-mm-inner-diameter NMR tube together with 150 �l of 9 mM
trimethylsilylpropionic-2,2,3,3-d4 acid (TSP) in D2O. Proton (1H) NMR spectra were acquired at 25°C using
a Varian Inova instrument operating at 600 MHz (14.1 Tesla) and a previously described procedure (57).
TSP served as a chemical shift reference and quantification standard, and D2O provided a field-frequency
lock for NMR acquisition. Data were signal averaged over 400 transients using a 4.0-s acquisition time and
an interpulse delay of 11.05 s. Spectral processing included removal of the residual water signal, chemical
shift referencing, and sum normalization. For multivariate data analyses, spectra were binned to reduce
the dimensionality and mitigate peak misalignment, and signal intensities were autoscaled (88). Quan-
tification of specific metabolite resonances was accomplished using an interactive spectral deconvolu-
tion algorithm in MatLab as previously described (57). The deconvolution tool fits a defined spectral
region using a combination of tunable baseline shapes (spline, v-shaped, linear, or constant) and a
Gauss-Lorentz peak-fitting function. All metabolite peak intensities were corrected for equivalent num-
bers of protons and normalized to the TSP signal intensity. Peak metabolite assignments were either
taken from our previous study (57) or confirmed in additional metabolite spike-in experiments. In the
latter cases, each metabolite compound was added as a spike-in into a baseline fecal extract at a final
concentration of 1.5 mM, the NMR spectrum was acquired, and the position of the metabolite-identifying
peak was confirmed. There was substantial variability in the total sum of 32 metabolites among samples;
the variability was not a function of sample group or sample water content. To increase the robustness
of downstream analyses, all metabolite values were converted into fractions of the total.

Statistical data analyses. Statistical procedures were carried out in R, SPSS v19 (SPSS, Inc.), and
MatLab (the MathWorks, Inc.). Weighted mean values around the median were calculated to obtain
sample group averages as previously described (77). Weighted mean values reduce the effect of outliers
on the mean estimate. The statistical significance of observed differences in the values of any quanti-
tative variables between sample groups was assessed by the Mann-Whitney U test (reported as pU values
after FDR adjustment) (84). Beta diversity was measured with ecological Bray-Curtis and phylogenetic
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UniFrac distances (25, 89). Multivariate ordination analyses were carried out to assess sample dispersal
as a function of microbial and metabolite profiles. Prior to the analyses, genus and phylotype relative
abundance data sets were subjected to chord transformation to account for many zero values, and the
metabolite abundance data set was subjected to centered log-ratio transformation to correct for data
compositionality (28). Principal-component analysis (PCA), principal-coordinate analysis (PCoA), Unifrac
distance-based redundancy analysis (db-RDA), db-RDA-based variation partitioning, random forest (RF)
analysis, and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were run in
MatLab and R. A Venn diagram of variation partitioning was constructed with eulerAPE (90). The
statistical significance of group separation in PCA and PCoA was tested using the permutation of
the Davies-Bouldin index measure (91). Performance of discrimination models was assessed based on the
out-of-bag error rates. Identification of microbial enterotypes within the chord-transformed genus
abundance data set was achieved by partitioning around the medoid (PAM) analysis (48) and between-
cluster analysis (BCA) in R as previously described (46). The Calinski-Harabasz (CH) index was calculated
for different numbers of clusters (between 2 and 20 clusters) to determine the number of clusters that
provided the optimal sample distribution. The separation of samples into two clusters provided the best
CH index value. This finding was further validated by calculating Silhouette scores in R.

To test the sample distribution congruency between the microbiota and metabolite data sets,
transformed genus and metabolite relative abundance data sets were subjected to coinertia analysis
(CIA) (28). CIA was performed in R, and permutation of the RV coefficient was used to test the significance
of the congruency. To assess putative associations among the quantified metabolites in all samples, the
metabolite fractional abundance data set was analyzed in SparCC (92). The statistical significance of
observed correlations was calculated through comparison to null distributions generated by permutation
and renormalization of data.

Data accessibility. Sequence data sets from 16S ribosomal RNA gene sequencing and metag-
enomic sequencing supporting the conclusions of this article are available in the Sequence Read
Archive Repository (BioProject identifier [ID] PRJNA314988) and the MG-RAST analysis server (acces-
sion IDs: for egkHLT, 4552772.3 [http://metagenomics.anl.gov/linkin.cgi?metagenome�mgm4552772.3]
and 4552773.3 [http://metagenomics.anl.gov/linkin.cgi?metagenome�mgm4552773.3]; for uskHLT,
4552774.3 [http://metagenomics.anl.gov/linkin.cgi?metagenome�mgm4552774.3] and 4552775.3
[http://metagenomics.anl.gov/linkin.cgi?metagenome�mgm4552775.3]).
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