
Introduction 

Data science and machine learning (ML) are topics that have received enormous atten-
tion in recent years. Their strongest driving force seems to be in the explosion of data, 
both in size and scope. Several success stories of applying ML technology have increased 
worldwide investment in this area [1], and medicine is no exception. 

As with other medical fields, ML is revolutionizing anesthesiology research. Unlike 
classical research methods that are largely inference-based, ML is more geared toward 
making accurate predictions [2]. Medical textbooks are full of well-validated risk factors 
but only few well-validated predictive systems. 

Being aware of this limitation, medical researchers and societies have strived to create 
effective predictive algorithms [3]. A widely employed method for clinical prediction is 
the development of a risk scoring system. The researcher cleverly puts together previously 
known risk factors to yield a single output score. The Child–Pugh score is a well-known 
example. Based on five clinical measures of total bilirubin, serum albumin, prothrombin 
time, ascites, and hepatic encephalopathy, a score ranging from 5 to 15 is calculated. 
Ranges of 5 to 6, 7 to 9, and 10 to 15 points are equivalent to the Child–Pugh classes of A,  
B, and C, respectively. This system was first proposed in 1964 by the surgeon Charles 
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Gardner Child  [4], and modified by Pugh et al. in 1972.
A scoring system is a big step forward toward implementing an 

actual prediction algorithm based on multiple factors. However, 
the methods of constructing such a system have been rather hap-
hazard and based on trial and error. ML has much to offer in this 
regard. 

Much of the recent hype about artificial intelligence (AI) and 
ML mainly centers around a specific ML algorithm called deep 
learning. To a newcomer in this field, it might seem that AI and 
deep learning are equivalent terms. However, AI, as an academic 
field, has existed for a long time and deep learning (a.k.a. 
multi-layer perceptron, the old-fashioned term) is one of its 
many research topics. Most of its important theoretical develop-
ment already took place in the mid-twentieth century but its 
enormous potential was unrecognized for a long time. 

The landscape of ML can be envisioned as fundamentally con-
sisting of three large categories: supervised learning, unsupervised 
learning, and reinforcement learning (Fig. 1). Algorithms that con-
stitute each of these categories are diverse, and deep learning is 
merely one of them. Deep learning is special in certain aspects 
and supersedes all other algorithms when dealing with tasks relat-
ed to images, videos, sounds, and machine translation. However, 
deep learning is occasionally overstated in its capability and mis-
conceived as a magic wand. It is necessary to gain a clear overview 
of the entire field of ML before digging deeper into any specific 
algorithm. 

This article will primarily deal with data science and ML as ap-
plied to anesthesiology using electronic health records (EHRs). 
Owing to their retrospective character, the main limitation of 
EHR-based studies is the difficulty of establishing causal relation-

ships. However, the low cost and rich information content provide 
great potential to uncover hitherto unknown correlations. Such 
correlations can generate hypotheses to be tested through pro-
spective clinical trials. 

Basic concepts of ML 

ML is a field of AI concerned with developing algorithms and 
models to perform prediction tasks in the absence of explicit in-
structions. ML algorithms build a predictive model based on 
some training data that consist of features. A good understanding 
of these terms is crucial in acquiring a firm grasp of ML. Hereaf-
ter, important terms will be highlighted in italics.  

Data

The data D in a ML task is expressed using a matrix              . 
The ith row of X is called an ith instance of D. The jth column of X, 
on the other hand, is called a jth feature of D. Throughout this re-
view, we will use a well-known dataset in the ML community (the 
Pima Indian diabetes dataset), originally from the National Insti-
tute of Diabetes and Digestive and Kidney Diseases (https://www.
niddk.nih.gov/), which consists of 768 subjects and 8 features. 
These features are as follows: number of prior pregnancies, plasma 
glucose concentration (glucose tolerance test), diastolic blood pres-
sure (mmHg), triceps skin fold thickness (mm), 2-h serum insulin 
(mu U/ml), body mass index (BMI), diabetes pedigree function, 
and age (Table 1). The objective is to predict whether the patient is 
diabetic, based on the values of these features. 

Machine learning

Supervised learning

Regression

Classification

Clustering

Dimensionality
reduction

Unsupervised learning Reinforcement learning

Fig. 1. Machine learning (ML) Landscape. ML algorithms can roughly be divided into three categories – Supervised learning, unsupervised 
learning, and reinforcement learning. Our focus will primarily be on supervised ML algorithms.
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The cutoff values, 60 yr and BMI of 30, are called parameters of 
the model. Given the model, optimal parameter values must be 
found such that the outputs are as close to the actual target values. 
For various reasons, ML algorithms instead try to find parameters 
that yield the least dissimilar outputs to the target variables. The 
metric of dissimilarity is called a loss function. Depending on the 
specific task, different loss functions are chosen. For our classifi-
cation task, we could imagine assigning a value of +1 if there is a 
mismatch between the output and the target variable, and 0 oth-
erwise. The sum of the assigned values of all instances divided by 
the number of instances is then defined as the expected loss. The 
parameters that yield the smallest magnitude of this value become 
the solution of this task. 

The above-mentioned set of if-then rules can be combined into 
a tree, yielding a tree model (Fig. 2). The decision tree algorithm is 
a popular ML sequence that provides an intuitive framework to 
make classifications and decisions. Often, multiple trees are gen-
erated on random subsets of the original data. The decisions of 
the individual trees are then combined to generate the final pre-
diction. This algorithm is known as the random forest algorithm 
[5]. 

The practical use of ML involves choosing the right model to 
apply to data. There is no single model that works best for every 

Task 

A task is a problem we want to solve—the most common ones 
being classification and regression. 

In classification, the target variable (or label) is an element of a 
countable set S =  {C1, …, Ck}. In our running example, S has two 
elements {diabetes mellitus (DM) absent, DM present}. For nota-
tional convenience, we assign 0 and 1 to each element, respective-
ly. The role of the ML algorithms is to discover an appropriate 
mapping from the features to {0, 1}. Such a mapping is called a 
model. 

In regression, the target variable is a real number (often restrict-
ed to be positive). The task, therefore, is to construct a model that 
generates a real-numbered prediction that is as similar to the tar-
get variable as possible. 

Model and parameters 

A model takes in features as inputs, performs some logical or 
mathematical operations, and generates an output. For example, a 
model can consist of a set of if-then rules such as: 

If age >  60 yr and BMI >  30 then output =  1 else output =  0 

Table 1. Pima Indians Diabetes Dataset with 768 Subjects and 8 Features

Pregnancies 
(number)

Glucose  
(mg/dl)

Blood pressure 
(mmHg)

Skin thickness 
(mm)

Insulin  
(mu U/dl)

BMI  
(kg/m2)

Diabetes pedi-
gree function

Age  
(yr) Outcome

6 148 72 35 0 33.6 0.627 50 1
1 85 66 29 0 26.6 0.351 31 0
8 183 64 0 0 23.3 0.672 32 1
1 89 66 23 94 28.1 0.167 21 0
0 137 40 35 168 43.1 2.288 33 1
5 116 74 0 0 25.6 0.201 30 0
3 78 50 32 88 31 0.248 26 1
10 115 0 0 0 35.3 0.134 29 0
2 197 70 45 543 30.5 0.158 53 1
8 125 96 0 0 0 0.232 54 1
4 110 92 0 0 37.6 0.191 30 0
10 168 74 0 0 38 0.537 34 1
10 139 80 0 0 27.1 1.441 57 0
1 189 60 23 846 30.1 0.398 59 1
5 166 72 19 175 25.8 0.587 51 1
7 100 0 0 0 30 0.484 32 1
0 118 84 47 230 45.8 0.551 31 1
7 107 74 0 0 29.6 0.254 31 1
1 103 30 38 83 43.3 0.183 33 0
The ninth column is the target to be predicted. BMI: body mass index. Available from https://www.kaggle.com.

287https://doi.org/10.4097/kja.20124

Korean J Anesthesiol 2020;73(4):285-295

https://www.kaggle.com


task, a fact that is referred to as the no free lunch theorem of ML 
[6]. It is usually required to try multiple models and find one that 
works best for a task. This trial and error process lies at the heart of 
ML artistry. The list of commonly used ML algorithms is as follows: 

- Regularized linear regression 
- Logistic regression 
- Discriminant analysis 
- Support vector machine 
- Naïve Bayes 
- K-Nearest Neighbor 
- Decision tree 
- Ensemble method 
- Neural network 
Researchers generally fit different ML algorithms to data and 

compare the predictive performances. The one that yields the 
highest performance is generally chosen as the final predictive 
model. 

A specific approach called the ensemble method is noteworthy. 
As the term implies, this method combines several ML algorithms 
into a single model, and can be approximately divided into two 
types: sequential and parallel methods. In the former, the base 
learner is trained sequentially, each time assigning more weights 

to previous errors. Prototypical algorithms are AdaBoost and Gra-
dient Boost [7,8]. Parallel methods, on the other hand, combine 
learners that have been trained independently. The above-men-
tioned random forest algorithm is the prototype. 

Loss functions 

The choice of the loss function is intricately related to the task 
and the model type. 

In regression, the loss function is formulated so that it reflects 
the expected error. The most commonly used loss function is the 

mean squared error (MSE), defined as                   , where,  

yi and f(Xi) are the target variable and the model output of the ith 
instance, respectively. Root-mean-square error (RMSE), which is 

defined simply as   MSE , is also widely used. The latter has an ad-
vantage that the scale of the error is the same as that of the target 
variable. It is possible to state that the model generates outputs 

with an error margin of ε (%), where, ε =  100(%)×   MSE/(mean 

prediction). 
In classification tasks, the model output is a number between 0 

and 1, often interpreted as the probability of the target yi being 
positive. Binary cross entropy, defined as 

–[yilogpi + (1-yi)log(1-pi)]
where, pi is the model output for the ith instance, is widely used 

as the loss function. 
Optimization algorithms are used to search the parameter space 

of a given model so that the loss function is minimized. There are 
various algorithms, the most common one being based on calcu-
lating the gradient of the loss function. It is an iterative search al-
gorithm where the parameter values are updated every time based 
on the calculated gradient of the current parameter estimates. A 
gradient is a multivariate extension of a derivative. Since the loss 
function, L, is a function of its parameters p, changing the values 
of p results in changes in L. Intuitively, changing p in the direction 
that most sensitively affects L is likely to be an effective search 
strategy. To illustrate this idea more vividly, imagine a landscape 
where the value of L is plotted along the vertical axis and the pa-
rameters (restricted to two-dimensional for demonstrative pur-
poses) on the horizontal plane (Fig. 3). Supposing that a certain 
agent is riding along the ridges of the loss function surface, 
searching for its deepest valley, starting from any arbitrary point 
on the surface, a plausible search strategy would be to look around 
and descend down the path with the steepest slope. A tangent 
with the steepest slope, the derivative in a univariate problem, is 
the gradient. Repeating such a search often results in the agent 
ending up in one of the valleys, which is a potential solution to the 
search task. Unfortunately, the gradient-based search strategy 

glucose < 128
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mass < 26

mass < 30

glucose < 100

pedigree < 0.56

pedigree < 0.2
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Fig. 2. A decision tree to predict the presence of diabetes based on 
the Pima Indians Diabetes dataset (glucose: serum glucose [mg/dl], 
age [yr], mass: body mass index [kg/m2], pedigree: diabetes pedigree 
function). neg: negative, pos: positive.
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does not guarantee a globally optimal solution when applied to a 
loss function surface with multiple peaks and valleys, as shown in 
Fig. 3. Methods to circumvent this limitation do exist (such as in-
troducing a momentum, starting the search from multiple initial 
parameter values, adopting a stochastic component, and so on) 
but none of them definitely solve the problem (other than the 
brute-force strategy of searching all possible parameter combina-
tions). For more information, refer to [9]. 

Overfitting and underfitting 

An important limitation associated with minimizing a loss 
function given a set of features, target variables, and a model is 
that this does not necessarily minimize the difference between 
f(X) and the true signal    . The optimized prediction   =  f(X) may 
be closest to Y =    + ε (where, ε is a random error) but not to   .  
This phenomenon is given an infamous name called overfitting in 
ML literature. 

To avoid overfitting, one often keeps a separate dataset with an 
identical signal    but different random error ε’. Overfitting can be 
detected by comparing the loss function based on the original 
dataset with that calculated using the separate dataset. A signifi-
cant difference between the two loss functions indicates that the 
parameters are fitting the random error ε.  
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Fig. 3. A hypothetical landscape illustrating the relationship between the loss function and the parameters.

Training, validation, and test datasets  

In ML nomenclature, the original dataset used to optimize the 
parameters is called the training dataset, and a separate dataset 
used for detecting overfitting is called the test dataset. Hereafter, 
training and test datasets will be denoted as Tr and Te, respective-
ly. It is customary in ML practice to randomly split D into Tr and 
Te. The split ratio is often chosen such that the size of Tr is greater 
than Te. 

While this practice partly safeguards against overfitting, repeat-
ed bouts of training can lead to the overfitting of Te as well. 
Hence, Tr is generally split yet again into (real) training and vali-
dation (V) datasets (Fig. 4). 

In analogy, V serves the purpose of practice exams. Optimiza-
tion on Tr is followed by validation on V. When there is room for 
improvement, either a different model is chosen, or model hy-
per-parameters are modified. The procedure of training the new 
or modified model is repeated until a satisfactory result on V is 
achieved. The final predictive model is then validated using Te. If 
the predictive performance on Te is comparable to that on Tr, the 
model is then accepted and used. 

A variant of this procedure, called k-fold cross-validation, is also 
widely used. First, Tr is partitioned into k chunks (often of equal 
or similar sizes). One of the k chunks is defined as V and the rest 
as Tr. Then, the predictive performance on V is assessed, and this 
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procedure is repeated on all possible allocations of V and Tr. Fi-
nally, the k assessment scores from the k validation runs are aver-
aged to yield the mean performance index. Models that improve 
the mean performance index are chosen. 

While splitting D into Tr and V, and Te is the standard method 
to tackle overfitting, one should always try to directly incorporate 
the data generating mechanism if possible. For example, to predict 
the concentration of an anesthetic drug that is known to be elimi-
nated from the kidney by first order kinetics, it would be a better 
choice to use a pharmacokinetic model C(t) =  C(0)e(-kt) (k: elimi-
nation rate constant) than to use a high degree polynomial C(t) =  
C(0) + β1t + + β2 t

2 … + βp t
p. The latter function can undoubtedly 

generate outputs that match the observed concentrations given a 
sufficiently high degree p. However, this model would be prone to 
overfitting the data. 

Feature selection 

Not all features are informative in predicting the target. Return-
ing to our running example of the Pima Indians Diabetes dataset, 
supposing that in addition to the 8 features, we are given the fa-
vorite movie genre of the subjects. This additional feature, howev-
er, is unlikely to improve predictive performance because movie 
preference is not related to the development of diabetes in any 
meaningful way. 

A more serious problem occurs when so-called collinear fea-
tures are present. Suppose the data consist of weights measured in 
kilograms and pounds as two distinct columns (i.e., features). If a 
classification model is built using both features, the optimization 
algorithm would fail to converge. This is because the relative con-
tribution of each of the two features to the model output cannot 
be uniquely determined. 

First, the investigator must inspect the features manually and 
filter them based on domain knowledge. Here, features, such as 
patient names (which have no information in predicting the tar-

Original dataset

Training

Training Validation

Test

Test

Fig. 4. Splitting of the dataset into training, validation, and datasets. 
Model comparison is done using the validation dataset. Predictive 
performance of the final model is assessed using the test dataset.

get of our interest) are excluded. 
After manual filtering of the features, feature selection algo-

rithms can be applied. There are basically three different classes of 
such algorithms: (1) stepwise selection methods that iteratively in-
corporate the “best” feature at each step, (2) dimensionality reduc-
tion techniques that extract the most important components to be 
used as new features, and (3) regularization or shrinkage methods 
that penalize large parameter values during the optimization pro-
cess.  

The stepwise selection method is an umbrella term for all ap-
proaches that selects the one best feature at a time, evaluates the 
gain in predictive performance, and then decides whether it 
should be included in the model (Fig. 5). While stepwise selection 
algorithms do not always provide the optimal solution, they are 
easily understandable and simple to implement. 

Dimensionality reduction techniques eliminate collinearity by 
lumping correlated features. For example, given features of height 
and weight, a new feature of BMI can be calculated from the two. 
Replacing height and weight with BMI reduces the number of fea-
tures and at the same time solves the problem of feature collinear-
ity. One of the most popular dimensionality reduction methods is 
the principal components analysis. Given multiple features, the 
method identifies the principal components that retain as much 
of the original variance as possible. For more information on this 
particular method, refer to [10]. 

Lastly, regularization controls the magnitude of regression coef-
ficients. This is based on the premise that large magnitude coeffi-
cients (in the order of tens to thousands) are unlikely. From a 
Bayesian point of view, regularization is equivalent to imposing a 
null hypothesis of non-significance to all features (i.e., zero coeffi-
cient). Large coefficients that deviate from zero are thus penalized 

Null Model

Add the most significant variable

Rrepeat the above process

...until the basket
runs out of variables
or the stopping rule
applies

Model with 1 variable

Model with 2 variables

Fig. 5. The stepwise selection procedure. Each time, the most 
significant variable is incorporated into the prediction model. Such a 
selection process is repeated over all candidate variables until no more 
candidates exist or the algorithm hits a predefined stopping rule.
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in the calculation of the loss function. The three widely used reg-
ularization schemes are called LASSO, Ridge, and ElasticNet [11]. 
A more interested reader is referred to a review article that specif-
ically deals with various feature selection methods [12]. 

Multilayer neural network algorithms, so-called deep learning, 
can automatically extract useful features from the raw input. This 
is one of the great advantages of this algorithm and has contribut-
ed to its high popularity. 

Assessment of predictive performance 

Training models is important; however, assessing their perfor-
mance and selecting the best model is perhaps even more import-
ant. This is particularly true for medical researchers since ML en-
gineers can be hired to do the computational work but judging 
the overall quality of the work remains the responsibility of the 
principal investigator. 

A better model is the one that makes fewer errors. In regression, 
such a model is the one associated with a lower MSE. In classifica-
tion, a model with a higher accuracy, defined as the fraction of 
correctly classified instances, might be used. However, more sub-
tle complications arise when there is an imbalance among the 
classes. Referring to our running example, suppose that 99% of 
the subjects were diabetic. In such a case, simply predicting all 
subjects as diabetic would achieve an accuracy score of 99%. 

A confusion matrix is a table showing the frequencies of true 
positives (TP), false positives (FP), true negatives (TN), and false 
negatives (FN) (Table 2). 

Several important metrics are defined based on the values of 
the confusion matrix: 

(i) Sensitivity (a.k.a. recall, true positive rate) =   

(ii) Specificity (a.k.a. selectivity, true negative rate) =   

(iii) Precision (a.k.a. positive predictive value) =   

(iv) Negative predictive value =   

The most important concept related to the application of the 
confusion matrix is the tradeoff between sensitivity and specifici-
ty. The most sensitive algorithm is the one that predicts every-

thing positive, i.e., the sensitivity is 100%. Such a simple method 
guarantees that the algorithm classifies every positive instance 
correctly (all instances are classified as positive anyway). However, 
the price paid is that no negative instance is classified correctly, 
yielding a specificity of 0%. Since the definition of positives and 
negatives is arbitrary, it is easy to imagine that by flipping their 
definitions, a 100% specificity can be achieved at the cost of 0% 
sensitivity.  

As an analogy, an anticancer drug that kills all cells will certain-
ly eradicate all cancer cells. The sensitivity is 100%. However, 
since this drug would kill off all healthy cells as well (i.e., specifici-
ty 0%), such a drug will never make it to the clinic. 

One must find an optimal point where both sensitivity and 
specificity are acceptable for practical use. Evidently, this is no 
longer a mathematical problem. If sensitivity is more important 
(e.g., cancer diagnosis), the cost associated with the lower speci-
ficity can be tolerated. 

Now, suppose model A achieves 90% sensitivity and 10% speci-
ficity while model B achieves 10% sensitivity and 90% specificity. 
Which of the two models is the better? 

The widely adopted solution is to first draw a curve called a re-
ceiver operating characteristic (ROC) curve, which is created by 
plotting sensitivity against 1 – specificity, and then calculate the 
area under the curve (AUC). An ideal algorithm that achieves 
100% sensitivity and 100% specificity would be associated with an 
AUC of 100%, which is the maximum score achievable. A ran-
dom guess, due to the tradeoff between sensitivity and specificity, 
would satisfy the following equality: 

Sensitivity + Specificity =  100% 
The ROC curve is then a straight line with slope of unity that 

passes through the origin, and its AUC is 50% Fig. 6A). 
Most predictive models have AUC values that fall between 

these two extremes: 50% and 100%. Model selection, therefore, is 
often carried out by comparing the AUC of ROC curves Fig. 6B). 

The use of AUC, however, is not without problems. Lobo et al. 
[13] recommend against the use of AUC for the following reasons: 
it ignores the predicted probability values, summarizes the test 
performance over regions of the ROC space in which one would 
rarely operate, weights omission and commission error equally, 
does not inform about the distribution of model errors, and most 
importantly, the total extent to which models are carried out high-
ly influences the rate of well-predicted absences and the AUC 
scores. 

A widely used alternative to the AUC is the F1 score, defined as 
the harmonic mean of precision and sensitivity: 

Table 2. A Confusion Matrix

Prediction =  0 Prediction =  1
Actual target =  0 TN FP
Actual target =  1 FN TP
TN: true negative, FP: false positive, FN: false negative, TP: true posi-
tive. 
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Notwithstanding these issues, AUC is currently the standard 
method widely used for model comparison and assessment of 
predictive performance. 

Summary 

Supervised ML requires that the data be expressed as a matrix. 
Each row corresponds to an instance of the learning material, 
while each column represents the values of the different features. 
The matrix is subsequently fed into a suitable model that consists 
of tunable parameters. The machine carries out the learning pro-
cess by minimizing a predefined loss function. All loss functions 
reflect the degree to which the model outputs differ from the true 
values, playing the role of a supervisor. 

Different models are trained on Tr and their predictive perfor-
mances assessed on V. A metric such as the AUC of the ROC 
curve must be chosen prior to the analysis as the model selection 
criterion. Models are then compared using this metric, where the 
model yielding the highest (or lowest) value is selected as the final 
model. The predictive performance of the final model is judged 
using Te. If the performance reasonably matches that of Tr and V, 
one can be assured that overfitting has not occurred to any signif-
icant degree. The final model is then deployed as a real-world ap-
plication.  

Tools and software  

R 

R (https://www.r-project.org) is a free software environment for 

statistical computing and graphics. It supports Windows, MacOS, 
and a wide variety of UNIX platforms. The current stable release 
version is 3.6.3 (Holding the Windsock), but updates occur fre-
quently. Users are recommended to periodically check their soft-
ware version. Its main advantage is the wide third-party support. 
Virtually any kind of statistical analysis can be performed by 
searching and downloading relevant packages. It is light and con-
sumes little computer memory. 

Most R users also use RStudio (https://rstudio.com), an inte-
grated development environment (IDE) for R. It significantly fa-
cilitates the use of R by providing an interactive console, a syn-
tax-highlighting editor, a command history, an environment of 
defined variables, and a plotting window. It is available both as 
free open source and commercial licenses. However, the free open 
source license is fully functional, and operates on Windows, Mac, 
and Linux. Furthermore, RStudio Online is available for cloud 
computing. 

Its main drawback is the relatively slow computation time com-
pared to other software. Unless the data to be processed is in the 
range of gigabytes to terabytes, this is not going to be a critical is-
sue. Some third-party packages solve this problem by using codes 
that run on faster compiled languages (such as C++). 

Python 

Python (https://python.org) is another leading software used by 
ML researchers. The latest version is 3.8.2, but this would soon 
change as further updates are made. Similar to R, it is developed 
under an open source license and can be downloaded freely. It is 
the language of choice for first time programmers owing to its 
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gentle learning curve, but this does not mean that it is limited in 
its scope and function. Top IT firms (such as Google) are strong 
proponents of Python, and Google has developed one of the most 
popular deep learning application programming interfaces (APIs), 
TensorFlow, on which it runs. 

The counterpart of RStudio for Python is Anaconda (https://
anaconda.com), a highly popular IDE used by the majority of Py-
thon ML researchers. The Individual Edition operates under the 
open source license and can be freely downloaded. The main ad-
vantage of using Anaconda is that most ML-related third-party 
packages (or libraries), such as Scikit-learn, NumPy, Pandas, and 
SciPy, come pre-installed. The need for manually installing the re-
quired libraries is thus minimized. Anaconda also includes one of 
the most revolutionary projects that changed the practice of ML 
research, i.e., Jupyter notebook (https://jupyter.org). Project Jupy-
ter is a non-profit, open-source project that started in 2014. It 
evolved to support interactive data science and scientific comput-
ing, and supports Python, R, and other programming languages. 
It operates on a web-browser, where codes can be embedded as 
cells, greatly facilitating the presentation, sharing, and collabora-
tion of ML research. It is currently the primary presentation for-
mat used by Kaggle (https://kaggle.com), a popular platform for 
launching public ML competitions and sharing public data. 

Others 

MATLAB (https://mathworks.com/products/matlab.html) is 
the de facto standard programming language for engineers. It is a 
commercial software developed by MathWorks (https://math-
works.com), and offers fast and reliable tools for all areas of scien-
tific computing. Third-party tools can also be shared through 
MATLAB central (https://mathworks.com/matlabcentral), an 
open exchange for the MATLAB community.  

The main drawback of using MATLAB, of course, is its signifi-
cant cost. Cheaper licenses are available for students, but the pric-
es can still be substantial. Add-on libraries are available for ML 
and deep learning. Some universities, fortunately, offer free access 
to MATLAB to their students and faculty members based on an 
annually renewable contract. 

If one is already familiar with MATLAB and its syntax, its 
adoption for ML research might be a fair choice. However, if one 
is new to ML and has no prior experience with programming lan-
guages, the author personally recommends the use of R or Python 
since they are free and more widely supported by the industry 
(such as Google). 

Traditional compiled languages, such as Java and C++, can also 
be used, but the learning curves of these languages tend to be 

steeper. Unless one is a strong developer to begin with, these lan-
guages might not be the best choice. 

To be fair, the author must state that all Turing-complete lan-
guages (i.e., most modern programming languages) are capable of 
performing ML research. The author’s recommendation is pri-
marily based on the ease of learning and the popularity. The sec-
ond aspect is important because of the greater community sup-
port, the larger variety of third-party packages, and the richer 
documentation available. 

Hardware and operating system 

For ML research projects based on small- to medium-sized data 
(which include most traditional medical datasets), the hardware is 
not of primary concern. An entry-level standard CPU is adequate 
for most purposes, and an Intel i5 processor is more than suffi-
cient. Any operating system (OS) (e.g., Windows, MacOS, or Li-
nux) may be used. However, if one intends to conduct ML re-
search based on big data or requires deep learning for image, 
sound, or video classification, a workstation PC that runs on GPU 
processors is recommended. The OS of preference is Linux (and 
more specifically, Ubuntu). The cost of acquiring and maintaining 
a server can be substantial, however. Unless the researcher is fully 
determined to conduct deep learning-based research, the author 
recommends the use of Cloud solutions instead. A good starting 
point is Google Colab (https://colab.research.google.com). This 
allows the use of Python based on Jupyter notebooks and provides 
the users with GPU (and TPU) support at no cost. 

Examples of ML-assisted risk prediction 

Dynamic prediction of postoperative nausea and 
vomiting 

The Apfel simplified score for predicting postoperative nausea 
and vomiting (PONV) is currently a standard risk stratification 
system [14]. It consists of four factors, namely, gender, smoking 
status, history of motion sickness or PONV, and use of postopera-
tive opioids. Each risk factor contributes a score of +1. Apfel 
scores of 1, 2, 3, and 4 are believed to be associated with 20%, 
40%, 60%, and 80% risk of PONV, respectively. This system is 
limited in that patients given postoperative opioids, now a com-
mon clinical practice, already have one of the risk factors and 
none of the remaining three factors is modifiable. The Apfel sys-
tem does not discriminate patients undergoing different surgery 
types and given different doses of opioids. Moreover, it does not 
consider the decay of PONV risk with time. A recent publication 
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by the author and co-investigators identified time-varying risk 
factors of PONV in patients undergoing general anesthesia and 
given intravenous patient-controlled analgesia [15]. The dataset 
consisted of more than 20,000 patients with greater than 40 differ-
ent features collected from EHRs in Severance hospital, Seoul, 
Korea. ML techniques were applied to rank the most significant 
factors. Stepwise feature selection, using the highest-ranking fea-
tures, was embedded into the workflow to develop a predictive 
model of PONV at different postoperative time intervals. A web 
application was created to assist in making real-time predictions 
of PONV risk under actual clinical settings (https://dongy.shin-
yapps.io/ponv_pred). The predictions were in concordance with 
the Apfel scores and went a step further to generate actual proba-
bilities of PONV given a multitude of patient covariates, surgery 
type, and time elapsed after surgery. This work is a good demon-
stration of how ML can be applied to improve traditional scoring 
schemes. 

Prediction of postoperative pain 

Tighe et al. [16] reported a study whereby different ML models 
were built on data collected from EHRs to predict patients likely 
to experience severe postoperative pain after anterior cruciate lig-
ament reconstruction. The results showed that ML models out-
performed traditional logistic regression models in predictive se-
vere postoperative pain requiring peripheral nerve block. The 
same group subsequently carried out a similar research where ML 
classifiers were trained to predict which patients would require a 
preoperative acute pain service consultation [17]. Training of var-
ious classifiers followed by an ensemble of a group of high-per-
forming classifiers did not yield improved performance. Rather, 
the results showed that dimensional reduction improved compu-
tational efficiency while preserving predictive performance. The 
group recently argued that ML algorithms, when combined with 
complex and heterogeneous data from electronic medical record 
systems, can forecast acute postoperative pain outcomes with ac-
curacies similar to methods that rely only on variables specifically 
collected for pain outcome prediction [18]. 

Prediction of postoperative kidney injury 

Lee et al. [19] used ML techniques to predict acute kidney inju-
ry after cardiac surgery based on data collected from EHRs and 
developed an internet-based risk estimator. Compared with logis-
tic regression analysis, decision tree, random forest, and support 
vector machine showed similar performances with regards to the 
AUC. The gradient boosting technique showed the best perfor-

mance with the highest AUC. The same group published a similar 
article based on patients undergoing liver transplantation [20]. 

Empirical evidence from ML researchers and Kaggle competi-
tion winners suggest that ensemble methods often outcompete 
other algorithms when dealing with data in tabular format. Deep 
learning is generally unbeatable when it comes to classifying im-
ages, sounds, videos, and complex time series data. 

Summary 

While we have looked at a few instances, examples demonstrat-
ing the successful application of ML techniques in anesthesiology 
are too numerous to be listed in a single review. Most ML applica-
tions, despite being highly variable in the topics that they deal 
with, generally follow a common workflow. Becoming familiar 
with such a workflow is probably the first thing a newcomer to 
the field would want to achieve. 

For classification tasks, the reference model is usually the logis-
tic regression model, which is one of the most widely used statisti-
cal models in traditional medical research. The easy interpretabil-
ity of the estimated odds ratios is perhaps one of the reasons for 
its high popularity. The researcher then tests other candidate ML 
models and compares the predictive performance (often based on 
the ROC-AUC) with the reference model. Most ML algorithms 
outperform the logistic regression model, and researchers use this 
fact to support the use of their own ML-based model. While this 
is the general workflow seen in most ML research articles, one 
must be careful not to put too much emphasis on the predictive 
performance alone. Sometimes, being able to interpret the results 
or explicitly identify the risk factors is important. If the gain in 
predictive performance is not dramatic, the logistic regression 
analysis could still be favored. 

Conclusion 

The application of ML to anesthesiology holds great promise 
for the future. The main advantage of ML is its ability to deal with 
many features with complex interactions, in addition to its specif-
ic focus on maximizing predictive performance.  

However, the emphasis on data-driven prediction can some-
times neglect mechanistic understanding. This is particularly true 
when it comes to black box ML algorithms, such as deep learning. 
For example, a neural network trained to recognize the finger-
print of a private user does its job well, but it is often difficult to 
decipher how it does it. AlphaGo successfully beat the world Go 
champion but even its creator did not know how each move was 
made. It is somewhat unfortunate that as ML gains increasing 
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popularity, researchers are paying less attention to the reasoning 
behind the predictions. We hope that a proper balance between 
the two will be restored as ML researchers become more mature. 

This article mainly focused on supervised ML as applied to 
EHR data. The basic concepts of ML were introduced, and several 
examples of the successful applications of ML to anesthesiology 
were shown. The author hopes that this article serves as a rudi-
mentary roadmap for anesthesiology researchers who are now be-
ginning to apply ML to their fields. 
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