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Abstract

Identifying single nucleotide polymorphisms (SNPs) in the genes involved in sepsis may help to clarify the pathophysiology
of neonatal sepsis. The aim of this study was to evaluate the relationships between sepsis in pre-term neonates and genes
potentially involved in the response to invasion by infectious agents. The study involved 101 pre-term neonates born
between June 2008 and May 2012 with a diagnosis of microbiologically confirmed sepsis, 98 pre-term neonates with clinical
sepsis and 100 randomly selected, otherwise healthy pre-term neonates born during the study period. During the study, 47
SNPs in 18 candidate genes were genotyped on Guthrie cards using an ABI PRISM 7900 HT Fast real-time and MAssARRAY
for nucleic acids instruments. Genotypes CT and TT of rs1143643 (the IL1b gene) and genotype GG of rs2664349GG (the
MMP-16 gene) were associated with a significantly increased overall risk of developing sepsis (p = 0.03, p = 0.05 and p = 0.03),
whereas genotypes AG of rs4358188 (the BPI gene) and CT of rs1799946 (the DEFb1 gene) were associated with a
significantly reduced risk of developing sepsis (p = 0.05 for both). Among the patients with bacteriologically confirmed
sepsis, only genotype GG of rs2664349 (the MMP-16 gene) showed a significant association with an increased risk (p = 0.02).
Genotypes GG of rs2569190 (the CD14 gene) and AT of rs4073 (the IL8 gene) were associated with a significantly increased
risk of developing severe sepsis (p = 0.05 and p = 0.01). Genotype AG of rs1800629 (the LTA gene) and genotypes CC and CT
of rs1341023 (the BPI gene) were associated with a significantly increased risk of developing Gram-negative sepsis (p = 0.04,
p = 0.04 and p = 0.03). These results show that genetic variability seems to play a role in sepsis in pre-term neonates by
influencing susceptibility to and the severity of the disease, as well as the risk of having disease due to specific pathogens.
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Introduction

Despite significant advances in supportive care, neonatal sepsis

continues to be a major cause of morbidity and mortality,

particularly among premature infants. It occurs in 1/1,000 full-

term and 4/1,000 premature live births, and mortality rates can

reach values up to 20% in some settings and among very low-

birth-weight (VLBW) infants [1–3].

Susceptibility to, and the severity and outcome of sepsis depend

on various factors, including environmental exposure, host

immune status and inflammatory responses. Over the last few

years, it has been shown that these interacting factors can be

modified by variations in gene function or expression that can lead

to unexpected individual responses to infection [4–6]. Most of the

research in this regard has concentrated on the potential

association between such responses and host genetic variability

in the regulatory and coding region of genes for components of

innate and adaptive immunity in adults and older children, but

rarely infants [7].

There are therefore few data concerning the effects of genetic

variations on the risk of developing, severity and outcome of early-

and late-onset sepsis in neonates, although some reports suggest

that they may be related [8–10].

However, a more rigorous evaluation of the possible association

between genetic variations and neonatal sepsis is particularly

important because of newborn infants have an immature immune

system, and studies of their innate and adaptive responses have

demonstrated that some aspects of innate immunity to bacterial

infection are impaired, particularly in VLBW infants [11,12]. This

per se may predispose to more frequent and/or more severe sepsis.

Identifying genetic variations in the genes involved in bacteria-

induced cell responses and those involved in the pathogenesis of

sepsis may help to clarify the pathophysiology of sepsis in this

group of high-risk patients, and this could lead to the development
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of new diagnostic tools, improved specific therapeutic measures,

and the more accurate prediction of patient outcomes.

The aim of this study was to evaluate the relationships between

sepsis in pre-term neonates and 47 genetic variants in 18 genes

potentially involved in the response to invasion by infectious

agents.

Methods

Study design
This retrospective study involved pre-term infants (,37 weeks’

gestation) admitted to the Neonatal Intensive Care Unit of the

Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico,

Milan, Italy, between June 2008 and May 2012. The study was

approved by the Ethics Committee of the Fondazione IRCCS Ca’

Granda Ospedale Maggiore Policlinico. Moreover, two of us (LP

and BG) informed parents or legal guardian of the study as well as

obtained written informed consent for the use of clinical data and

blood samples of each child who could be enrolled before the study

was begun.

Three groups of pre-term infants were enrolled. The first group

consisted of 101 pre-term neonates with culture-proven sepsis (i.e.

with signs and symptoms of clinical sepsis associated with at least

one blood culture that was positive for a bacterial pathogen) Blood

cultures positive for following microorganisms generally consid-

ered to be contaminants, including Corynebacterium spp., Propioni-

bacterium spp., and Penicillium spp., were excluded from analysis.

The diagnosis of sepsis due to coagulase-negative Staphylococcus

(CoNS) was based on the criteria of the Vermont Oxford Network

Database [13] and required clinical signs of sepsis, two blood

culture positive for CoNS and intravenous antibacterial therapy

for at least 5 days after performing blood culture, or until death.

Whenever CoNS and another pathogen were identified in the

same blood culture, only the other pathogen was considered the

pathogen. The second consisted of 100 pre-term neonates with

signs and symptoms of clinical sepsis but negative blood culture(s)

during the observation period. The neonates in both groups

systematically received antibiotic therapy for $7 days on the basis

of the findings of microbiological sensitivity tests (when available)

or the recommendations of the international guidelines [14]. The

third group consisted of 100 pre-term neonates who did not have

any respiratory problems, never had a positive blood culture, and

never received antibiotic therapy during hospitalisation. The

neonates in each group were randomly selected on the basis of a

computer-generated randomisation list from among those hospi-

talised in the Neonatal Intensive Care Unit during the study

period. The exclusion criteria were premature infants with birth

defects and those born of pregnancies leading to twins or higher

multiples.

In accordance with the Report on the Expert Meeting on

Neonatal and Paediatric Sepsis (8 June 2010, EMA, London) [15],

clinical sepsis was defined as the presence of at least two clinical

and two laboratory criteria in the previous 24 hours. The clinical

criteria were 1) hyper- or hypothermia or temperature instability; 2)

reduced urinary output or hypotension or mottled skin or

impaired peripheral perfusion; 3) apnea or increased oxygen

requirement or an increased requirement for ventilator support; 4)

episodes of bradycardia or tachycardia or rhythm instability; 5)

feeding intolerance or abdominal distension; 6) lethargy or

hypotonia or irritability; and 7) skin and subcutaneous lesions

such as petechial rash or sclerema. The laboratory criteria were: 1) a

white blood cell (WBC) count of ,4 or .206109 cells/L; 2) an

immature to total neutrophil ratio (I/T) of .0.2; 3) a platelet

count of ,1006109/L; 4) C-reactive protein (CRP) levels of

.15 mg/L or procalcitonin levels of $2 ng/mL; 5) glucose

intolerance when receiving normal amounts of glucose (8–15 g/

kg/day) as expressed by blood glucose values of .180 mg/dL or

hypoglycemia (,40 mg/dL) confirmed at least twice; and 6)

acidosis as characterised by a base excess (BE) of ,210 mmol/L

or lactate levels of .2 mmol/L.

The clinical, laboratory and outcome data were obtained from

the Neonatal Intensive Care Database, whereas genetic evalua-

tions were made using blood extracted from filter Guthrie cards

prepared at birth as part of our routine clinical practice, not used

for the screening of inborn errors of metabolism, and archived in

an envelope.

In accordance with criteria of Goldstein et al. [16], sepsis was

defined severe in the presence of shock, cardiovascular organ

dysfunction or acute respiratory distress syndrome, or two or more

other organ dysfunctions, or death.

Candidate genes
A total of 47 SNPs of 18 candidate genes involved in immune

regulation and the pathogenesis of inflammation and sepsis were

selected for analysis (see Table 1). The genes encode pattern

recognition receptors (CD14, TLR2, and TLR4), intracellular

signalling proteins (IRAK1), pro-inflammatory cytokines (IL1a,

IL1b IL6, and LTA), anti-inflammatory cytokines (IL10),

chemokines (IL8, CXCL10), bactericidal-permeability increasing

protein (BPI), mannose binding lectin-2 (MBL2), beta-defensin1

(DEFb1), matrix metalloproteinase-16 (MMP-16), serpine1, heat

shock protein12A (HSPA12A), and ring finger protein 175

(RNF175). All are located on autosomes except IRAK1, which is

located on the X chromosome. Most of the SNPs are functional

variants or tagging SNPs characterised by the International

HapMap Project: some are known to be involved in the onset,

severity or outcome of sepsis in experimental animals or humans

[4–6], and the others have been previously found to be associated

with an increased risk of developing specific infections or an

abnormal immune response [17–20].

DNA extraction and genotyping
The blood spots on filter paper were cut into 3 mm punches

using a Harris UniCore punch (Whatman, Milan, Italy), and

stored in Eppendorf polypropylene tubes until use. Two punches

were used for the extraction with Masterpure DNA Purification kit

(Epicentre, Madison, FL, USA) according to the manufacturer’s

instructions and using 50 mcL final elution volume after

purification. The DNA extracted was quantified using Picogreen

reagent (Life Technologies, Monza, Italy) and an Infinite M200

PRO fluorimeter (Tecan Italia, Cernusco sul Naviglio, Italy).

Following nucleic acid purification procedures, samples were

stored at 220uC until use.

The SNPs were genotyped using the Custom TaqMan Array

Microfluidic Cards genotyping system on an ABI 7900HT

(Applied Biosystems, Foster City, CA). After PCR amplification,

the alleles were detected by means of end-point analysis using SDS

software and TaqMan Genotyper software (Applied Biosystems).

The genotype data were entered into a Progeny database (Progeny

Software, LLC, South Bend, IN) for the generation of datasets for

analysis. However, because the Taqman genotyping approach

failed in the identification of 11 of the 47 selected SNPs

(rs4859588, rs1800896, rs2569190, rs3921, rs1800871,

rs4986790, rs4859587, rs1800872, rs1143633, rs1800587,

rs8878, respectively) mass spectrometry was used to complete

the study.

Genetic Polymorphisms and Neonatal Sepsis
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Table 1. Gene and single nucleotide polymorphisms (SNPs).

Gene dbSNP HGVS description Functional consequence Position (bp) Chr Gene location

TLR2 Rs11938228 NG_016229.1:g.21506C.A Intron variant 154621946 4 Intron

Rs4696480 NG_016229.1:g.6686T.A Intron variant 154607126 4 Intron

Rs5743708 NG_016229.1:g.25877G.A Missense 154626317 4 Exon

Rs3804099 NG_016229.1:g.24216T.C Synonymous codon 154624656 4 Exon

Rs3804100 NG_016229.1:g.24969T.C Synonymous codon 154625409 4 Exon

TLR4 Rs1927911 NG_011475.1:g.8595A.G Intron variant 120470054 9 Intron

Rs2149356 NG_011475.1:g.12740T.G Intron variant 120474199 9 Intron

Rs4986790 NG_011475.1:g.13843A.G Missense 120475302 9 Exon

Rs4986791 NG_011475.1:g.14143C.T Missense 120475602 9 Exon

Rs1554973 NG_011475.1:g.19353T.C Transition substitution 120480812 9 Intergenic

CD14 Rs2569190 NG_023178.1:g.5371T.C Intron variant, UTR variant 59 140012916 5 UTR 59

Ring Finger
Protein 175

Rs1585110 NG_016386.1:g.25444G.A Intron variant 154660944 4 Intron

IRAK1 Rs1059703 NG_008387.1:g.11514C.T Intron variant, missense 153278829 X Intron

Rs3027898 NG_008387.1:g.14453G.T Downstream variant,
intron variant

153275890 X Intergenic

IL1a Rs1800587 NG_008850.1:g.5012C.T UTR variant 59 113542960 2 UTR 59

IL1b Rs1143643 NG_008851.1:g.11055G.A Intron variant 113588302 2 Intron

Rs1143633 NG_008851.1:g.8890G.A Intron variant 113590467 2 Intron

Rs1143627 NG_008851.1:g.4970C.T Upstream variant 2KB 113594387 2 Intron

Rs16944 NG_008851.1:g.4490T.C Upstream variant 2KB 113594867 2 Intron

IL6 Rs1800797 NG_011640.1:g.4456A.G Upstream variant 2KB 22766221 7 Intron

Rs1554606 NG_011640.1:g.6942T.G Intron variant,upstream
variant 2KB

22768707 7 Intron

IL8 Rs4073 NG_029889.1:g.4802A.T Upstream variant 2KB 74606024 4 Intergenic

IL10 Rs1800872 NG_012088.1:g.4433A.C Upstream variant 2KB 206946407 1 Intergenic

Rs1800896 NG_012088.1:g.3943A.G Upstream variant 2KB 206946897 1 Intergenic

Rs1800871 NG_012088.1:g.4206T.C Upstream variant 2KB 206946634 1 Intergenic

CXCL-10 Rs8878 NM_001565.3:c.*783T.C Intron variant, UTR variant 39 76942300 4 UTR 39

Rs3921 NM_001565.3:c.*140G.C Intron variant, UTR variant 39 76942943 4 UTR 39

Rs4859587 NM_001565.3:c.279-195T.G Intron variant 76943296 4 Intron

Rs4859588 NM_001565.3:c.189-69C.T Intron variant 76943677 4 Intron

LTA Rs1800629 NG_012010.1:g.8156G.A Upstream variant 2KB 31543031 6 Intergenic

Rs1799964 NG_012010.1:g.7433T.C Downstream variant 500B 31542308 6 Intergenic

Rs2229094 NG_012010.1:g.5681T.C Missense 31540556 6 Exon

Rs1041981 NG_012010.1:g.5909C.A Missense 31540784 6 Exon

MBL2 Rs5030737 NG_008196.1:g.5219C.T Missense 54531242 10 Exon

Rs7096206 NG_008196.1:g.4776C.G Upstream variant 2KB 54531685 10 Intron

Rs1800451 NG_008196.1:g.5235G.A Missense 54531226 10 Exon

Rs1800450 NG_008196.1:g.5226G.A Missense 54531235 10 Exon

BPI Rs4358188 NM_001725.2:c.646G.A Missense 36946848 20 Exon

Rs1341023 NM_001725.2:c.47C.T Missense 36932660 20 Exon

Rs5743507 NM_001725.2:c.546G.C Synonymous codon 36939052 20 Exon

Rs2232578 NM_004139.3:c.-205A.G Upstream variant 2KB 36974715 20 Intergenic

Serpin- a1 Rs7242 NG_013213.1:g.16067T.G UTR variant 39 100781445 7 UTR 39

DEF-b1 Rs11362 NM_005218.3:c.-20G.A UTR variant 59 6735399 8 UTR 59

Rs1799946 NM_005218.3:c.-52G.A UTR variant 59 6735431 8 UTR 59

Rs2741136 NM_005218.3:c.-1817T.C Upstream variant 2KB 6737196 8 Intergenic

MMP-16 Rs2664349 NM_005941.4:c.1084-2311C.T Intron variant 89089282 8 Intron

HSPA-12A Rs740598 NT_030059.13:g.69311363G.A Intron variant 118506899 10 Intron

Bp = base pairs; chr: chromosome; HGVS: Human Genome Variation Society. The position reflects the distance from the short-arm telomere.
doi:10.1371/journal.pone.0101248.t001
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Mass spectrometry
The PCR and extension primers were designed using the Assay

Design suite, version 1.0 (Sequenom, Inc., San Diego, CA, USA),

and simultaneously detected 11 SNPs in a multiplex amplification

reaction. Between 10 and 30 ng of genomic DNA were amplified

by PCR by means of 45 2-minute cycles (95uC for 30 s, 56uC for

30 s, and 72uC for 60 s), followed by 72uC for 5 min, and finally

4uC. The final concentration of each PCR primer was 0.1 mcM

and the final reaction volume was 5 mcL. Subsequently, the excess

dNTPs of the PCR products were removed by means of treatment

with 0.5 U shrimp alkaline phosphatase at 37uC for 40 min and

85uC for 5 min. Single-base extensions were performed in

accordance with the manufacturer’s instructions: 94uC for 30 s

[94uC for 5 s, (52uC for 5 s, 80uC for 5 s) for 5 cycles] for 40

cycles, 72uC for 3 min, and then 4uC. After desalting, the reaction

products were spotted for detection in a mass spectrometer

(Sequenom’s MassARRAY), and the data were analysed using

Typer version 4.0 software (Sequenom).

Statistical analysis
Genotype frequencies were calculated by means of direct

counting. In order to investigate Hardy-Weinberg equilibrium

(HWE), we compared the expected and observed numbers of

different genotypes, and assessed potential deviations using the chi-

squared test or likelihood ratio as appropriate. Univariate odds

ratios (OR) and their 95% confidence intervals (CI) were

calculated in order to measure the associations between selected

SNPs and: 1) susceptibility to sepsis by comparing all children with

sepsis (regardless of bacteriological confirmation) and controls; 2)

susceptibility to bacteriologically confirmed sepsis; 3) susceptibility

to severe sepsis; and 4) susceptibility to Gram-positive sepsis. The

data were controlled for multiple testing using the false discovery

rate method (with the Benjamini-Hochberg procedure). All of the

statistical analyses were made using SAS software, version 9.2

(Cary, NC, USA).

Results

During the study period, the parents of two premature neonates

in the group with clinical sepsis and a negative blood culture

withdrew their authorisation to use their children’s blood and

clinical data. Consequently, the results refer to 101 children with

microbiologically confirmed sepsis, 98 patients with clinical sepsis

and no positive blood culture, and 100 controls. Table 2 shows the

demographic and clinical characteristics of the three groups, which

were perfectly comparable in terms of gestational age, birth

weight, gender, ethnicity and cesarean delivery. The neonates with

microbiologically confirmed or clinical sepsis required mechanical

ventilation significantly more frequently (p,0.05) and had a

significantly worse outcome (p,0.05) than the controls, thus

confirming the importance of sepsis in conditioning the final

outcome. However, there was no difference in these variable

between the two sepsis groups. The children with microbiological

or clinical sepsis had late-onset sepsis (.72 hours) occurring at an

average age of respectively 24 and 26 days.

Table 3 lists the bacterial pathogens identified in the premature

neonates with a positive blood culture. Gram-positive organisms

(mainly CoNS) were cultured in 67.3% of cases, and Gram-

negative rods (mainly Escherichia coli) were identified in the

remaining 32.7%.

All of the examined SNPs were present in the study population.

Table 4 shows the SNPs with significantly different genotype

frequencies between the neonates with bacteriologically confirmed

or clinical sepsis and the controls, and Table 5 those that were

significantly different between the neonates with bacteriologically

confirmed sepsis and controls. Genotypes CT and TT of IL1b-

rs1143643 and GG of MMP-16-rs2664349 were associated with a

significantly increased overall risk of developing sepsis (p = 0.03,

p = 0.05 and p = 0.03), whereas genotypes AG of BPI-rs4358188

and CT of DEFb1-rs1799946 were associated with a significantly

reduced risk (p = 0.05 for both). Only GG genotype of MMP-16-

rs2664349 showed a significant association with an increased risk

of developing bacteriologically confirmed sepsis (p = 0.02).

Table 6 shows the differences in SNP genotype frequencies

between the neonates with severe and non-severe sepsis. GG

genotype of CD14-rs2569190 and AT genotype of IL8-rs4073

were associated with a significantly increased risk of developing

severe sepsis (p = 0.05 and p = 0.01).

Table 7 shows the differences in SNP genotype frequencies

between the neonates with Gram-negative or Gram-positive sepsis.

Genotypes AG of LTA-rs1800629 and CC and CT of BPI-

rs1341023 were associated with a significantly increased risk of

developing Gram-negative sepsis (p = 0.04, p = 0.04 and p = 0.03).

There were no other differences in the studied allele and

genotype frequencies between the neonates with sepsis (overall or

bacteriologically confirmed) and controls, or between those with

severe or non-severe sepsis, or between those with Gram-positive

or Gram-negative sepsis.

Discussion

Identifying genetic variants that can predict human susceptibil-

ity to, and outcomes of sepsis may help to identify patients at

higher risk of death or serious complications who require prompt

and aggressive therapy. This is extremely important in premature

neonates, who are at highest risk of developing poorly controllable

severe bacterial infections for a number of reasons. Susceptibility

to sepsis in our study population was related to SNPs in the IL1b,

MMP-16, BPI, and DEFb1 genes. However, whereas SNPs in the

IL1b and in MMP-16 genes were associated with an increased risk

of sepsis, variations of BPI and DEFb1 seemed to play a protective

role.

The potential role of a genetic alteration in the IL1b gene in

favouring the development of sepsis in premature infants found in

this study is in conflicts with the findings of Abu-Maziad et al. who

did not find any association [8]. This discrepancy may be

explained by differences in the definition of sepsis and its severity,

and in the general characteristics of the enrolled subjects,

including ethnicity. On the other hand, conflicting results

concerning the influence of other IL1b SNPs on the development

and evolution of various infectious diseases have been repeatedly

reported [18,21–24]. Most of the sepsis data have been collected in

studies of rs16944, and Ma et al. [21] and Fang et al. [24] did not

find any correlation between it and susceptibility to sepsis in adults,

whereas Read et al. found that it was associated with increased

survival of in a group of mainly pediatric patients with

meningococcemia [22]. Taken together, these findings indicate

that further studies are needed to clarify whether and which SNPs

of a gene that codes for a factor, IL1b, which plays an important

role in the pathogenesis of sepsis and septic shock, are really

important in conditioning the development and outcome of the

disease [25].

We found that homozygosis for rs2664349-GG haplotype in the

MMP-16 gene is associated with an increased susceptibility to

sepsis in general and to microbiological confirmed sepsis in

particular. This is the first report of the potential effect of a genetic

variation in MMP-16 on sepsis, but the finding seems to be

consistent with recent evidence that MMPs are not only purely

Genetic Polymorphisms and Neonatal Sepsis
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matrix-degrading enzymes as previously thought, but also have

multiple immunomodulation mechanisms [26]. Although the

range of infectious diseases, the organs involved, and the nature

of the resulting tissue damage vary depending on the type of

MMP, all of them play a role in facilitating leukocyte recruitment,

cytokine and chemokine processing, defensin activation, and

matrix remodelling [27]. It has also been found that excess MMP

activity following infection may lead to an immunopathology that

causes host morbidity or mortality and favours pathogen

dissemination or persistence [26]. The possibility that MMP

genetic variations can significantly influence susceptibility to, and

the course and outcome of infectious diseases in humans has been

little studies so far. In the case of sepsis, Chen et al. studied seven

frequent SNPs in the functional regions of the MMP-9 gene, and

found that their genotype distribution and allelic frequencies were

not significantly different between patients with severe sepsis and

controls or between surviving and non-surviving patients with

severe sepsis [28]. We evaluated a SNP of the MMP-16 gene

because, like all MMPs, MMP-16 is a zinc-dependent enzyme and

this trace element is critically important for the normal functioning

of the innate and adaptive immune systems [29]. One consistent

observation made in many gene expression studies is that pediatric

septic shock is characterised by the widespread repression of gene

families that directly participate in zinc homeostasis or directly

depend on it for their normal function [30–34]. Moreover, the

rs2664349 SNP not only seems to influence the pulmonary

expression and function of MMP-16 and the risk of bronchopul-

monary dysplasia in premature infants, but also the activation of

MMP-2 [35], an MMP that plays a central role in monocyte

chemoattraction and, consequently, in the response to infectious

agents.

Among the studied SNPs in the BPI gene, a gene that codifies

for a factor that plays an important antibacterial and antinflam-

matory role [36], only BPI.rs4358188-AG was associated with a

reduced susceptibility to sepsis, whereas BPI rs1341023, rs5743507

and rs2232578 SNPs were apparently not important at this regard.

However, other studies have led to different results. Abu-Maziad

et al. [8] investigated three of the four SNPs evaluated in this study

and found that they had no effect, whereas Michalek et al. [37]

reported a negative association between BPI SNPs and sepsis in

children aged 0–18 years in so far as GG genotype (rs4358188) of

BPI and AG genotype (rs 5743507) were associated with increased

susceptibility to severe sepsis and a negative outcome. Once again,

Table 2. Demographic and clinical characteristics of the study groups.

Characteristic Culture-proven sepsis (n = 101) Clinical sepsis (n = 98) Controls (n = 100)

Median gestational age, weeks (range) 28 (23–36) 28 (24–36) 30 (24–36)

Median birth weight, g (range) 1,040 (470–3,750) 1,000 (360–3,820) 1,310 (420–3,000)

Males (%) 52 (51.5) 53 (54.1) 50 (50.0)

Ethnicity, n (%)

Caucasian 91 (90.1) 86 (87.8) 91 (91.0)

African 4 (4.0) 6 (6.1) 4 (4.0)

Asian 6 (5.9) 6 (6.1) 5 (5.0)

Cesarean delivery, n (%) 60 (59.4) 61 (62.2) 58 (58.0)

Ventilation required, n (%) 87 (86.1)* 71 (72.4)* 9 (9.0)

Negative outcome, n (%) 31 (30.7)* 22 (22.4)* 6 (6.0)

Severe sepsis 21 10 0

Death 10 12 6

*p,0.05 vs controls; no other significant between-group difference.
doi:10.1371/journal.pone.0101248.t002

Table 3. Distribution of pathogens in the blood cultures of 101 neonates with microbiologically-confirmed sepsis.

Pathogen No. (%)

Gram-positive infection 68 (67.3)

Coagulase-negative Staphylococcus 34

Staphylococcus aureus 16

Enterococcus spp. 12

Streptococcus agalactiae 6

Gram-negative infection 31 (30.7)

Escherichia coli 16

Klebsiella species 6

Serratia spp. 5

Pseudomonas spp. 4

doi:10.1371/journal.pone.0101248.t003

Genetic Polymorphisms and Neonatal Sepsis

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e101248



T
a

b
le

4
.

G
e

n
o

ty
p

e
fr

e
q

u
e

n
ci

e
s

w
it

h
si

g
n

if
ic

an
t

d
if

fe
re

n
ce

s
in

th
e

se
le

ct
e

d
SN

P
s

b
e

tw
e

e
n

co
n

tr
o

ls
an

d
ch

ild
re

n
w

it
h

se
p

si
s.

a

G
e

n
e

a
n

d
p

o
ly

m
o

rp
h

ic
a

ll
e

le
s

C
o

n
tr

o
l

g
ro

u
p

(n
=

1
0

0
)

C
h

il
d

re
n

w
it

h
se

p
si

s
(n

=
1

9
9

)
H

W
E

,
x

2
C

o
n

tr
o

ls
H

W
E

,
x

2
S

e
p

si
s

O
u

tc
o

m
e

N
%

N
%

p
-v

a
lu

e
p

-v
a

lu
e

O
R

9
5

%
C

I
p

-v
a

lu
e

b

IL
-1

b
-r

s1
1

4
3

6
4

3

C
5

2
5

4
.7

7
5

3
8

.9
1

(r
e

fe
re

n
ce

)

C
/T

3
3

3
4

.7
8

6
4

4
.6

1
.8

1
(1

.0
6

–
3

.0
9

)
0

.0
3

T
1

0
1

0
.5

3
2

1
6

.6
0

.1
8

0
.3

9
2

.2
2

(1
.0

0
–

4
.9

0
)

0
.0

5

B
P

I-
rs

4
3

5
8

1
8

8

A
2

0
2

0
.2

4
0

2
0

.1
0

.7
0

(0
.3

4
–

1
.4

0
)

0
.3

1

A
/G

5
4

5
4

.6
8

7
4

3
.7

0
.5

6
(0

.3
2

–
0

.9
9

)
0

.0
5

G
2

5
2

5
.3

7
2

3
6

.2
0

.3
5

0
.1

5
1

(r
e

fe
re

n
ce

)

D
E

F
-

b
1

-r
s1

7
9

9
9

4
6

C
2

8
2

9
.2

7
9

4
0

.3
1

(r
e

fe
re

n
ce

)

C
/T

4
9

5
1

.0
7

8
3

9
.8

0
.5

6
(0

.3
2

–
0

.9
9

)
0

.0
5

T
1

9
1

9
.8

3
9

1
9

.9
0

.7
7

0
.0

2
0

.7
3

(0
.3

6
–

1
.4

6
)

0
.3

7

M
M

P
-1

6
-r

s2
6

6
4

3
4

9

A
4

9
5

0
.0

9
0

4
7

.1
1

(r
e

fe
re

n
ce

)

A
/G

4
5

4
5

.9
7

5
3

9
.3

0
.9

1
(0

.5
5

–
1

.5
1

)
0

.7
1

G
4

4
.1

2
6

1
3

.6
0

.1
1

0
.1

1
3

.5
4

(1
.1

7
–

1
0

.7
2

)
0

.0
3

a
T

h
e

su
m

s
m

ay
n

o
t

ad
d

u
p

to
th

e
to

ta
l

b
e

ca
u

se
o

f
so

m
e

m
is

si
n

g
va

lu
e

s.
H

W
E:

H
ar

d
y-

W
e

in
b

e
rg

e
q

u
ili

b
ri

u
m

.
b

p
-v

al
u

e
s

fr
o

m
u

n
iv

ar
ia

te
an

al
ys

e
s,

n
o

t
ad

ju
st

e
d

fo
r

m
u

lt
ip

le
te

st
in

g
.

N
o

n
e

o
f

th
e

p
-v

al
u

e
s

w
as

si
g

n
if

ic
an

t
af

te
r

co
rr

e
ct

io
n

fo
r

m
u

lt
ip

le
te

st
in

g
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

1
2

4
8

.t
0

0
4

Genetic Polymorphisms and Neonatal Sepsis

PLOS ONE | www.plosone.org 6 July 2014 | Volume 9 | Issue 7 | e101248



T
a

b
le

5
.

G
e

n
o

ty
p

e
fr

e
q

u
e

n
ci

e
s

w
it

h
si

g
n

if
ic

an
t

d
if

fe
re

n
ce

s
in

th
e

se
le

ct
e

d
SN

P
s

b
e

tw
e

e
n

co
n

tr
o

ls
an

d
ch

ild
re

n
w

it
h

b
ac

te
ri

o
lo

g
ic

al
ly

co
n

fi
rm

e
d

(B
C

)
se

p
si

s.
a

G
e

n
e

a
n

d
p

o
ly

m
o

rp
h

ic
a

ll
e

le
s

C
o

n
tr

o
l

g
ro

u
p

(n
=

1
0

0
)

C
h

il
d

re
n

w
it

h
B

C
se

p
si

s
(n

=
1

0
1

)
H

W
E

,
x

2
C

o
n

tr
o

ls
H

W
E

,
x

2
B

C
se

p
si

s
O

u
tc

o
m

e

N
%

N
%

p
-v

a
lu

e
p

-v
a

lu
e

O
R

9
5

%
C

I
p

-v
a

lu
e

b

D
E

F
-

b
1

-r
s1

7
9

9
9

4
6

C
2

8
2

9
.2

4
3

4
3

.4
1

(r
e

fe
re

n
ce

)

C
/T

4
9

5
1

.0
3

7
3

7
.4

0
.4

9
(0

.2
6

–
0

.9
3

)
0

.0
3

T
1

9
1

9
.8

1
9

1
9

.2
0

.7
7

0
.0

4
0

.6
5

(0
.2

9
–

1
.4

4
)

0
.2

9

M
M

P
-1

6
-r

s2
6

6
4

3
4

9

A
4

9
5

0
.0

4
3

4
4

.3
1

(r
e

fe
re

n
ce

)

A
/G

4
5

4
5

.9
4

0
4

1
.2

1
.0

1
(0

.5
6

–
1

.8
3

)
0

.9
7

G
4

4
.1

1
4

1
4

.4
0

.1
1

0
.3

5
3

.9
9

(1
.2

2
–

1
3

.0
4

)
0

.0
2

a
T

h
e

su
m

s
m

ay
n

o
t

ad
d

u
p

to
th

e
to

ta
l

b
e

ca
u

se
o

f
so

m
e

m
is

si
n

g
va

lu
e

s.
H

W
E:

H
ar

d
y-

W
e

in
b

e
rg

e
q

u
ili

b
ri

u
m

.
b

p
-v

al
u

e
s

fr
o

m
u

n
iv

ar
ia

te
an

al
ys

e
s,

n
o

t
ad

ju
st

e
d

fo
r

m
u

lt
ip

le
te

st
in

g
.

N
o

n
e

o
f

th
e

p
-v

al
u

e
s

w
as

si
g

n
if

ic
an

t
af

te
r

co
rr

e
ct

io
n

fo
r

m
u

lt
ip

le
te

st
in

g
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

1
2

4
8

.t
0

0
5

T
a

b
le

6
.

G
e

n
o

ty
p

e
fr

e
q

u
e

n
ci

e
s

w
it

h
si

g
n

if
ic

an
t

d
if

fe
re

n
ce

s
in

th
e

se
le

ct
e

d
SN

P
s

b
e

tw
e

e
n

ch
ild

re
n

w
it

h
n

o
n

-s
e

ve
re

an
d

th
o

se
w

it
h

se
ve

re
se

p
si

s.
a

G
e

n
e

a
n

d
p

o
ly

m
o

rp
h

ic
a

ll
e

le
s

N
o

n
-s

e
v

e
re

se
p

si
s

(n
=

1
3

3
)

S
e

v
e

re
se

p
si

s
(n

=
6

6
)

H
W

E
,

x
2

N
o

n
-

se
v

e
re

H
W

E
,

x
2

S
e

v
e

re
O

u
tc

o
m

e

N
%

N
%

p
-v

a
lu

e
p

-v
a

lu
e

O
R

9
5

%
C

I
p

-v
a

lu
e

b

C
D

1
4

-r
s2

5
6

9
1

9
0

A
3

8
3

0
.7

1
4

2
1

.9
1

(r
e

fe
re

n
ce

)

A
/G

6
3

5
0

.8
3

0
4

6
.9

1
.2

9
(0

.6
1

–
2

.7
4

)
0

.5
0

G
2

3
1

8
.6

2
0

3
1

.3
0

.7
3

0
.6

6
2

.3
6

(1
.0

0
–

5
.5

6
)

0
.0

5

IL
8

-r
s4

0
7

3

A
2

8
2

1
.7

1
4

2
1

.2
1

.8
2

(0
.7

6
–

4
.3

6
)

0
.1

8

A
/T

5
0

3
8

.8
3

8
5

7
.6

2
.7

7
(1

.3
4

–
5

.7
2

)
0

.0
1

T
5

1
3

9
.5

1
4

2
1

.2
0

.0
2

0
.2

2
1

(r
e

fe
re

n
ce

)

a
T

h
e

su
m

s
m

ay
n

o
t

ad
d

u
p

to
th

e
to

ta
l

b
e

ca
u

se
o

f
so

m
e

m
is

si
n

g
va

lu
e

s.
H

W
E:

H
ar

d
y-

W
e

in
b

e
rg

e
q

u
ili

b
ri

u
m

.
b

p
-v

al
u

e
s

fr
o

m
u

n
iv

ar
ia

te
an

al
ys

e
s,

n
o

t
ad

ju
st

e
d

fo
r

m
u

lt
ip

le
te

st
in

g
.

N
o

n
e

o
f

th
e

p
-v

al
u

e
s

w
as

si
g

n
if

ic
an

t
af

te
r

co
rr

e
ct

io
n

fo
r

m
u

lt
ip

le
te

st
in

g
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

1
2

4
8

.t
0

0
6

Genetic Polymorphisms and Neonatal Sepsis

PLOS ONE | www.plosone.org 7 July 2014 | Volume 9 | Issue 7 | e101248



differences in the characteristics of the patients and the ethnicity of

the study population could explain the different findings.

On the contrary, the data regarding DEFb1, an antimicrobial

peptide involved in the resistance of epithelial surfaces to microbial

colonisation and the regulation of the release of pro-inflammatory

cytokines and adhesion molecules [38], are quite similar to the

adult data reported by Chen et al. [39]. They studied two of the

DEFb1 SNPs evaluated in this study (rs11362 and rs17999469)

and found that, as in this study, they, together with rs1800972,

were associated with a reduced risk of susceptibility to sepsis and a

reduced risk of severe sepsis, whereas other SNPs were closely

related to an increased risk of disease and its negative evolution.

These findings provide further evidence that DEFb1 is involved in

an immune response that is crucial for the pathophysiology of

severe sepsis.

We found that the severity of sepsis was mainly associated with

CD14 rs2569190-GG and to IL8 rs4073-AT. CD14 is a

component of the lipopolysaccharide receptor molecule and serves

as a central pattern recognition molecule in innate immunity.

Bound to TLR4, it can activate the NF-kB signalling pathway and

initiate an inflammatory response [40]. Our findings are in line

with the results of a recent meta-analysis in which, after evaluating

all of the available data regarding possible associations between

CD14 SNPs and sepsis, it was concluded that CD14 rs2569190 is

not a marker of susceptibility but is more frequent among patients

with severe disease and a poor outcome, and can therefore be

considered a marker of potentially severe sepsis [41].

In addition to CD14 rs2569190-GG, one SNP of the IL8 gene

was also associated with severe sepsis. This is the first demonstra-

tion that an IL8 genetic variation may condition the severity of

sepsis, and conflicts with the finding of Azu-Maziad et al. [8] that

were negative at this regard. However, it is not surprising because

IL8 is a member of the chemokine family that initiates and

amplifies the inflammatory processes that occur in response to a

wide variety of infecting pathogen, and it has been shown that

SNP rs4073-AT of the IL8 gene is associated with increased IL8

production in whole blood stimulated with lipopolysaccharides

[42] and also with severe respiratory infections [43].

Finally, LTA SNPs were associated with an increased risk of

sepsis due to Gram-negative rods. LTA is a mediator of the sepsis

cascade, and it has been previously shown that LTA.rs1800629-

AG genotype is associated with susceptibility to sepsis [44].

Although we did not find this kind of association, the greater

frequency of this SNP in premature neonates with sepsis due to

Gram-negative roads seems to indicate that variations of in the

LTA gene may play a role in conditioning the development of

sepsis, at least when it is potentially caused by specific infectious

agents.

The finding that homogozygotes and heterozygotes for BPI

(rs1341023) seem to be at increased risk of Gram-negative sepsis is

surprising because other SNPs of the same gene seem to play a

protective role. However, the possibility that different variations of

a single gene involved in the regulation of human defences can

lead to opposite results has been widely demonstrated [39].

In conclusion, this study confirms that genetic variability seems

to play a role in susceptibility to, and the severity of neonatal

sepsis, as well as in the risk of sepsis due to specific pathogens.

However, as frequently occurs in the case of genetic studies of the

associations between SNPs and clinical phenotypes, the results

often conflict with previously reported. The main limitations of

such investigations are the small sample sizes, the lack of

simultaneous evaluations of other possibly unknown SNPs that

could influence the final results, and the characteristics of the

control group. However, our findings highlight the potential role
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of various SNPs, whose importance needs to be confirmed by

further studies that should also evaluate the consequences of

mutations on gene expression. If confirmed, the new finding

regarding MMP-16 gene could significantly contribute to a better

understanding of premature infants’ defences against bacterial

invasion and aid the development of more effective therapeutic

measures. Preliminary data suggest that targeting MMPs may be

beneficial in infectious disease, particularly the administration of

direct inhibitors in order to regulate enzyme activity and target the

signalling pathways that up-regulate MMP expression [45,46].
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