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Abstract: Ralstonia solanacearum (Rs), the causative agent of devastating wilt disease in several major
and minor economic crops, is considered one of the most destructive bacterial plant pathogens.
However, the mechanism(s) by which Rs counteracts host-associated environmental stress is still
not clearly elucidated. To investigate possible stress management mechanisms, orthologs of stress-
responsive genes in the Rs genome were searched using a reference set of known genes. The genome
BLAST approach was used to find the distributions of these orthologs within different Rs strains.
BLAST results were first confirmed from the KEGG Genome database and then reconfirmed at
the protein level from the UniProt database. The distribution pattern of these stress-responsive
factors was explored through multivariate analysis and STRING analysis. STRING analysis of stress-
responsive genes in connection with different secretion systems of Rs was also performed. Initially, a
total of 28 stress-responsive genes of Rs were confirmed in this study. STRING analysis revealed an
additional 7 stress-responsive factors of Rs, leading to the discovery of a total of 35 stress-responsive
genes. The segregation pattern of these 35 genes across 110 Rs genomes was found to be almost
homogeneous. Increasing interactions of Rs stress factors were observed in six distinct clusters,
suggesting six different types of stress responses: membrane stress response (MSR), osmotic stress
response (OSR), oxidative stress response (OxSR), nitrosative stress response (NxSR), and DNA
damage stress response (DdSR). Moreover, a strong network of these stress responses was observed
with type 3 secretion system (T3SS), general secretory proteins (GSPs), and different types of pili
(T4P, Tad, and Tat). To the best of our knowledge, this is the first report on overall stress response
management by Rs and the potential connection with secretion systems.

Keywords: host-mediated stress; bacterial stress management; protein–protein interaction; T3SS;
GSP; pili

1. Introduction

Ralstonia solanacearum (Rs) is a group of aerobic, non-spore-forming, Gram-negative
plant pathogens that belong to the Burkholderiaceae family of the β-proteo-bacteria group.
Rs is a “bacterial species complex” consisting of four monophyletic phylotypes [1]. This
pathogen is designated as the world’s deadliest bacterial plant pathogen because of its wide-
range host specificity (>200 plant species), broad geographical distribution, abundance and
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persistence in soil, root invasion, tissue-specific tropism, multiplication, and colonization
(>109 C.F.U. per g fresh weight) in xylem vessels [2,3]. Rs is also considered “quarantine
organisms”, “bioterrorism”, and “double usage agents” by different regulatory authorities
in the USA and Europe [4]. On the other hand, due to wide host diversity, Rs may be an
attractive model to investigate the question of adaptation to the host environment.

The stress response in bacteria involves processes that enable bacteria to survive in
adverse environmental conditions. The genetic makeup helps bacteria to sense the changing
environment and to react accordingly by modulating the expression of certain gene cascades
and protein activities. In particular, stress response management is critical for pathogens
to survive inside the host and to defeat the host’s primary immunity. The stress response
in bacteria is a multi-network phenomenon, and different sets of genes responsible for
different types of stresses (such as acidic, alkaline, desiccation, osmotic, nutrient deficiency,
heat, cold, etc.) are expressed accordingly with the help of effector molecules to maintain
cellular integrity [5]. According to Hengge-Aronis (2002), the bacterial stress response
can be defined as the sequential alteration of the expression of several genes and their
protein levels to cope with extreme conditions [6]. Like all other pathogenic bacteria, Rs
also must face stresses during the first physical contact with the host. It is already well
known that plant roots secrete reactive oxygen species (ROS) for their own protection in
the rhizosphere environment, which may impart host-associated stress to Rs during the
first interaction with the plant [7,8]. Inside the host, different types of signals (e.g., pH
and temperature) and nutrient deficiency accelerate the adaptive stress responses in Rs,
along with the expression of virulence genes. For example, the Dps gene was reported
to contribute to oxidative stress tolerance during tomato plant infection by Rs [7]. Flores-
Cruz and Allen (2011) reported several ROS-scavenging enzymes and the OxyR gene
in the genome of Rs, which play a critical role during stress conditions or exposure to
extreme environments [9]. Fang et al. (2016) classified bacterial stress responses during
their infection of hosts; however, the detailed mechanism of stress management in Rs has
not been fully explored to date. Notably, the correlation between stress responses and the
secretion systems of Rs needs a deeper understanding.

The identification and distribution of Rs proteins responsible for regulating resistance
to different types of host-environment stress conditions could be important factors in
pathogenicity. In the present investigation, an in silico approach was taken to identify and
monitor the distribution of stress-responsive genes and their relationship with bacterial
secretion systems of Rs.

2. Results
2.1. Mining and Categorization of Rs Stress-Responsive Genes

Based on experimental records, the initial number of query candidates for bacterial
stress-responsive genes (SRGs) was 47 (Table 1).

Table 1. Reference dataset for bacterial stress-responsive enzymes and factors.

Sl. No. Regulator Stress Response Reported Candidates References

1 OxyR Oxidative stress Salmonella enterica [10]
2 DksA Oxidative stress - [11]
3 NsrR NO S. enterica [12]
4 FNR Oxygen limitation E. coli [13]
5 DNR Nitrosative stress - [14]
6 Bae Membrane stress - [15]
7 Cpx Misfolded OMPs at acid pH S. enterica [16]
8 Rcs Membrane stress - [15]
9 σE Membrane stress S. enterica [17]
10 RseA Membrane stress - [18]
11 DegS Membrane stress - [18]
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Table 1. Cont.

Sl. No. Regulator Stress Response Reported Candidates References

12 RecA DNA damage - [19]
13 LexA DNA damage Vibrio cholerae [20]
14 FruR Carbohydrate starvation E. coli [21]
15 SpoT Amino acid starvation S. enterica [22]
16 FUR Iron starvation S. enterica [23]
17 ZUR Zinc starvation S. enterica [24]
18 SrrA/SrrB Oxygen limitation S. enterica [25]
19 ResD/ResE Oxygen limitation S. enterica [26]
20 ArcB/ArcA Oxygen limitation E. coli [27]
21 DosR/DosS Oxygen limitation M. tuberculosis [28]
22 Psp Envelop stress S. enterica [29]
23 Rex Oxygen limitation S. aureus [30]
24 NarQ/NarP Oxygen limitation S. enterica [31]
25 NarX/NarL Oxygen limitation E. coli [32]
26 Trg Oxygen limitation - [33]
27 Tsr Oxygen limitation E. coli [34]
28 Aer Oxygen limitation E. coli [34]
29 H-NS Temperature S. flexneri [35]
30 Hha Temperature E. coli [36]
31 GmaR Temperature L. monocytogenes [37]
32 MogR Temperature L. monocytogenes [37]
33 BvgA/BvgS Temperature B. pertussis [38]
34 RovA Temperature Y. pestis [39]
35 SlyA Temperature S. enterica [40]
36 PhoP/PhoQ Temperature Y. enterocolitica [41]
37 PmrA/PmrB Temperature Y. enterocolitica [41]
38 OmpR Envelope S. enterica [42]
39 Dps Nutrient limitation R. solanacearum [7]
40 ArsA Acid pH H. pylori [43]
41 BvgA Temperature regulates B. pertussis [38]
42 CsrA Starvation S. flexneri [44]
43 DosR (NosR) Hypoxia/NO. M. tuberculosis [45]
44 DtxR Iron deprivation C. diphtheriae [46]
45 MntR Manganese starvation Bacillus subtilis [47]
46 GmaR Temperature Listeria monocytogenes [37]
47 σS Starvation S. enterica [18]

However, based on orthologs present in Rs, the numbers were reduced to 28 (Table S1).
The protein sequences of these 28 SRGs were then used as a secondary query for pBLAST
across available annotated Rs genomes (Table S2). A protein–protein interaction network
(PIN) was studied within Rs genomes using STRING V11, taking these 28 SRGs as an
input file. In string analysis, increasing interactions (no. of edges expected: 39; found: 88)
resulted in a total no. of 35 nodes (representing genes, average node degree: 5.03), which
indicated 35 SRGs within Rs (Table 2). Thus, in addition to the initially identified 28 SRGs,
7 new SRGs (total of 35 SRGs) were discovered from STRING analysis (Table S3).

The cluster analysis (k-means clustering) of these 35 SRGs revealed five distinct clusters
indicating five different types of stress responses: membrane stress response (MSR), osmotic
stress response (OSR), oxidative stress response (OxSR), nitrosative stress response (NxSR),
and DNA damage stress response (DdSR) (Figure 1).

However, a PIN was not observed in the case of Histone-like protein H-NS (ortholog
of K03746, BBJ49629.1), associated with temperature-dependent stress regulation. Interest-
ingly, DdSR was found in the center among these five clusters, showing independent PIN
connections with the other four clusters.
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Table 2. Functional classification of stress-responsive genes (SRG) of Rs.

Sl. No. SRG KO No. Function Cluster

1 nlpD K06194 Lipoprotein NlpD | (GenBank) putative outer membrane metallopeptidase lipoprotein nlpD/

MSR

2 degQ K04772 Serine protease DegQ (EC:3.4.21.-) | (GenBank) putative serine protease do-like precursor (degP)
3 rseB K03598 Sigma-E factor negative regulatory protein RseB | (GenBank) rseB; Sigma-E factor regulatory protein
4 rseA K03597 Sigma-E factor negative regulatory protein RseA | (GenBank) rseA; Sigma-E factor negative regulatory protein

5 rpoE K03088 RNA polymerase sigma-70 factor, ECF subfamily (misfolded OMPs at acid pH; required for virulence) |
(GenBank) rpoE

6 lexA K01356 Repressor LexA (EC:3.4.21.88) (Regulates toxin production) | (GenBank) lexA
7 recX K03565 Regulatory protein (Modulates recA activity) | (GenBank) recX
8 recA K03553 Catalyzes the hydrolysis of ATP in the presence of single-stranded DNA, RecA | (GenBank) recAn
9 baeR K07664 Two-component system, OmpR family, response regulator BaeR for mdtABCD and acrD | (GenBank) baeR

OSR

10 baeS K07642 Two-component system, OmpR family, sensor histidine kinase BaeS (EC:2.7.13.3) | (GenBank) baeS
11 ompR K07659 Two-component system, OmpR family, phosphate regulon response regulator OmpR | (GenBank) ompR

12 ompR K07638 Two-component system, OmpR family (EC:2.7.13.3) | (GenBank) putative sensory histidine kinase in
Two-component regulatory system with OmpR

13 envZ K07638 Two-component system, OmpR family, osmolarity sensor histidine kinase EnvZ (EC:2.7.13.3) | (GenBank) envZ

14 rcsB K07687 Two-component system, NarL family, captular synthesis response regulator RcsB | (GenBank) putative response
regulator receiver

15 Kata K03781 Catalase (EC:1.11.1.6) | (GenBank) kata

OxSR

16 katB K03781 Catalase [EC:1.11.1.6] (Paraquat-inducible catalase isozyme B) | (GenBank) katB
17 katG K03782 Catalase-peroxidase (EC:1.11.1.21) | (GenBank) katG
18 oxyR K04761 LysR family transcriptional regulator, hydrogen peroxide-inducible genes activator | (GenBank) oxyR
19 sodB K04564 Superoxide dismutase, Fe-Mn family (EC:1.15.1.1) | (GenBank) sodB
20 sodC K04565 Superoxide dismutase, Cu-Zn family (EC:1.15.1.1) | (GenBank) sodC
21 Dps K04047 Starvation-inducible DNA-binding protein | (GenBank) putative DNA-binding protein

22 nsrR K13771 Rrf2 family transcriptional regulator, nitric oxide-sensitive transcriptional repressor (regulates genes required for
virulence) | (GenBank) nsrR

NxSR23 norB K04561 Nitric oxide reductase subunit B (transmembrane protein) (EC:1.7.2.5) | (GenBank) norB
24 aniA K00368 Nitrite reductase (NO-forming) (EC:1.7.2.1) | (GenBank) ainA
25 Fnr K01420 CRP/FNR family transcriptional regulator, anaerobic regulatory protein | (GenBank) fnr

DdSR

26 Dnr K21563 CRP/FNR family transcriptional regulator, dissimilatory nitrate respiration regulator | (GenBank) putative
transcription regulator protein

27 dskA K06204 DnaK suppressor protein | (GenBank) dskA
28 rpoZ K03060 DNA-directed RNA polymerase subunit omega (EC:2.7.7.6) | (GenBank) rpoZ

29 rpoS K03087 RNA polymerase nonessential primary-like sigma factor (regulates expression of plasmid virulence genes) |
(GenBank) rpoS

30 rpoB K03043 DNA-directed RNA polymerase subunit beta (EC:2.7.7.6) | (GenBank) RNA polymerase, beta subunit
31 rpoA K03040 DNA-directed RNA polymerase subunit alpha (EC:2.7.7.6) | (GenBank) RNA polymerase, alpha subunit
32 polA K02335 DNA polymerase I (EC:2.7.7.7) | (GenBank) polA
33 h-ns K03746 DNA-binding protein H-NS | (GenBank) Histone-like nucleoid-structuring protein H-NS
34 Fur K03711 Fur family transcriptional regulator, ferric uptake regulator | (GenBank) fur
35 Gmk K00942 Guanylate kinase | (GenBank) gmk
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2.1.1. MSR

The present analysis revealed that eight SRGs (including nlpD ortholog CBJ51536.2)
contributed to the MSR cluster (Figure 1). The cluster is composed of outer membrane
metallopeptidase (NlpD), periplasmic serine endoprotease (DegQ), RNA polymerase σ
(RpoE), transcription factor (LexA) repressor, and binary systems (RseA and RseB; RecA
and RecX). In Figure 1, the PIN between alternative σE (RpoE and RseA), degQ, and two-
component systems Rcs (RcsB and RcsC) is distinct. The MSR cluster is linked to the other
four clusters via the DdSR cluster. In particular, a PIN was found among rpoE, degQ, nlpD,
recA, and lexA of MSR with rpoA, rpoB, rpoC, and rpoS of DdSR.

2.1.2. OSR

Six SRG candidates (including ompR orthologs CBJ35556.1 and CBJ51104.1) were
found to construct the cluster OSR (Figure 1). In the present investigation, a strong PIN
was recorded among the osmotic stress regulator ompR and envZ of Rs. Along with ompR,
a strong PIN was also connected to the two-component system Bae (BaeR and BaeS). The
OSR cluster relates to the DdSR cluster via ompR and envZ.

2.1.3. OxSR

The present analysis revealed that seven SRGs (including Dps ortholog CBJ50185.1)
contributed to the OxSR cluster (Figure 1). Three orthologs of the enzyme catalase (katA,
katB, and katG) and two orthologs of the enzyme superoxide dismutase (sodB and sodC)
were identified within Rs genomes (Table 2). Besides multiple and redundant ROS-
scavenging enzymes, PINs within oxidative stress regulators such as Dps and oxyR were
also identified (Figure 1). In Figure 1, it appears that KatA, KatB, KatG, SodB, and SodC
work together in an interactive fashion to provide protection against oxidative stress. The
carbon and nitrogen starvation regulator Dps (Figure 1) interacts with stress-responsive
enzymes (katE and sodB) and another stress regulator (oxyR). String analysis also suggests
that oxyR also interacts with other stress-responsive enzymes (katE and sodB) and stress
regulators (Dps) (Figure 1). The PIN between the OxSR cluster and the DdSR cluster is
mediated via sodB, kata, katB, and oxyR.

2.1.4. NxSR

Three SRG candidates (nsrR, norB, and aniA) were found to construct the cluster NxSR
(Figure 1). Two probable candidates (polA and fur ortholog CBJ50125.1) were not included
in this cluster due to the lack of evidence (known interactions) of the involvement of these
two SRGs in the nitrosative stress response. A single ortholog (norB) was identified for
the enzyme nitric-oxide reductase (Table 2). The PIN obtained from the STRING server
indicates interactions among these three SRG candidates (Figure 1). However, a single PIN
was observed between the clusters NxSR and DdSR, mediated through norB.

2.1.5. DdSR

The present investigation discovered eight to ten (including polA and fur ortholog
CBJ50125.1) SRG candidates that constitute the DdSR cluster (Figure 1). This cluster is
composed of DNA polymerase I (polA), different RNA polymerase subunits (rpoA for α,
rpoC for β, rpoS for σ, and rpoZ for ω), transcription factors (dskA and fnr), and kinase
(gmk). RpoC is a known amino acid starvation regulator, and Fur is a known metal stress
regulator, whereas FNR is considered an oxygen sensor. The DdSR cluster is the central
cluster of all SRG candidates, and all other clusters are independently linked to it via PIN.

2.2. Homogeneous Distribution of SRGs across Rs Genomes

Among 35 identified SRGs (Table 2), 27 were found to be present in 110 fully annotated
Rs genomes taken from the NCBI database. The heatmap analysis with the BLAST results
of these 35 SRGs also indicates the same (Figure 2).
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We also constructed a cluster dendrogram of the 110 experimental Rs genomes based
on the presence and absence of SRGs identified in the present study. We observed most of
the strains (92) to be on a straight line (Figure S1), indicating no significant differences in
the pattern of stress responses among the different strains of Rs.

2.3. SRGs and Secretion Systems of Rs

For secretion system components, we used the KO numbers published in our previous
study with Bradyrhizobium spp. [48] as reference data, and the results are provided in
Table S4. String analysis of stress-responsive genes in relation to different secretion systems
(type secretion systems including T1SS, T2SS, T3SS, T4SS, T5SS, and T6SS; general secretory
protein system or GSPS; and pili systems including T4P, Tad, and Tat) of Rs was performed.
A strong PIN with SRGs was found for three different secretion systems, viz. T3SS, GSPS,
and pili systems (T4P, Tad, and Tat).

2.4. SRGs and T3SS

Initially, all 35 SRGs (found in this study, Table 2) and 14 T3SS candidate genes (from
our previous study) were used as the input file for the String analysis. However, for a better
understanding of the PIN between SRGs and T3SS, the input file was manually curated.
The final output file (no. of edges expected: 39; found: 99) resulted in a total no. of 39 nodes
(representing genes, average node degree: 5.08). Among these 39 nodes, 8 represent T3SS
candidate genes (hrcC, hrcJ, hrcN, fliF, fliG, fliH, flhA, and flgJ) and are present as a single
cluster (Figure 3).

The candidates for the T3SS cluster are provided in Table S4. In Figure 4, out of
35 SRGs (except for h-ns, fur, ompR, and dnr), 31 were found to be distributed into the
five predetermined clusters (Figure 3). However, a PIN was found to be present between
T3SS (via flgJ and fliG) and MSR (via rpoE and nlpD) and DdSR (via polA) clusters of SRGs
(Figure 3).
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2.5. SRGs and GSPS

At first, all 35 SRGs (found in this study, Table 2) and 9 GSPS candidate genes (from
our previous study) were used as an input file for the String analysis. The final output file
(no. of edges expected: 54; found: 146) resulted in a total no. of 40 nodes (representing
genes, average node degree: 7.3). Among these 40 nodes, 9 represent GSPS candidate genes
(secA, secB, secD, secE, sceF, secG, secY, ftsY, and ffh) and are present as a single cluster
(Figure 4). Information on the candidate genes in the GSPS cluster is provided in Table S4.

Among 35 SRGs (except for h-ns, fur, ompR, and dnr), 31 were distributed into the
five predetermined clusters (Figure 4). There was no direct PIN between GSPS and DdSR,
GSPS and NxSR, and GSPS and OSR. In contrast, a PIN was recorded between the GSPS
cluster (most of the candidate genes) and the MSR cluster (via nlpD and recA). A PIN was
also found to exist between the GSPS cluster (via secA and secV) and the OxSR cluster (via
sodB and oxyR). A strong PIN was also observed between the GSPS cluster (most of the
candidate genes) and almost all SRGs of the DdSR cluster (except fnr).

2.6. SRGs and Pili Systems

Initially, all 35 SRGs (found in Table 2) and 26 pili system candidate genes (from our
previous study) were used as input files for the String analysis. The output file (no. of
edges expected: 38; found: 104) contained a total no. of 43 nodes representing genes with
an average node degree of 4.84 (Figure 5).
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Among these 43 nodes, 12 are represented by different pili candidate genes and are
present as three separate clusters representing three different pili systems: type 4 pili or
T4P (pilA, pilB, pilN, pilT, pilU, and gspE), tat pili (tatB and tatC), and tad pili (tadB, tadC,
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and between Tad (via tadZ) and OSR (via envZ).
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3. Discussion
3.1. MSR SRGs of Rs

In the present study, we observed that protein–protein interactions between σE and
two-component systems such as Bae and Rcs were distinct in Rs. We report the interac-
tion with DegQ (Table 2), a type 1 protease responsible for cleaving RseA and releasing
σE/rpoE. The most crucial component of membrane stress, σE is extensively studied in
human pathogens and is known to bind with the cytoplasmic membrane with the help of
RseA [49]. The RecA- and LexA-guided SOS response is a well-studied phenomenon in
several human enteric pathogens [19]. LexA is also reported to control the virulence gene
expression in pathogenic bacteria [20]. Membrane permeability is affected by lexA and recA
mutations in Escherichia coli K12 [50]. Genotoxic agents (e.g., mitomycin C) can significantly
increase membrane vesicle production by promoting RecA-dependent stress responses [51].
Graphene oxide was reported to induce MSR in Rs through a similar mechanism [52].

3.2. OSR SRGs of Rs

Membrane stress is generally caused by a change in osmotic pressure, low pH, ex-
posure to antimicrobial cationic peptides, and misfolding of envelope proteins such as
secretin. Rs may survive in pure water and grow at a water activity (aW) near 1 [53].
Evidence suggests that regulating cytoplasmic composition and hydration is a key objective
of cellular homeostasis in such conditions [54]. OmpR is a crucial factor for overcoming
osmotic stress while entering the host and controlling the Bae two-component systems
(Table 2). MacIntyre et al. showed that the disaccharide trehalose contributes to OSR
of R. solanacearum strain GMI1000 [55]. Rs mutants that were unable to synthesize tre-
halose suffered significant growth inhibition in the presence of ionic (NaCl) or nonionic
(high–molecular weight polyethylene glycol) osmotic stress [55].

3.3. OxSR SRGs of Rs

Disruption of the membrane releases components of the electron transport chain
named quinones and flavoproteins, which generate reactive oxygen species (ROS) from
molecular oxygen [49]. In the present investigation, along with molecular oxygen scaveng-
ing enzymes such as catalase and superoxide dismutase, OxyR was also reported (Table 2).
Flores-Cruz and Allen previously reported the crucial role of OxyR as an oxidative stress
response regulator in Rs [9]. The cysteine residues in the OxyR protein undergo redox
conformational changes and can sense different components of stress factors [10]. Similar
to E. coli, the expression of Dps in Rs was reported to be increased during the stationary
phase and could be mediated through OxSR [7]. Vinegar residue substrate was reported
to inhibit oxidative damage in R. solanacearum HB511 via the regulation of excess ROS
production [56]. Recently, Yang et al. reported that OxSR in R. solanacearum CQPS-1 induced
by daphnetin is mediated by SRGs, such as katGb, coxM, Rsp0993, Rsc2493, and dnaK [57].

3.4. NxSR SRGs of Rs

Disruption of the membrane releases components of the electron transport chain
(quinones and flavoproteins). These components are known to generate reactive nitrogen
species (RNS), such as peroxynitrite (ONOO−) and nitric oxide (NO). RNS are very toxic
to any kind of cell [58]. In this study, both ROS-scavenging enzyme nitric-oxide reductase
(coded by NorB) and nitrosative stress-responsive factors (NsrR and AniA) were reported
in the Rs genomes under investigation (Table 2). A recent study elucidated the nitrosative
stress response in R. solanacearum GMI1000 and reported that NorA, HmpX, and NorB play
a critical role in reducing nitrosative stress during plant pathogenesis [59].

3.5. DdSR SRGs of Rs

ROS, RNS, and low pH are known causal factors of DNA damage [60,61]. The σS factor
and DksA are responsible for overcoming amino acid limitations by activating several
amino acid biosynthesis genes [18,62]. Brown and Allen reported the involvement of three
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SRGs, uvrA1 (ipx64), dinF (ipx62), and dnaN (ipx61), in the SOS response of R. solanacearum
K60 against plant-derived DNA-damaging substances [63].

3.6. Global Strategy in Stress Response of Rs

The versatility of the pathogenicity of Rs depends on the genetic diversity [64]. The
diversity of Rs is broad, and thus, the genetic variation among different phylotypes is
distinct. The cluster analysis of SRGs demonstrated that there are no significant differences
among the Rs species complex (Figure S1). To explain these mutually incompatible results,
it is important to understand the mosaic structure of Rs genomes. Due to remarkable genetic
diversity, the genomes of Rs possess a number of similar regions scattered within variable
regions [64]. Usually, genes encoding stress-responsive enzymes and factors are subject to
strong levels of purifying selection, similar to most housekeeping genes [65]. The present
findings suggest that the stress-responsive genes in Rs are under pressure of purifying
selection. Our present finding is also supported by the experimental evidence provided
by Puigvert et al. [66]. Transcriptomic analysis of R. solanacearum UY031 in their research
found only two differentially expressed genes between resistant and susceptible plant
accessions, indicating that the bacterial component plays a minor role in the establishment
of disease [66].

Rs enters its plant host through root lesions, followed by multiplication and coloniza-
tion in the root cortex and xylem, respectively. Finally, wilt symptoms develop, and then
the plants die, releasing the pathogen back into the soil. From the five consistent clusters of
SRGs in Rs, the stress responses can be classified into five categories (Figure 6a). Studying
biological networks enables a deeper investigation of biological systems [67], and PINs
have been constructed in many bacteria [68,69]. In the present study, our analysis indicates
that SRGs work together interactively to fight against diverse stresses (Figure 6b). Currently,
very few reports explore the relationship between clusters of SRGs and bacterial secretion
systems. SRGs of the DdSR cluster were found to play a central role among all five clusters
(Figure 6a). SRGs of all other clusters are linked to DdSR via PINs; however, PINs were
completely absent between these other clusters. This finding strongly suggests that all
other stress responses (i.e., MSR, OSR, OxSR, and NxSR) act through DdSR (Figure 6a). It
also implies that the expression of SRGs of a single cluster cannot be treated as a signature
of progressive stress responses.
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Figure 6. (a) Diagram showing interactions among clusters of stress-responsive genes (SRGs) of
R. solanacerium: MSR (membrane stress response), OSR (osmotic stress response), OxSR (oxidative
stress response), NxSR (nitrosative stress response), and DdSR (DNA damage stress response);
thin lines with “X” show the absence of interactions; thick lines show the presence of interactions.
(b) Diagram showing interactions of clusters of stress-responsive genes (SRGs) with the secretion sys-
tems of R. solanacerium: Tad (tight adherence), Tat (twin arginine translocation), T4P (type-4 pili), T3SS
(type-3 secretion system), and GPSS (general protein secretion system); thick lines show interactions
among SRGs clusters; thin lines depict the interaction between SRGs and secretion system.
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3.7. Interactions among T3SS and SRGs of Rs

In the present investigation, PINs were observed between the T3SS cluster (represent-
ing eight genes: hrcC, hrcJ, hrcN, fliF, fliG, fliH, flhA, and flgJ) and the MSR cluster of SRGs
(Figure 6b). Flores-Kim et al. previously reported the interaction between T3SS and MSR in
Yersinia [66], which aligns with our findings. The secretion systems of Rs form a molecular
arsenal that facilitates niche adaptation, host invasion, and evasion of plant defenses. As for
many bacterial pathogens, the main virulence determinant in Rs is T3SS [70], which injects
a number of effector proteins into plant cells, causing disease in hosts or a hypersensitive
response in resistant plants. In this work, the PIN between the MSR cluster of SRGs and
T3SS indicates the critical role of SRGs in infection or disease establishment (Figure 3).

3.8. Interactions among GSPS and SRGs of Rs

Similarly, PINs were also recorded among the GSPS cluster (representing nine genes:
secA, secB, secD, secE, sceF, secG, secY, ftsY, and ffh), MSR cluster, and OxSR cluster. Inter-
estingly, interactions between Sec and MSR in Escherichia coli and the Sec secretion system
and OxSR in Pseudomonas aeruginosa were also reported [71,72]. As in most bacteria, the Sec
pathway is the main route by which secretory proteins are exported across the cytoplasmic
membrane in Rs [73]. Upon their exit from the membrane translocase complex, the proteins
must acquire a properly folded conformation to gain full activity. Heat stress and overpro-
duction of specific secretory proteins can result in the accumulation of misfolded proteins
outside the cytoplasm [74]. The PIN between the DdSR cluster of SRGs and GSPS, along
with the PIN between the MSR cluster of SRGs and GSPS, clearly indicates the importance
of SRGs in the regulation of GSPS (Figure 4). The accumulation of misfolded proteins
produces cellular stress responses leading to refolding or degradation of abnormally folded,
non-functional proteins [75]. Rs may sense the secretion stress via the extracytoplasmic
sigma factor σE.

3.9. Interactions among Different Pili Systems and SRGs of Rs

Furthermore, we explored the interactions among the T4P cluster, MSR, and DdSR,
which was reported by a previous study with E. coli [76]. A strong PIN was observed
between the T4P cluster, the MSR cluster, and NxSR. Rs binds to host cells by a multitude
of pili. Therefore, the adhesion strength of a multipili-binding bacterium largely depends
on the cooperativity of the attaching pili [73]. Interestingly, different types of pili of Rs were
found to be under the control of different SRG clusters. For example, T4P pili are under the
control of DdSR and MSR clusters, and Tat pili are controlled by MSR and NxSR clusters,
while Tad pili are under the control of the OSR cluster (Figure 6b).

3.10. Network of SRGs and Bacterial Secretion Systems

In this work, we show the interaction of various SRG clusters with specific secretion
components. For example, T3SS, GSPs, and T4P are related to MSR and DdSR, while Tad
and Tad interact with OSR and NxSR, respectively (Figure 6b). A detailed transcriptome
analysis of Rs provides the experimental proof that genes encoding T3SS (hrpY, hrpX, hrpK,
and hrcT) and T4P (pilG, pilH, pilN, pilM, pilY, pilW, and fimV) are upregulated during
host infection, along with peroxidases, catalases (katE and katG), and alkyl hydroperoxide
reductases (ahpC1 and ahpF), suggesting adaptations to combat stress during plant infec-
tion [66]. Recently, Hendrich et al. also provided experimental proof that NxSR regulates
T3SS in Rs [77]. Taken together, these findings indicate a close connection between bacterial
stress management and secretion systems.

4. Materials and Methods
4.1. Data Mining

Completely assembled and annotated genomes (as of 31 March 2022) of Rs were
downloaded either from the NCBI genome database (https://www.ncbi.nlm.nih.gov/
genome) (accessed on 31 March 2022) or from the KEGG genome database (https://www.

https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/genome
https://www.genome.jp/kegg/genome
https://www.genome.jp/kegg/genome
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genome.jp/kegg/genome) (accessed on 31 March 2022), which includes 110 genomes
(Table S4). Sequences of stress-responsive enzymes and stress regulators were retrieved
from the UniPort database.

4.2. Mining of Bacterial Genes Coding for Stress-Responsive Enzymes and Stress Regulators

The present study examined a protocol for capturing the maximum number of candi-
date genes associated with bacterial stress responses (Figure 7).
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To develop this protocol, information regarding bacterial stress-responsive enzymes
and stress regulators was collected from published articles, followed by the preparation of
a dataset. This dataset was used as a primary reference query in subsequent steps (Table 1).

Initially, the presence of these candidate genes within Rs genomes was searched using
the KEGG platform, and orthologs were identified from the KO database of the KEGG
platform (Table 2).

Nucleotide sequences of KO orthologs of the SRGs are presented in Table S1. The
secondary query was carried out on Rs genomes using KO ortholog protein sequences.
To examine the diversity of these genes across Rs genomes, microbial genome BLASTs
were performed using protein sequences and the megaBLAST algorithm (Tables S1 and S2).
Furthermore, the results obtained from the pBLAST search were again verified with the
help of the KO orthology database in KEGG among the available Rs genomes.

4.3. Mining of Bacterial Secretion System Genes

For secretion system components, we used the KO numbers published in our previous
study with Bradyrhizobium spp. [48] as reference data, and the results are provided in
Table S4.

4.4. Protein–Protein Interaction Network (PIN) Study

PINs are an important clue for understanding the cellular physiological process,
and STRING is one of the best platforms to construct and visualize such interaction net-
works [78]. The STRING v11.0 (http://string-db.org) (accessed on 22 May 2022) server

https://www.genome.jp/kegg/genome
https://www.genome.jp/kegg/genome
http://string-db.org


Pathogens 2022, 11, 730 13 of 17

is used for predicting structure–function aspects of genes and proteins [79]. Based on the
approximate probability that a predicted link exists between two proteins in the same
metabolic map in the KEGG database, different ranges of confidence scores of protein–
protein interactions were assigned. The SRG sequences of Rs were aligned with Rs PS107
using BLASTX. The first aligned protein with an E-value below 1 × E−10 was considered a
homologous protein. Then, these homologous proteins and their corresponding interac-
tions were extracted from the whole interaction dataset of the related organism to compose
the model organism-based protein–protein interaction sub-network. In order to obtain
high-quality PINs, we considered the interactions with the highest confidence limits (0.9)
from String. Here, we used this platform to explore the relation between different SRGs
and generated an interrelation network. We also used this platform to study PINs between
SRGs and bacterial secretion systems.

4.5. Statistical Analysis

All of the genes coding for stress-responsive enzymes and stress regulators were
selected based on the BLAST score (Table S3). To access the distribution of SRGs within dif-
ferent phylotypes of Rs, the data obtained from BLAST results were arranged in a raw data
matrix, and a heatmap was generated using Morpheus (https://software.broadinstitute.
org/morpheus/) (accessed on 25 May 2022). The cluster analysis was performed with
the help of Past 3.17 using binary matrix data (based on the presence or absence of an
ortholog) [80]. The neighbor-joining method was used to construct a cluster dendrogram
using 1000 as the bootstrap value.

5. Conclusions

This study provides a detailed report of the SRGs of Rs, their distribution, classification,
and interaction with bacterial secretion systems. This is the first report of SRGs across Rs
genomes. From this investigation, it is proposed that the SRGs of DdSR play a pivotal role
among all other clusters. Multivariate analysis with SRGs provides evidence in support of
a purifying selection of the stress management system in Rs. Interactions between SRGs
and bacterial secretion systems in Rs were also elucidated for the first time.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens11070730/s1. Figure S1: Cluster dendrogram based on the distribution of stress-
responsive genes within R. solanacerium species complex; Table S1: Secondary dataset for stress-
responsive enzymes and factors of R. solanacearum using KO orthologs; Table S2: Secondary dataset
for stress-responsive enzymes and factors of R. solanacearum using KO orthologs derived from
STRING results; Table S3: Normalized (10%) pBLAST 2.2.26 score for the SRGs of R. solanacearum;
Table S4: Bacterial secretion systems of Rs.
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