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Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has emerged as a public health crisis and led to
tremendous economic devastation. The spike protein (S) of
SARS-CoV-2 hijacks the angiotensin converting enzyme 2
(ACE2) asa receptor for virus entry, representing the initial step of
viral infection. S is one of themajor targets for development of the
antiviral drugs, antibodies, andvaccines.ACE2 isapeptidase that
plays a physiologically important role in the renin–angiotensin
system. Concurrently, it also forms dimer of heterodimer with the
neutral amino acid transporter B0AT1 to regulate intestinal amino
acid metabolism. The symptoms of COVID-19 are closely corre-
lated with the physiological functions of ACE2. In this review, we
summarize the functional and structural studies onACE2,B0AT1,
and their complex with S of SARS-CoV-2, providing insights into
the various symptoms caused by viral infection and the develop-
ment of therapeutic strategies.
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Introduction
The emergence and continued presence of SARS-CoV-2
variants highlight the need to develop effective
www.sciencedirect.com
interventions against COVID-19 pandemic. S of SARS-
CoV-2 [1,2] is responsible for receptor recognition and
membrane fusion, similar to that of SARS-CoV-1, which
has caused the severe acute respiratory syndrome
pandemic in 2002e2003 [3]. During assembly of the
virus, S is cleaved into the S1 and S2 subunits by furin or
furin-like proprotein convertase [4]. The S1 subunit
binds to the viral entry receptor ACE2 through the re-

ceptor binding domain (RBD) [5] (Figure 1). Then, S
undergoes second protease processing to release the
membrane fusion peptide by transmembrane protease
serine 2 (TMPRSS2) [6,7] or cathepsin L [8] on S2’
cleavage site to mediate the fusion of the virus and host
cell membrane [9]. The interaction between S and ACE2
is the important step of viral infection, therefore making
it the critical target for developing the small molecule
drugs, neutralizing antibodies and vaccines [10,11].

The lung damage followed by pulmonary fibrosis and

chronic impairment of lung function is one typical
symptom for SARS-CoV-2 infection [12]. In addition to
its role as the receptor for SARS-CoV-2 invasion, ACE2
is a peptidase belonging to the renineangiotensin
system that controls vasoconstriction and blood pres-
sure in human [13]. The ace2 gene knockout mice
showed that the downregulation of ACE2 significantly
increases angiotensin II (Ang II) levels in the lungs and
plasma, causing acute lung failure [14]. In addition, Ang
II levels in the lung tissues of the mice were signifi-
cantly increased after treatment with acid and SARS-

CoV-1 Spike-Fc (a fusion protein of SARS-CoV-1 S
with the Fc portion of human IgG1), and lung damage
induced by this treatment could be attenuated by
blocking Ang II receptor type 1 (AT1R) using its in-
hibitor [15]. These results collectively suggest that
SARS-CoV-2 infection is closely correlated with the
primary physiological function of ACE2. Besides, ACE2
forms heterodimers with the intestinal transporter
B0AT1 to mediate the uptake of neutral amino acids,
which provides an important insight into enterocyte
infection with SARS-CoV-2 [16,17].

In the past few years, many studies have reported on
SARS-CoV-2 and its receptor, ACE2. In this review, we
will focus on the physiological functions and structural
information of ACE2, B0AT1 and their complex with S
of SARS-CoV-2, which can help us understand the
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Figure 1

Schematic diagram of multi-functional ACE2. ACE2 plays a major role in the renin–angiotensin system by cleaving Ang II to Ang-(1–7) or Ang I to
Ang-(1–9) (pink inset), which can decrease blood pressure and relax blood vessels. ACE2 is also a chaperone for the neutral amino acid transporter
B0AT1 in small intestine. Besides, ACE2 acts as a receptor for multiple viruses, such as SARS-CoV-2 or SARS-CoV-1. Dozens of S are localized on the
surface of SARS-CoV-2 virion. RBD of S can be in “down” and “up” conformation. Only the “up” conformation allows RBD to bind ACE2. Full-length ACE2
on cell membrane is cleaved by ADAM17 or TMPRSS2. After being shed by ADAM17, soluble ACE2 (sACE2) is released into extracellular side, which
remains the enzymatic activity and the ability to bind SARS-CoV-2, can prevent the virus from invading host cells and spreading. The trimeric S is cleaved
by furin or furin-like proprotein convertase into the S1 and S2 subunits during viral assembly in the infected cells. Binding to ACE2 on cell membrane
induces the “up” conformation of RBD, which facilitates the shedding of the S1-ACE2 complex. S2 undergoes conformational changes to trigger the
membrane fusion. S means spike protein; Ang means angiotensin. ACE2 dimer: red and wheat; B0AT1 dimer: deep blue and violet; S trimer: cyan, gray
and orange; ADAM17: blue; TMPRSS2: red-orange; furin: blue.
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mechanism of SARS-CoV-2 infection and its symptom
determinants to develop effective therapeutic and
prophylactic strategies.
ACE2 and renin–angiotensin system
ACE2, encoded by a gene located on the X chromosome,
was discovered in 2000 as a protein homolog of ACE
[13,18]. Multiple studies have shown that ACE2 is
highly expressed in many tissues, including the small

intestine, thyroid, kidney, heart, testis and adipose
tissue, and expressed at low levels in the blood, spleen,
muscle, brain, and bone marrow [19e21]. ACE2 is a
type I transmembrane (TM) glycoprotein with a full
length of 805 amino acid residues that can be divided
into two parts: the N-terminal catalytic domain (also
known as the peptidase domain, PD) and the C-termi-
nal collectrin-like domain (CLD) [13,22]. PD of ACE2,
which shares 42% sequence homology with the N-ter-
minal domain of ACE, contains a zinc ion in its active
site. CLD of ACE2 contains a single TM helix and has

approximately 48% sequence homology with collectrin,
which does not contain a PD [22].
Current Opinion in Structural Biology 2022, 74:102388
ACE2 plays an important role in the renineangiotensin
system [23,24] (Figure 1). Both ACE2 and ACE have
peptidase activity, but their substrates and cleavage

mechanisms are different [25]. ACE is a dipeptidyl
peptidase that releases a dipeptide from the C-terminal
of its substrate per digestion reaction, while ACE2
cleaves one amino acid. The crystal structure of ACE2
[25] shows that Arg273 forms a salt bridge with the C-
terminal of the substrate. But in ACE, it is replaced with
the smaller amino acid Glu, which explains the differ-
ence in substrate specificity between ACE and ACE2.
To be exact, ACE converts Ang I to Ang II, which
function is to constrict blood vessels and raise blood
pressure. ACE2 cleaves Ang II to Ang-(1e7), the role of
which is to relax blood vessels and lower blood pressure.
ACE2 can also convert Ang I into Ang-(1e9), and ACE
or other peptidases will then convert Ang-(1e9) into

Ang-(1e7) (Figure 1). ACE2 much more efficiently
cleaves Ang II into Ang-(1e7) than Ang I into Ang-
(1e9) [26]. Therefore, ACE2 plays a role in lowering
blood pressure in the renineangiotensin system. In
www.sciencedirect.com
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addition, Ang-(1e7) mediates various effects, including
vasodilation, anti-inflammatory, anti-oxidation and so on
[27], by binding the G protein-coupled receptor Mas
[28], making Ang-(1e7) a promising therapeutic target
for cardiovascular disease [29]. In summary, ACE2
negatively regulates the level of Ang II and maintains
the balance with ACE to control local homeostasis to
protect the lung, kidney, and cardiovascular system [14].
ACE2 and B0AT1 complex
ACE2 is reported to be a molecular chaperone of the
neutral amino acid transporter B0AT1 in small intestine,
which is also known as SLC6A19 that belongs to the

neurotransmitter and amino acid co-transporter SLC6
family [16,30]. The slc6a19 gene is located on thechro-
mosome 5 and was cloned in 2004 because its mutation
causes Hartnup disorder, an autosomal recessive condi-
tion that leads to aminoaciduria and eventually to
symptoms like photosensitive rash, cerebellar ataxia and
emotional instability [31e33]. It is also called B0AT1
due to the properties of system B0 which mediates the
Naþ-dependent neutral amino acid transporter [32].
B0AT1 has a total length of 634 amino acid residues,
including its N-terminal and C-terminal on the intra-

cellular side, as well as 12 TM helices arranged as a
LeuT-fold [17]. The plasma membrane location of
B0AT1 requires the chaperone of some proteins, repre-
sented by ACE2 in the small intestine or collectrin in
the kidney [16,30].

It was reported that ACE2-B0AT1 complex was involved
in immunoregulation by controlling amino acid homeo-
stasis, antimicrobial peptide expression and ecological
regulation of intestinal microbes [34e37]. Further
research showed that this complex affects the compo-
sition of the gut microbiota through its role in amino

acid transport, which may explain why amino acid
malnutrition in Hartnup disease can lead to diarrhea and
intestinal inflammation [35,36]. The ace2 gene knockout
mice showed a high susceptibility to intestinal inflam-
mation and diarrhea, which could be reversed by dietary
tryptophan or its metabolite nicotinamide, which are
necessary for the biosynthesis of nicotinamide adenine
dinucleotide (phosphate) via the kynurenine pathway
[37]. The Hartnup diseases patients show symptoms of
the skin and psychiatric disorders that are also amelio-
rated by nicotinamide supplementation [36]. The sim-

ilarity between these studies is related to the weakened
function of B0AT1 that transports neutral amino acids,
suggesting that ACE2 is essential for the expression and
stability of B0AT1 in the small intestine [16,30,37].

The high-resolution cryo-EM structure of the ACE2-
B0AT1 complex revealed that ACE2 and B0AT1 form a
heterodimer, and this heterodimer further forms a dimer
through the ACE2-mediated dimerization interfaces
www.sciencedirect.com
(Figure 2) [17]. ACE2 has two dimerization interfaces,
one of which is mediated by weaker interactions in PD
and can be disrupted, inducing a conformational change
of ACE2 from a closed conformation to an open
conformation [17]. Another interface is mediated by
CLD with extensive polar interactions. The properties
of the ACE2 dimeric interfaces suggest that ACE2 can
form a dimer independently in the absence of B0AT1.

Besides, B0AT1 adopts a typical LeuT-fold, whose TM7
helix region extends to the extracellular and binds CLD
of ACE2 (Figure 2), suggesting that ACE2 can regulate
the transport activity of B0AT1 through this interface.
ACE2 as SARS-CoV-2 receptor
ACE2 is the entry receptor for SARS-CoV-2 [5,7], as
well as other coronaviruses such as SARS-CoV-1 [38]
and NL63 [39]. The virion particles of SARS-CoV-2 are
irregularly spherical with dozens of S randomly ar-
ranged on the surface, which can bind to ACE2
[17,40e42] and then bring viral genetic material into
cells through membrane fusion at cell surface or lately
at endosome after endocytosis [6e9]. RBD of S has two
conformations, “up” and “down” [1,2], of which only
the “up” conformation can bind the receptor

(Figure 1). A binding assay showed that SARS-CoV-2
binds ACE2 more strongly than SARS-CoV-1 does
[1]. The interface between ACE2 and RBD of SARS-
CoV-2 is similar to that of SARS-CoV-1, which is
mainly involved in polar interactions. The extended
loop region of RBD spans the a1 helix of ACE2 like an
arch bridge (Figure 2) [17]. Besides, the functional
study and cryo-EM structure of the extracellular
domain of S (S-ECD) and the ACE2-B0AT1 complex
showed that each ACE2 monomer in the ACE2 dimer
can bind an S (Figure 2) [17,43,44]. Structures of S of
SARS-CoV-2 in different states in complex with ACE2

showed that PD of ACE2 binds S with a consistent
interface and triggers the conformational change of S1
region to activate RBD. The uncleaved and trypsin-
digested S-ECD alone exhibits an almost identical
conformation, but the trypsin-digested S-ECD can be
bound by more molecules of PD of ACE2 [44]. To be
noticed, S has great structural flexibility and can form
complex with ACE2 in various conformations [45,46].
RBD of SARS-CoV-2 variants tends to be in “up” state,
so it more easily binds ACE2, which exhibits stronger
infectivity. Interestingly, previous studies showed that

the cleavage of the C-terminal segment of ACE2,
especially residues 697 to 716, by proteases such as
TMPRSS2 can enhance the S-driven viral entry
[47,48]. In the ACE2-B0AT1 complex structure, the
residues 697e716 of ACE2 form helixes in CLD and
map to the dimeric interface. The presence of B0AT1
might block the access of TMPRSS2 to the cutting site
on ACE2 (Figure 1). These findings revealed the
structural basis for the activation of S during infection
Current Opinion in Structural Biology 2022, 74:102388
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Figure 2

Cryo-EM structures of the ACE2-B0AT1 complex and their complex with RBD or S of SARS-CoV-2. The ACE2-B0AT1 complex exists as a dimer of
heterodimer, with two dimerization interfaces mediated by PD (①) or CLD (②) of ACE2, respectively. The disruption of PD dimerization interface induces
ACE2 changing from a closed state to an open state. CLD of ACE2 binds to TM7 of B0AT1 that extends to the extracellular. Each monomer in the dimeric
ACE2 molecule can be bound by a RBD or an S of SARS-CoV-2. The binding interface between RBD of SARS-CoV-2 and ACE2 is mainly mediated by
polar interactions, with the extended loop region of RBD spanning the a1 helix of PD of ACE2 like a bridge. S means spike protein, RBD means receptor
binding domain, TM means transmembrane, PD means peptidase domain and CLD means collectrin-like domain. ACE2 dimer is colored as red and
wheat; B0AT1 dimer is colored as deep blue and violet; RBD is colored as cyan; S trimer is colored as cyan, gray, and orange.
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and led to the development of specific peptide drugs
[49] against SARS-CoV-2.

In addition, SARS-CoV-2 is a zoonotic pathogen, which
can infect a variety of animals [50]. The cryo-EM
structure of the complex of cat ACE2 and RBD of
SARS-CoV-2 shows that cat ACE2 and human ACE2
bind the virus in a similar manner [50].
Current Opinion in Structural Biology 2022, 74:102388
The different forms of ACE2
There are two forms of ACE2: the full-length form,

which exists on the cell membrane, and the soluble form
(sACE2), which is generated by enzymes cleavage [51].
ACE2 is cleaved by the metalloprotease ADAM17 [52]
or the serine protease TMPRSS2, and then released into
the blood. The cleavage patterns and functions of the
two enzymes are different: only ACE2 cut by TMPRSS2
www.sciencedirect.com
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enhances SARS-CoV-1 infection [48]. Expression of
TMPRSS2 inhibits the shedding of ACE2 by ADAM17.
In many lung diseases, treatment with recombinant
ACE2 can prevent blood vessel and lung damage. sACE2
has enzymatic activity and the ability to bind SARS-
CoV-2, which can prevent the virus from invading host
cells and spreading [53]. Recombinant sACE2 mole-
cules can reduce viral load and prevent SARS-CoV-2

infection in blood vessels and kidney organoids [54].
An artificially designed trimeric ACE2 molecule elimi-
nated the symmetry mismatch with trimeric S, and
greatly enhanced the affinity between ACE2 and S [55].
The trimeric ACE2 molecule induces three RBDs of S
to open state, which has an excellent ability to
neutralize viruses [55]. Antibodies targeting to ACE2
can compete with viruses to bind ACE2, so they can be
used for antiviral prevention and treatment [56]. How-
ever, a recent study found the secretory form of ACE2
can mediate the endocytosis of SARS-CoV-2 by the

interaction between S and sACE2 or sACE2-vasopressin
through AT1 or AVPR1B, respectively [57]. The con-
crete mechanism of soluble form of ACE2 requires
further investigation.
Relationship with intestinal diseases
Gastrointestinal symptoms, including nausea, vomiting,
anorexia, abdominal discomfort, diarrhea, are one class of
the symptoms of COVID-19 infection [58,59], SARS-
CoV-2 can be detected in the stool samples and rectal
swabs of COVID-19 patients, suggesting the invasion of
digestive tract by this virus [60,61]. These findings are
supported by an assay for SARS-CoV-2 infection with
human small intestinal organoids [62]. In addition, pre-
vious studies have shown that intestinal inflammation and
diarrhea occur in ace2 gene knockout mice and Hartnup
disease patients caused by B0AT1 mutation [35e37].
These results collectively support the hypothesis that
intestinal ACE2 engagement by S of SARS-CoV-2 might
negatively regulate the absorption of neutral amino acids
in the small intestine of COVID-19 patients, leading to
diarrhea and intestinal inflammation. Other studies have
shown that SARS-CoV-2 was detected in the small in-
testine, but small intestine infection appeared to have an
attenuating effect on SARS-CoV-2-associated inflamma-
tion and a reduction in mortality in COVID-19 patients
[59,63,64]. Further studies are required due to individual
differences and limited case numbers.
Conclusion
ACE2 plays a major role in the renineangiotensin
system as a peptidase, and participates in the absorption
and metabolism of amino acids as a molecular chaperone

of B0AT1, thus related to the intestinal inflammation.
Over the past two years, ACE2 has attracted much
attention as the entry receptor of SARS-CoV-2. The
physiological functions and the tissue expression and
distribution of ACE2 are one of keys to understanding
www.sciencedirect.com
the symptoms of COVID-19. The interaction interface
between receptor and virus is an important target for
developing drugs to inhibit viral invasion and alleviate
infection symptoms. A variety of potential drugs to block
virus binding receptors are being developed, including
small molecules, peptides, and a variety of potent
neutralizing antibodies. In addition, therapeutic strate-
gies such as supplementation with essential amino acids,

soluble ACE2 [53,54] or Ang-(1e7) [27e29] have been
proposed and should be considered.
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