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Introduction
Systemic lupus erythematosus (SLE) is a complex, multigenic autoimmune disease affecting mostly wom-
en and characterized by autoantibodies to nucleic acids and nuclear proteins, leading to immune complex 
formation, complement deposition, and immune-mediated damage in multiple organ systems (1). The het-
erogeneity in ancestral prevalence, disease severity, organ involvement, and response to treatment has been 
described, but the explanation has not been fully delineated (2). Therefore, the development of  transcriptom-
ic signatures to determine the basis of  ancestral differences in lupus disease expression is of  great interest. 
Whereas the disease is most prevalent in Asians and people of  African Ancestry (AA) (3–5), a dispropor-
tionate number of  clinical trials have focused on the European Ancestry (EA) population (2, 6). Although 
not as extensively studied, native people of  Native American ancestry (NAA) have also been shown to have 
earlier onset of  disease and more organ involvement (7, 8). The Lupus in Minority populations: Nature vs. 
Nurture (LUMINA) study and others have demonstrated increased active disease, organ involvement, and 
autoantibody levels for AA compared with EA patients (9, 10), and other studies have shown increased mor-
tality for AA patients (11, 12). At the cellular level, the AA population has been shown to have more activat-
ed B cells, CD27–IgD– B cells, and B cell receptor signaling than the EA population (13). Several studies have 
demonstrated differences in responses of  both innate immune cells as well as lymphocytes, suggesting that 
ancestral differences in immune cells may contribute to the different disease course and incidence between 
populations (14, 15). Ancestry-related differences in response to therapy have also been reported. AA SLE 
patients responded better to B cell depletion therapies than EA (16), but they displayed lesser responses to 
anti-BAFF treatment in a phase III clinical trial (17, 18). Higher serum levels of  BAFF in AA SLE patients 
have led to the suggestion that higher doses of  the biologic may be necessary in AA patients (19).

Heterogeneity in SLE gene expression signatures were first reported for the IFN-stimulated genes (20, 21), 
and an association of IFN signatures with autoantibodies has been reported (22–28). Kirou et al. (22) previously 

Gene expression signatures can stratify patients with heterogeneous diseases, such as systemic 
lupus erythematosus (SLE), yet understanding the contributions of ancestral background to this 
heterogeneity is not well understood. We hypothesized that ancestry would significantly influence 
gene expression signatures and measured 34 gene modules in 1566 SLE patients of African ancestry 
(AA), European ancestry (EA), or Native American ancestry (NAA). Healthy subject ancestry-
specific gene expression provided the transcriptomic background upon which the SLE patient 
signatures were built. Although standard therapy affected every gene signature and significantly 
increased myeloid cell signatures, logistic regression analysis determined that ancestral background 
significantly changed 23 of 34 gene signatures. Additionally, the strongest association to gene 
expression changes was found with autoantibodies, and this also had etiology in ancestry: the AA 
predisposition to have both RNP and dsDNA autoantibodies compared with EA predisposition 
to have only anti-dsDNA. A machine learning approach was used to determine a gene signature 
characteristic to distinguish AA SLE and was most influenced by genes characteristic of the 
perturbed B cell axis in AA SLE patients.
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showed a significant association with anti-ribonucleoprotein (anti-RNP), anti-Smith (anti-Sm), anti–Sjögren’s 
syndrome–related antigen A (anti-SSA), and anti-dsDNA autoantibodies with an IFN gene signature (IGS) and 
that patients having multiple autoantibodies also were more likely to have an IGS. Further work to describe SLE 
patient gene expression differences has been carried out by creating modules of genes overrepresented in 158 
pediatric SLE patients. Increased plasmablast, cell cycle, and erythroblast modules were detected in AA SLE 
patients, and increased myeloid signatures and inflammation were observed in EA and Hispanic SLE patients, 
suggesting that there may be an ancestral basis to explain some of the heterogeneity in SLE gene expression 
signatures (27). It is unknown whether adult SLE patients will have the same associations and whether other 
prominent gene expression signatures used to divide SLE patients into groups such as low-density granulocytes 
(LDG), granulocytes, T cells, B cells, and platelets will also have gene expression differences based on ancestry, 
but 1 group has separated adult lupus patients into 7 groups based on molecular signatures (29).

Whole blood (WB) gene expression analysis provides a relatively straightforward means of  assessing a 
subject’s transcriptomic fingerprint. We sought to determine the contribution of  ancestry, sex, standard of  
care (SoC) therapy, serology, and clinical manifestations to the WB gene expression profile of  1566 adult 
SLE subjects. This work provides strong evidence that much of  the gene expression signature measured 
between SLE patients and healthy controls (HC) is related to patient ancestry resulting in alterations in the 
proportions of  hematopoietic cells, cellular processes, and signaling pathways detected. Importantly, the 
ancestry-related variance in gene expression in healthy persons contributes to the differences observed in 
subjects with SLE.

Results
There is significantly different ancestral gene expression in SLE patients. In order to compare the ancestral contri-
bution to gene expression, we made use of  2 large phase III clinical trial gene expression data sets (Illumi-
nate 1 [ILL1] and ILL2; GSE88884) with a minimum disease severity requirements of  the Systemic Lupus 
Erythematosus Disease Activity Index (SLEDAI) ≥ 6 and positive antinuclear autoantibody (ANA) that 
were well matched for average, median, and range of  SLEDAI and percentage of  patients with anti-dsDNA 
between AA, EA, and NAA SLE patients (Supplemental Table 1; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.140380DS1). These ancestral groups were also well 
matched for SLE manifestations used to determine SLEDAI (Supplemental Table 2) (30–32). Bulk differ-
ential expression (DE) analysis of  ILL1 determined there were thousands of  differentially expressed genes 
(DEGs) between 798 SLE patients of  AA, EA, and NAA, but no differentially expressed transcripts when 
each ancestry was randomized into 2 groups and compared with itself. These differences were reproduced 
in a second cohort of  768 patients (ILL2) and then confirmed in another unrelated data set (GSE45291) of  
244 low–disease activity AA and EA SLE patients who were also matched for mean, median, and range 
of  SLEDAI and ANA titer (Supplemental Tables 3 and 4; Supplemental Figure 1). We sought to deter-
mine how individual patient signatures contributed to these stable, reproducible group differences between 
ancestries. We employed gene set variation analysis (GSVA) with gene expression data from 1566 female 
AA, EA, or NAA SLE patients (GSE88884 data set cohorts ILL1 and ILL2) (31) to compare enrich-
ment of  34 gene modules corresponding to lymphocytes, myeloid cells, and cellular processes (Figure 1A 
and Supplemental Table 5; ref. 33). We have previously used GSVA modules representative of  cellular 
types and processes to determine enrichment in SLE patients and mice (33, 34). GSVA is advantageous 
compared with gene set enrichment analysis (GSEA) because it does not require a priori designation of  
2 groups on the basis of  phenotype and is helpful when disease samples are highly heterogeneous and 
there are low numbers of  control samples (35). GSVA demonstrated that NAA had the highest percentage 
of  patients with enrichment of  LDG, granulocyte, IL-1, and inflammasome signatures followed by EA 
patients, and AA had the lowest. NAA also had significantly more patients with enrichment of  monocyte 
cell surface and monocyte modules than AA patients, but notably, signatures for myeloid-secreted proteins, 
which included complement components TNF and CXCL10, were not different between the 3 ancestries. 
AA had significantly more patients with B cell, Ig, plasma cell, and Treg signatures compared with EA 
and NAA. NAA patients had significantly fewer patients with T cell–associated signatures compared with 
both EA and AA, whereas EA had significantly fewer patients with decreased DC and plasmacytoid DC 
(pDC) signatures compared with controls. The percentage of  AA patients with enrichment of  the IGS was 
higher than EA. AA and NAA had significantly fewer patients with decreased erythrocyte and platelet 
GSVA scores compared with EA (Figure 1, B and C, and Supplemental Table 6). GSVA scores for the 34 
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Figure 1. Individual SLE patients manifest varied patterns of signatures for 34 cell and process modules. (A) GSVA was carried out on 17 female HC to 
determine the mean and SD of control GSVA scores for 34 cell type and process modules. HC mean scores ± 1 SD were used to determine a normal range 
for GSVA scores. SLE female patient (GSE88884 ILL1 and ILL2 data set cohorts; n = 1566) GSVA scores were determined and compared with HC values to 
determine whether patients had increased (+1), decreased (–1), or normal (zero) values. GSVA enrichment gene symbols for each module are in Supplemen-
tal Table 5. (B and C) Percentage of patients within each ancestry (AA, n = 216; NAA, n = 232; EA, n = 1118) with > 1 (B) or < 1 (C) SD GSVA scores for each 
cell type and process module. Fisher’s exact P < 0.05 are indicated by different color asterisk: black asterisks for comparisons between all 3, red asterisks 
between NAA and AA/EA, orange asterisks between NAA and EA, light blue asterisks between AA and EA, and dark blue asterisks between AA and NAA/
EA. Exact P values and percentages are listed in Supplemental Table 6. (D) WGCNA was carried out on data set GSE88884 ILL1 and ILL2 cohorts separately. 
Pearson correlation r values to ancestry were determined for each module and listed if P < 0.05.
 

https://doi.org/10.1172/jci.insight.140380


4insight.jci.org      https://doi.org/10.1172/jci.insight.140380

R E S E A R C H  A R T I C L E

cell and process modules were also calculated for 14 AA, 93 EA, and 17 NAA male patients and male HC 
in SLE data set GSE88884. The pattern of  enrichment was similar to that observed for the 1566 females in 
Figure 1B with increased plasma cells, Ig, and Treg signatures in AA SLE patients and increased LDG and 
myeloid signatures in and EA SLE patients, although statistical significance between the groups was noted 
only for the LDG, granulocyte, Treg, TCRA, TCRB, and platelet signatures (Supplemental Figure 2A and 
Supplemental Table 7).

Weighted gene coexpression network analysis (WGCNA) confirmed the association of  ancestry with 
cellular signatures. WGCNA of  female patients from the 2 cohorts of  data set GSE88884 was carried out 
separately and demonstrated a significant positive correlation of  AA ancestry to plasma cell, T cell, and 
Treg gene modules and a significant negative correlation to granulocyte and myeloid cell modules. NAA 
ancestry exhibited positive correlations to IGS, granulocyte, platelet, and erythrocyte modules and negative 
correlations to T cell and lymphocyte modules. EA ancestry was positively correlated to 1 myeloid cell 
module and negatively correlated to IGS, plasma cell, platelet, and erythrocyte modules (Figure 1D and 
Supplemental Table 8). This, an orthogonal approach using coexpression-defined gene clusters, confirmed 
the ancestral-related gene expression differences.

Ancestry provides the gene expression backbone for SLE gene expression abnormalities. Analyses of  DEGs 
detected between different ancestries showed that AA populations had decreased expression of  the Duffy 
blood group antigen ACKR1, the platelet, dendritic, and monocyte receptor CD36, and G6PD in compar-
ison with NAA and EA populations (Supplemental Table 4); these genes have previously been described 
as risk alleles resulting in decreased expression in AA (36–38). We hypothesized that ancestral-related 
gene expression differences detected between SLE patients may be related to heritable differences in 
expressed genes in hematopoietic cells of  healthy subjects. In order to address this question, DE analysis 
was carried out between AA and EA healthy subjects from 2 separate data sets (Supplemental Table 9) 
and compared with the DEGs that differed between AA to EA SLE patients. There was a highly signif-
icant overlap in transcripts differentially expressed between healthy AA and EA subjects and transcripts 
differentially expressed between AA and EA SLE patients (Figure 2A). GSVA was carried out on the 
healthy AA and EA subjects, and enrichment scores were compared for the 34 cell and process mod-
ules. Ten of  the 34 signatures were significantly different between AA and EA healthy subjects. Healthy 
EA subjects had significantly increased granulocyte, inflammasome, monocyte cell surface, monocyte, 
inflammatory secreted, and DC GSVA enrichment scores compared with AA healthy subjects, and AA 
healthy subjects demonstrated significantly increased T cell–activated, B cell, erythrocyte, and platelet 
GSVA enrichment scores compared with healthy EA subjects. No differences in LDG, plasma cell, T 
cell, IGS, or the other signatures were determined (Figure 2B). Thus, in the absence of  disease, signifi-
cant and reproducible gene expression differences exist between AA and EA and appear to be contribut-
ing to the molecular heterogeneity in gene expression.

Autoantibodies and complement levels, but not other clinical features of  lupus, were associated with significant 
changes in gene expression profiles. Variation in SLE disease manifestations has been reported as a potential 
cause for gene expression heterogeneity in SLE WB (27, 28, 39). However, the presence of  arthritis, rash, 
alopecia, mucosal ulcers, or vasculitis had no consistent effect on cellular and process gene enrichment 
scores. Patients of  all ancestries with both anti-dsDNA and low complement (low C) had significantly high-
er GSVA scores for antiinflammation, IGS, plasma cells, Igs, monocyte cell surface, and LDGs compared 
with patients without anti-dsDNA and low C (Figure 3).

Notably, the significant increase in plasma cell signatures detected in AA patients could not be 
explained by AA SLE patients having an increased incidence of  anti-dsDNA and low C; AA had the low-
est number and percentage of  patients with both anti-dsDNA and low C (23%), whereas 29% of  EA and 
37% of  NAA had anti-dsDNA and low C. Anti-RNP and anti-Sm autoantibodies have been demonstrated 
to be increased in AA SLE patients (13, 40–42), and these autoantibodies could also be related to plasma 
cell, IFN, and other gene expression signatures. To understand how multiple autoantibodies change the 
transcriptome, we first determined the combinations of  the 5 autoantibodies measured in this study for 
1535 of  the female SLE patients from ILL1 and ILL2: anti-dsDNA, anti-RNP, anti-Sm, anti-SSA, and anti-
SSB. AA and NAA SLE patients had significantly higher frequencies of  autoantibodies that are not dsD-
NA. Significantly fewer AA and NAA SLE patients were negative for all 5 autoantibodies compared with 
EA SLE patients. AA SLE patients had a significantly higher percentage with 3 or 4 autoantibodies and a 
significantly lower percentage of  patients with only 1 autoantibody compared with EA, but there were no 
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significant differences between AA and NAA. NAA SLE patients had significantly higher percentages of  
patients with 4 or 5 autoantibodies compared with EA (Figure 4A and Supplemental Table 10). Important-
ly, the presence of  multiple autoantibodies was associated with significantly higher frequencies of  the IGS 
and the plasma cell signature (Figure 4B).

For all 3 ancestries, patients positive for both anti-RNP and anti-dsDNA plus any of  the other 3 
autoantibodies had significantly increased enrichment scores for plasma cells, IGS, Ig, cell cycle, Treg, 
myeloid-secreted, and antiinflammation signatures compared with SLE patients negative for all 5 auto-
antibodies (Figure 4C). Additionally, patients positive for anti-RNP plus any of  the other autoantibodies 
except anti-dsDNA had significantly increased IGS GSVA scores compared with patients positive for 
anti-dsDNA plus any other autoantibody and compared with patients with any combination of  anti-Sm, 
SSA, and SSB (Figure 4D). These data explain the significantly increased plasma cell and IFN enrich-
ment scores for AA SLE patients. AA SLE patients had significantly higher percentages of  patients with 
anti-RNP autoantibodies (62%) compared with EA (30%) and NAA (51%), and significantly higher per-
centages of  patients with anti-Sm (24%) compared with EA (12%) (Supplemental Table 11). AA also had 
significantly increased numbers of  patients with both anti-RNP and anti-dsDNA compared with EA, 
and significantly increased numbers of  patients with anti-RNP+ anti-dsDNA– plus anti-Sm, SSA or SSB 
autoantibodies compared with EA and NAA. AA and NAA also exhibited more frequent SM, SSA, or 
SSB autoantibodies compared with EA (Supplemental Table 12). These data confirm, in a large cohort 
of  AA, EA, and NAA SLE patients, ancestrally related disparities in autoantibody profiles, and they 
extend those findings to indicate that there is a significant association between autoantibody profiles and 
differences in gene expression between ancestries.

Figure 2. Gene expression differences in SLE patients are similar to ancestral gene expression differences in healthy controls. (A) Limma DE analy-
sis was carried out between HC AA and EA for 2 separate data sets (Supplemental Table 9). Increased (Up in AA) and decreased (Up in EA) transcripts 
were compared with 4 SLE cohorts of AA DE to EA. Overlap P values were all below 1 × 10–22 for OR above 1. (B) GSVA for the 34 cell and process mod-
ules was carried out on healthy AA and EA subjects from 2 separate data sets. Welch’s t test was used to determine significant differences between 
ancestral GSVA scores; the mean and CI for the 10 GSVA scores significantly different (P < 0.05) between ancestries are shown.
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Autoantibody patterns in male SLE patients were similar to those determined in females, although sta-
tistical significance was not determined because of  low patient numbers (Supplemental Table 13). Similar 
to female SLE patients, significantly increased IGS GSVA scores were determined for males with anti-RNP 
and anti-dsDNA plus any of  the other 3 autoantibodies, and with RNP+dsDNA– versus anti-dsDNA+ plus 

Figure 3. Autoantibodies and complement levels were associated with gene expression profiles. The mean difference in GSVA enrichment scores is 
shown for manifestations with significant (P < 0.05, Sidak multiple comparisons test) differences in enrichment scores as compared with all other man-
ifestations. Asterisks indicate that, for dsDNA autoantibodies and low C, patients were compared with patients without either dsDNA autoantibodies 
(IU < 30) or low C (C3 > 0.8 g/L and C4 > 0.1 g/L). All patients in these analyses were positive for ANA. Number of patients with each SLEDAI component 
manifestation are shown in parentheses.
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any of  the other 3 autoantibodies, and all of  these groups were significantly different from patients with 
none of  these 5 autoantibodies (Supplemental Figure 2B).

SoC therapy is associated with significant changes in gene expression profiles. SoC therapy has been demon-
strated to significantly affect SLE gene expression signatures (27, 43), and significantly more NAA SLE 
patients were receiving corticosteroids (92%) and taking immunosuppressives (IS) (58%) compared with 
70% and 39% of  AA and 70% and 39% of  EA patients, respectively (Fisher’s exact P < 0.0001). It was, 
therefore, important to consider therapy affects on gene expression and determine whether ancestry, SoC 
drugs, or both were contributing the differences in gene expression profiles. Corticosteroids significantly 
increased LDG and antiinflammation GSVA scores compared with patients of  the same ancestry not tak-
ing the drugs. Additionally, both AA and EA receiving corticosteroids had significant enrichment of  gene 
signatures for granulocytes, myeloid-secreted proteins, monocyte cell surface, monocytes, cell cycle, and the 
IGS. The effect of  corticosteroids on myeloid signatures was further amplified at corticosteroid doses > 15 
mg/day. When IS therapy was restricted to just mycophenolate mofetil (MMF) and methotrexate (MTX), 

Figure 4. The higher number and different types of autoantibodies in AA SLE patients led to higher plasma cell, IGS, cell cycle, Treg, and myeloid-secreted 
signatures. (A) Percentage of patients with different numbers of 5 autoantibodies (RNP, Sm, SSA, SSB, and dsDNA) by ancestry. (B) Comparison of plasma 
cell and IGS GSVA scores by the number of autoantibodies. (C) GSVA enrichment scores for all 34 cell and process modules were compared, for each autoanti-
body group, with patients of the same ancestry with 0 of 5 autoantibodies. Tukey’s multiple comparisons test was used to determine significant differences; 
8 cell and process module signatures had significant differences (P < 0.05) between autoantibody+ and autoantibody– groups. (D) GSVA enrichment scores 
had significant differences between autoantibody groups. (B and D) Dots represent single patient scores, and data are presented as mean ± SD. Numbers of 
patients in each group are shown in parentheses. The black dotted lines represent the mean ± 1 SD of the HC for GSVA scores. Tukey’s multiple comparisons 
test was used to determine if significant differences existed between GSVA scores for plasma cells and IFN signatures for each group, and P < 0.05 are shown. 
RNP+ and/or dsDNA+ autoantibody groups could also have Sm, SSA, or SSB autoantibodies in any combination.
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there was a consistent decrease across all 3 ancestries in plasma cell and Ig GSVA scores. Because MTX and 
MMF were associated with low plasma cells scores, we compared the 5 autoantibody groups from Figure 4 
for MTX and MMF usage and found no significant difference in usage between ancestral groups compared 
by autoantibody profile, demonstrating that ancestry-related autoantibody profiles, and not drugs, were 
related to differences in plasma cell signatures (Supplemental Table 14). Azathioprine (AZA) significantly 
decreased NK cell GSVA scores in all 3 ancestries and also significantly decreased T cytotoxic and B cell 
scores in NAA and EA ancestries. EA patients receiving NSAIDs compared with all other treatments had 
decreased LDG and antiinflammation signatures, whereas antimalarials had no significant effect on GSVA 
enrichment scores (Figure 5). Two separate cohorts of  SLE patients with low disease activity from data 
set GSE45921 also had SoC drug information and were analyzed to confirm the findings. Corticosteroids 
increased LDG, monocyte, and antiinflammation GSVA scores; MTX and MMF decreased plasma cell 
GSVA scores; and AZA decreased NK and B cell GSVA scores (Supplemental Figure 3) in support of  the 
data generated with the first data set composed of  1566 female SLE patients.

Sex has a less important effect than ancestry on gene expression differences. Because of  the large number of  
EA females, we were able to balance the percentage of  female and male patients on corticosteroids and IS 
in order to determine gene expression differences between male and female EA SLE patients (Supplemen-
tal Table 15). We also divided the females into 2 age groups, 25–49 years and > 50 years, because of  the 
reported effects of  estrogen on immune responses (44). There were very few differences between male and 
female SLE patients in gene expression (Supplemental Figure 4 and Supplemental Table 16), suggesting 
that ancestral differences are a more important factor in gene expression than sex differences.

Logistic regression modeling demonstrated that ancestry is the major influence on SLE gene expression differences. To 
determine the relative importance of  ancestry, SLE manifestations, serology, and SoC drugs on gene expres-
sion signatures, we performed stepwise logistic regression on data from 1535 female SLE patients with all 5 
autoantibody measurements for each of  the 34 cell type and process signatures using the variables of  ancestry, 
SoC drugs, SLE serologic abnormalities, SLE manifestations, age, and time from onset of  disease. Colinearity 
was excluded by carrying out Spearman’s correlations between all variables, and the ethnic term Hispanic was 
removed from modeling because of  an rs of  0.54 to NAA (Supplemental Table 17). Figure 6 shows CIRCOS 
visualizations of  the OR for each variable significantly contributing to each GSVA score. Ancestry was asso-
ciated with changes in 23 cell or process signatures. AA ancestry was positively associated with Treg, plasma 
cell, Ig, and low pDC signatures and negatively associated with granulocyte, monocyte, IL-1, antiinflamma-
tion, and low B cell signatures. NAA ancestry had the highest positive association to the inflammasome and a 
negative association to Treg signatures. NAA was also positively associated with erythrocyte, low T cell, and 
low MHC II and was negatively associated with the IGS and unfolded protein response signatures. EA was 
positively associated with high myeloid-secreted signatures, high inflammasome signatures, and low platelet 
signatures and associated negatively with low NK and Treg signatures (Figure 6A and Supplemental Table 
18). SLE serologic profiles are interrelated to ancestral background and had the highest OR to significant 
changes in GSVA scores. Autoantibody groups RNP+dsDNA+, RNP+dsDNA–, RNP–dsDNA+, and any com-
bination of  Sm, SSA, and SSB, resulted in significant OR of 31.6, 25.6, 5.5, and 13.1, respectively, for the rela-
tionship to the IGS; OR of 7.9, 4.7, 4.0, and 2.3, respectively, for the relationship to the cell cycle signature; 
OR of 8.7, 3.9, 3.5, and 2.4, respectively, to the plasma cell signature; OR of 4.8, 3.0, 2.4, and 2.2, respective-
ly, to the Treg signature; OR of 3.6, 2.4, 2.4, and 2.1, respectively, to the TNF signature; and OR of 9.0, 3.5, 
2.6, and 3.4, respectively, to the myeloid-secreted signature. In total, autoantibodies and low C were related 
to changes in 23 cell and process signatures (Figure 6B and Supplemental Table 19). SoC drugs influenced 
every cell and process module GSVA score. Corticosteroids were significantly associated with increases in 14 
cell and process signatures; the highest OR was 3.8 to the LDG signature. AZA was significantly associated 
with 9 signatures and had an OR of 4.8 to low NK cell signatures. Both MTX and MMF were associated with 
decreased lymphocyte signatures, especially plasma cells with OR of 0.394 and 0.211, respectively. (Figure 6C 
and Supplemental Table 20). Time, age, and clinical manifestations were associated with the fewest changes 
and the lowest ORs. Age > 50 was related to changes in 12 of  the 34 cell type and process module, and the 
time from onset of  disease was related to changes in 9 of  the 34 cell type and process modules. Notably, a time 
of  onset of  < 1 year was negatively associated with low B cells, and age > 50 was negatively associated with 
the plasma cell signature. Clinical manifestations were related to changes in 17 cell type and process modules 
with mucosal ulcers related to changes in 13 modules; predominantly, those associated with low T cell signa-
tures (Figure 6D and Supplemental Table 21).
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The logistic regression model determined that multiple variables influenced each GSVA enrich-
ment score, suggesting that simple linear regression between single variables and GSVA enrichment 
scores might not be useful. To test this, linear regression analysis was carried out between SLEDAI 
values, dsDNA titers, or C3 levels and the 34 cell and process gene modules in each ancestry (Supple-
mental Figure 6). Low or no relationship was found between SLEDAI and gene module GSVA scores. 
This is consistent with the finding that the individual clinical manifestations used to calculate SLEDAI 

Figure 5. Association of corticosteroid (CS) use and immunosuppressive therapy with changes in gene expression profiles. Female SLE patients (1566 
patients; GSE88884) were separated by ancestry and GSVA scores for each cell type or process module in patients receiving each therapy and were com-
pared with GSVA scores for each cell type or process module in patients taking all other therapies. The patient numbers are in parentheses. Sidak multiple 
comparisons test was used to determine significant differences between therapies. The mean difference in GSVA score related to the treatment is shown 
for therapies with P < 0.05. Two EA patients were receiving cyclophosphamide and are included in the immunosuppressive (IS) calculation for EA.
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(arthritis, rash, alopecia, mucosal ulcers, and vasculitis) had no or minimal relationship to changes in 
gene expression signatures, as determined by logistic regression. For single anti-dsDNA and C3, there 
was a relationship in all 3 ancestries to plasma cells, IFN, cell cycle, and LDG, but the predictive val-
ues of  these values alone were not above 0.15.

Figure 6. Stepwise logistic regression analysis determined the importance of ancestry, SoC drugs, and SLEDAI components to the gene expression 
profile. (A–D) CIRCOS visualization of odds ratios (OR) using stepwise logistic regression analysis for ancestry (A), serology (B), SoC drug (C), and time from 
onset of disease, age > 50, and SLE manifestation (D) to GSVA categories with P < 0.05 (P values, OR, and CI in Supplemental Tables 18–21). The thickness 
of the lines from the 26 variables to the GSVA categories represent the magnitude of the ORs. An interval graph was used to assign thickness of the lines 
where OR < 2, 1 pt; 2 ≥ OR < 3, 5pt; 3 ≥ OR < 10, 10pt; OR ≥ 10, 20pt. Red lines indicate OR above 1, and blue lines indicate OR below 1. OR between 0 and 1 
are represented as 1/odds ratio to accurately reflect the magnitude of the negative relationship to the GSVA enrichment score.
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Machine learning identifies the perturbed B cell axis in AA SLE. Ancestry was associated with significant 
changes in 23 of  34 gene expression modules, and additionally, the high OR for association of  gene expres-
sion signatures with serologic components suggested that one aspect of  ancestry was to bias the tendency 
to form multiple autoantibodies, including anti-RNPs. Comparison of  GSVA enrichment scores of  patients 
with and without specific therapies confirmed the logistic regression results, indicating that, while therapy 
had an important influence, ancestry was still a major contributor to gene expression profiles (Supple-
mental Figure 5). To confirm this conclusion, we carried out a machine learning approach to determine 
whether gene expression could predict AA in SLE and also to determine the major predictors of  ancestry. 
Because NAA signatures in this study were biased by substantial drug therapy, they were not used, whereas 
AA and EA had similar drug therapy profiles (Supplemental Table 22)

Logistic regression and 2 different machine learning algorithms were used to distinguish AA SLE 
patients from EA SLE patients using the gene expression values for the list of  752 genes comprising the 
modules used for GSVA (Supplemental Table 5). Logistic regression analysis, an elastic generalized linear 
model (GLM), and Support Vector Machine (SVM) were deployed to predict the ancestry status of  SLE 
samples and determine the top 25 predictors using the gene importance score. All 3 models showed good 
performance with minor differences in their highest and lowest accuracies in each data set. The SVM classi-
fier was the strongest performer, with 97% and 96 % accuracy in ILL1 and ILL2, respectively. To ensure that 
models were not picking irrelevant information while learning the details in the training data, 10-fold cross 
validation was performed on each data set separately and also combining the 2 data sets. In both cases, the 
SVM outperformed the other classifiers with accuracy of  96% (Figure 7A and Table 1). The genes used to 
classify AA SLE compared with EA SLE reflect the perturbed B cells axis in AA SLE (Figure 7B). In a sep-
arate analysis, the same approach was used with the entire Illuminate data sets including the NAA subjects, 
and very similar results were obtained (Supplemental Figure 7).

Discussion
This work demonstrated the significant impact of  ancestry on gene expression patterns in SLE and by 
implication on the biologic pathways driving disease in patients of  each ancestry. The increased plasma 
cell, IFN, Treg, and inflammatory cytokine signatures were most strongly related to the AA ancestral bias 
of  having increased anti-RNP/SM autoantibodies and multiple autoantibodies. Additionally, AA was 
independently associated with plasma cells and Ig transcripts when modeled alongside autoantibodies, sug-
gesting that AA SLE patients may have higher background levels of  plasma cells. Furthermore, machine 
learning algorithms accurately identified AA SLE patients from their gene expression data and identified 
genes associated with B cells as important for distinguishing AA SLE. This is further evidence of  the per-
turbed B cell lineage described in AA SLE patients (13, 19, 25, 40, 45), which relates to the increase in the 
healthy AA B cell axis and suggests a greater tendency for epitope spreading of  the autoantibody repertoire.

Part of  the ancestral variation in autoantibody specificities in SLE may be linked to HLA alleles, as 
demonstrated by the association between HLA-DRB1*03:01 and SSA/SSB autoantibodies in EA SLE 
patients (46). It is possible that there are AA predominant alleles that are strongly associated with the 
production of  anti-RNP/Sm autoantibodies, as has been shown for the different AA and EA HLA alleles 
and their relationships to systemic sclerosis autoantibody profiles (47). These autoantibody profiles may 
be more strongly associated with RNP/Sm than SLE disease. One effort to address this question found a 
weak but positive association between the AA-associated SLE risk allele DRB1*15:03 and anti-RNP/SM 
autoantibodies (48). Further work including the inclusion of  more AA-specific alleles in GWAS platforms, 
more AA SLE patients and controls, and standardized autoantibody testing may be needed to determine 
significant associations, as GWAS efforts in general have not included sufficient AA SLE patients (49).

Another potential explanation for increased autoantibodies to RNP/Sm in AA SLE patients may not 
have its etiology in the specificity of  the antigen receptor/MHC interaction, but in the increased develop-
ment of  antibodies in general. AA HC have increased titers of  antibodies compared with EA in response to 
vaccination to rubella (50), pertussis (51) and influenza (52). AA HC also have increased levels of  IgG, IgA, 
and IgM compared with EA HC (53). Furthermore, multiple myeloma and its precursor disease, mono-
clonal gammopathy of  undetermined significance, is increased in AA compared with EA (54), and these 
conditions develop from aberrant B cell differentiation into malignant plasma cells. Notably, many AA 
SLE patients in the current study had increased B cells compared with HC, HC AA had increased B cells 
compared with HC EA, and increased B cells in AA compared with EA has been previously reported (55).  
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These data suggest some dysregulation in the B cell compartment, as there were no increased T cells asso-
ciated with AA ancestry and T cells would be just as likely to be affected by the proportional decrease in 
myeloid cells detected in AA SLE patients. Because these ancestral differences in antibody formation, both 
healthy and aberrant, are not specific to SLE, it may be that the perturbed B cell axis in AA has its etiology 
in biogeographical immune-related allelic diversity (56) and could be directly related to antibody produc-
tion and not disease phenotype. Finally, several ancestral-related genes divergent between AA and EA 
were differentially expressed between AA and EA HC, including CXCL8, CXCL1, CXCL5, STAT1, CEPBP, 
ITGAM, and CD58 (15), providing evidence that ancestral-associated alleles may contribute to the gene 
expression profile. However, it should be noted that specific genes contributing to increased B cell activity 
and antibody generation have not yet been delineated.

AA SLE patients had decreased granulocyte, monocyte, pDC, and IL-1 signatures, and this is 
likely related to the ancestry-associated Duffy-null polymorphism (ACKR1) and benign neutropenia 
(36, 57), as healthy AA also had these signatures decreased compared with healthy EA. Importantly, 
a decrease in these signatures was not reflected in a decrease in signatures for myeloid inflammatory 
cytokines in AA SLE patients, and this suggests that, when HC of  similar ancestry are used for com-
parison, signatures for granulocytes, monocytes, pDC, and IL-1 will not be different between AA SLE 
patients and controls. Increased transcripts associated with platelets were detected in both healthy and 
AA SLE in this study and have been previously reported (58), Reticulocytosis, which may account for 

Figure 7. A machine learning approach predicted AA from EA SLE patients and demonstrated the perturbed B cell 
axis in AA SLE. (A) SLE patients were classified as AA using logistic regression, generalized linear models (GLM), and 
support vector machine (SVM) classifiers. ROC curve for logistic regression and the 2 different machine learning models 
in GSE88884 (ILL1 and ILL2 combined). (B) Top 25 gene predictors determined by SVM model.
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the erythrocyte gene transcripts detected in our study, may be augmented in AA SLE patients because 
the ancestral G6PD deficiency may lead to induced hemolysis secondary to infection and leukocyte 
phagocytosis (59). Although there was no difference in AA and EA T cell GSVA enrichment scores, 
several genes reported to be hypomethylated in AA compared with EA CD4+ T cells were also over-
expressed in AA compared with EA in both healthy and 3 of  4 SLE comparisons, including IL32, 
CDKN1A, SLC2A1, and WIPI2. We were not able to confirm the apoptosis-related genes reported to be 
hypomethylated in CD4+ T cells, as only CDKN1A and TNFRSF10A (2 SLE data sets) of  the 10 apop-
tosis-related genes were differentially expressed between AA and EA controls or SLE patients (60). 
This may be because of  the difficulty in detecting T cell–specific signatures in WB.

Whereas all of  the increased LDG and monocyte signatures initially detected as increased in NAA 
turned out to be associated with corticosteroid usage, NAA was positively associated with increased inflam-
masome, erythrocytes, and the unfolded protein response and negatively associated with IFN, T cells, and 
MHC II. The NAA association with erythrocytes is of  note, as an association of  SLE and erythrocyte 
transcripts has been reported but could be related to ancestral background (27). EA was positively associat-
ed with low platelet, myeloid-secreted, inflammasome, NK cell, and SNOR low down signatures, a set of  
genes overexpressed to SLE patients in the ILL1 and ILL2 clinical trials that were initially grouped by the 
first principal component analysis (PCA) with HC but could distinguish this group from HC if  compared 
without the other SLE patients.

Previous work has suggested a strong association between the IGS and autoantibodies (22) and the 
association of  dsDNA autoantibodies with increased plasma cells (61) and Tregs (62) by flow cytometry. 
Our findings demonstrate that it is not the IGS that is ancestry dependent per se, as previously reported 
(26), but the presence of  autoantibodies to RNP/Sm and the increased combination of  autoantibodies that 
is associated with ancestry. Our findings demonstrate that AA patients are likely to have multiple autoanti-
bodies in combination with anti-RNP autoantibodies, and in patients of  any ancestry, more autoantibodies 
and anti-RNP autoantibodies were associated not only with an increased IGS and plasma cell signatures, 
but also Treg, cell cycle, and myeloid inflammation signatures. Previous work that did not find an increased 
association of  anti-RNP with the IGS in AA SLE patients (40) is likely related to considering the autoan-
tibodies one at a time instead of  in combination. In addition to increasing our understanding of  AA SLE, 
this work has strong implications for using anti-dsDNA to balance cohorts for clinical trial enrollment. The 
AA SLE patients entered into ILL1 and ILL2 looked similar by anti-dsDNA autoantibodies, but our work 
showed that this served to severely underestimate the contribution to the transcriptome and potentially to 
the disease severity of  AA SLE patients. Multiple studies have demonstrated more aggressive disease and 
increased morbidity and mortality for AA SLE patients (9–12), and further work to understand whether 
the perturbed B cells axis and increased autoantibody diversity are directly related to the increased disease 
severity is required. Patients with IgG4-related disease who have more autoantibody diversity have more 
severe disease (63), suggesting a relationship between autoantibody diversity and increased disease activity. 
Because being single positive (for the 5 autoantibodies measured) was the most common finding for the 
1100 EA SLE patients in the ILL1 and ILL2 phase III clinical trials, it suggests that anti-dsDNA is a good 
metric for EA autoantibodies but not AA or NAA autoantibodies.

Importantly, this work considered the combinations of  the 5 autoantibodies to determine the effect 
of  multiple autoantibodies on transcriptomic signatures. The significantly increased IGS in SLE patients 
of  all ancestries with multiple autoantibodies, and the almost complete lack of  the IGS in the 273 SLE 
patients without anti-RNP, -dsDNA, -Sm, -SSA, or -SSB provides support for the hypothesis that the IGS 
arises from downstream pattern recognition receptor signaling induced by endosomal TLRs binding to 

Table 1. Classification metrics of machine learning classifiers

Model AUC Accuracy Sensitivity Specificity Kappa

Logistic 
Regression

0.94 0.92 0.84 0.93 0.70

GLM 0.97 0.95 0.78 0.98 0.80

SVM 0.91 0.96 0.82 0.98 0.83

 

https://doi.org/10.1172/jci.insight.140380


1 4insight.jci.org      https://doi.org/10.1172/jci.insight.140380

R E S E A R C H  A R T I C L E

single- and double-stranded RNA and DNA containing immune complexes, as previously suggested (64). 
Autoantibody profiles may be heritable, and autoantibody associations for AA SLE patients have been 
demonstrated for alleles of  LRRC20, LPAR1, EFNA5, and VSIG2 to anti-SSB, anti-SSA/Sm, anti-RNP, 
and anti-RNP/Sm–, respectively (65). IFN appears to positively regulate TLR7 signaling and negatively 
regulate TLR9 signaling, suggesting that, in the case of  chronic stimulation, RNA ligands for TLR7 will 
augment the IGS and DNA ligands will dampen the IGS (66, 67). Another potential contribution to the 
increased IFN signatures in patients with anti-RNP autoantibodies may be the extrusion of  interferono-
genic, oxidized mitochondrial DNA by neutrophils in response to anti-Sm/RNP autoantibodies (68, 69). 
Anti-RNP, -SSA, -Sm, and -SSB autoantibodies were also found more commonly in circulating immune 
complexes compared with anti-dsDNA autoantibodies, and immune complex endocytosis by Fc receptors 
may lead to efficient engagement of  TLRs in endosomes and downstream IFN production (70).

This study highlights the importance of  appropriate controls for gene expression studies, as the ances-
tral transcriptomic backbone may be emphasized depending on HC comparators. Two research groups 
have divided pediatric (27) and adult SLE patients (29) into 7 molecular groups based on their transcrip-
tomic signatures, although the methodology for grouping and the resulting groups were not similar. These 
analyses suggest that different mechanisms and pathways may lead to similar clinical outcomes. Of  note, 
there were no significant differences in SLEDAI values between the molecular groups (29). Our work sug-
gests that some of  these transcriptomic differences are likely related to ancestry or SoC medications and 
therefore may not be reflective of  different molecular mechanisms of  SLE. IFN, plasma cells, inflamma-
tion, cell cycle, and Treg signatures are highly related to autoantibodies and low C, distinct signs of  SLE 
disease, but it will also be important to determine signatures related to other quantifiable metrics of  SLE 
disease occurring in patients with low titers of  autoantibodies. Our logistic regression analysis showed very 
low ORs for changes in signatures associated with manifestations other than serological measurements. 
This may suggest that disease processes manifesting in tissues may not change peripheral blood gene sig-
natures to the extent detected for autoantibodies and low C, and it has implications for using molecular 
signatures to group patients for entry into clinical trials or for treatment.

The ancestral differences between males also appeared similar to the ancestral differences between 
females, suggesting the ancestral component to gene expression will be more important to consider than 
male/female differences. Major differences were reported in 1 lupus cohort between male and female SLE 
patients with respect to renal involvement and serological manifestations (71), but we detected few gene 
expression differences between males and females of  EA ancestry when matched for SoC drugs.

SoC therapies affected every gene expression signature, and accounting for these effects is necessary to 
interpret blood transcriptomic signatures. SoC drug effects on the transcriptome were confirmed by reports in 
the literature for the elimination of  circulating plasma cells by MTX and MMF (72, 73), elimination of  NK 
cells by AZA (74), and an increase in circulating neutrophils by corticosteroids (75). In what may seem to con-
trast with previous reports (76, 77), we detected no association between the IGS and antimalarials; however, 
previous work looked at IFN protein and not the downstream signature, which may be retained in monocytes 
after the removal of  IFN (33). NSAIDs have also been shown to block caspases and inflammation (78), and 
although the change in GSVA score was not greater than 0.2, there did appear to be a significant decrease in 
LDGs and the antiinflammation signature, at least in EA SLE patients. Corticosteroid usage had a significant 
effect on most myeloid-related gene signatures, and the most potent effect was on the LDG signature with an 
OR of 3.8. This relationship was also detected in SLE patients with SLEDAI values of  zero, suggesting that 
it may not be related to increased disease activity, leading to corticosteroid use. This finding is in contrast to 
the proposed inflammatory role of  LDGs in autoimmunity obtained from in vitro experiments (39, 68, 79). 
The relationship of  corticosteroids to LDGs has strong implications against using this signature as a measure 
of  disease severity or in interpreting LDGs as playing a role in worsening disease, as worsening disease might 
prompt an increase in corticosteroid doses.

It is important to emphasize that common signatures specific for SLE were detected and included genes 
associated with plasma cell, Ig, IGS, anti-inflammation, cell cycle, Treg, DC, TNF, and myeloid-secreted signa-
tures. The balance of these SLE-related abnormalities was different in the various ancestral groups, and their 
prominence was clearly influenced by SoC medications. Despite this, when these influences were considered 
and mitigated, a set of molecular abnormalities consistent with SLE was discerned, as has been previously 
suggested (27, 33, 80). However, the interpretation of perturbations in gene expression profiles in subjects with 
SLE requires that all the individual influences, including ancestry, drug therapy, and serological manifestations, 
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be considered, as each can have complex and often contradictory effects. Results from single cell technology 
will also be affected by ancestry and SoC therapy, and it will be important to separate out cell populations prom-
inent in ancestries and induced or repressed by concomitant drugs, from cells actively participating in disease 
processes. Deconvolution of transcriptome data using ancestral, SoC drug, serologic impact, and SLE-specific 
signatures has the potential to stratify patients more effectively for therapy or entrance into clinical trials.

Methods
SLE patients. Two large phase III clinical trial databases with baseline microarray analysis were analyzed 
(GSE88884; ref. 31). The ILL1 and ILL2 clinical trials had microarray expression data for 1566 female 
patients of  self-described ancestry: AA (n = 216), EA (n = 1118), and NAA (mostly from South America [n 
= 232]; top 3 countries of  origin Peru [n = 81], Ecuador [n = 30], and Guatemala [n = 27]) and 124 male 
patients of  self-described ancestry: AA (n = 14), EA (n = 93), NAA (n = 17). Patients of  other ancestries 
were removed to avoid low numbers of  patients. Ancestral backgrounds were split evenly between the ILL1 
and ILL2 data sets, allowing for a training and test set to determine gene expression differences. All patients 
had a positive ANA test and similar disease activity and percentage of  patients with anti-dsDNA (30, 32) 
(Supplemental Table 1). The trials excluded patients with progressive lupus nephritis. Most patients recruit-
ed had a mixture of  6 SLE manifestations: arthritis (86.4%), anti-dsDNA (57.5%), low C (40.0%), alopecia 
(58.9%), rash (68.3%), and mucosal ulcers (31.7%) (Supplemental Table 2). The clinical trial database was 
made available by M.D. Linnik from Lilly. The SLE data set GSE45291 was also analyzed as 2 cohorts sep-
arated by SLEDAI. The first cohort was 73 AA and 71 EA SLE patients with the same range of  SLEDAI 
scores (2–11), similar mean SLEDAI (AA 3.78 ± 2.46; EA 3.53 ± 2.08) and mode of  SLEDAI (2). The 
second cohort were 25 AA and 75 EA, all with SLEDAI values of  zero (Supplemental Table 3). M.A. Petri 
(Johns Hopkins) provided clinical and SoC drug information for data set GSE45291.

Gene expression data sets. Data were derived from publicly available data sets on Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo/). Raw data sources are as follows: GSE88884 female WB ILL1 (10 
female HC, 798 SLE [540 EA, 101 AA, 157 NAA]; all with SLEDAI ≥ 6), GSE88884 female WB Illuminate 2 
(ILL2; 7 female HC, 768 female SLE [578 EA, 115 AA, 75 NAA]; all with SLEDAI ≥ 6), GSE88884 male WB 
ILL1 SLE (5 male HC, 59 male SLE [6 AA, 42 EA, 11 NAA]), GSE88884 male WB ILL2 (4 male HC, 65 male 
SLE [8 AA, 51 EA, 6 NAA]); GSE45291 WB (9 female HC, female SLE [73 AA, 71 EA with SLEDAI 2–11]), 
GSE45291 WB (9 female HC, female SLE [25 AA, 75 EA]; all with SLEDAI equal to zero), GSE35846 WB 
from healthy females (55 EA, 22 AA), and GSE111368 WB from healthy females (10 AA, 57 EA).

Quality control and normalization of  raw data files. Statistical analysis was conducted using R and relevant Bio-
conductor packages. For data sets GSE88884 (Affymetrix Human Transcriptome Array 2.0) and GSE45291 
(Affymetrix HT HG-U133+ PM), nonnormalized arrays were inspected for visual artifacts or poor RNA 
hybridization using Affy QC plots. To increase the probability of identifying DEGs, analysis was conducted 
using normalized data sets prepared using both the native Affy chip definition files, followed by custom Brain 
Array Entrez chip definition files (CDFs) maintained by the University of Michigan Molecular and Behavioral 
Neuroscience Institute (Ann Arbor, Michigan, USA). The Affy CDFs include multiple probes per gene and 
almost twice as many probes as BA CDFs. Whereas Affy chip definition files can provide the greatest amount 
of variance information for Bayesian fitting, the Brain Array chip definition files are used to exclude probes 
with known nonspecific binding and those shown by quarterly BLASTs to no longer fall within the target gene. 
Illumina CDFs were used for the 2 Illumina HumanHT-12 V4.0 data sets (GSE35846 and GSE111368).

DE. Guanine Cytosine Robust Multi-Array Analysis (GCRMA) normalized expression values were 
variance corrected using local empirical Bayesian shrinkage before calculation of  DE using the eBayes 
function in the open source BioConductor LIMMA package (81) (https://www.bioconductor.org/
packages/release/bioc/html/limma.html). Resulting P values were adjusted for multiple hypothesis 
testing and filtered to retain DE probes with an FDR < 0.05 (82).

Determination of  female and male patients and controls. Log2 expression values were used to determine sex 
of  unknown HC and to compute sex module scores using the formula sex module = XIST log2 expression 
+ TSIX log2 expression – (UTY log2 expression + RPS4Y1 log2 expression + USP9Y log2 expression). Female 
controls scored above zero and male controls scored below zero. Five SLE patients with reported sex (3 male 
and 2 female) in GSE88884 ILL1 clinical trial database were found to have expression of  genes consistent 
with the opposite sex (Supplemental Figure 8). For all analyses shown in this paper, patients were analyzed 
with their reported sex in the Illuminate clinical trial database. For Supplemental Figure 4 analysis of  the gene 
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expression differences between males and females, 3 males with inconsistent sex chromosome gene expres-
sion were removed and did not change the results.

GSVA. GSVA (35) (V1.25.0) is an open source software package available from R/Bioconductor (35) 
and was used as a nonparametric, unsupervised method for estimating the variation of  predefined gene 
sets in samples of  microarray expression data sets (www.bioconductor.org/packages/release/bioc/html/
GSVA.html). The inputs for the GSVA algorithm were a gene expression matrix of  log2 microarray expres-
sion values for predefined gene sets coexpressed in SLE data sets (Supplemental Table 5). GSVA scores 
were calculated nonparametrically using a Kolmogorov Smirnoff–like (KS-like) random walk statistic and 
a negative value for a particular sample and gene set, meaning that the gene set has a lower expression 
than the same gene set with a positive value. The enrichment scores were the largest positive and negative 
random walk deviations from zero, respectively, for a specific sample and gene set. GSVA calculates enrich-
ment scores using the log2 expression values for a group of  genes and normalizes these scores between –1 
(no enrichment) and +1 (enriched).

Enrichment modules containing cell type and process-specific genes were created through an iterative 
process of  identifying DE transcripts pertaining to a restricted profile of  hematopoietic cells in 13 SLE 
microarray data sets and checked for expression in purified T cells, B cells, and monocytes to remove tran-
scripts indicative of  multiple cell types, as previously described (33). The TCRA, TCRB, TCRAJ, TCRD, 
TCRG, and Ig gene lists were taken from the Affymetrix HTA2.0 chip definition. SNOR down low were 
the 7 most decreased transcripts and SNOR up low were the 7 most increased transcripts compared with 
HC for 348 female patients from ILL1 and ILL2 SLE patients that did not separate from HC by principal 
component analysis (FDR < 0.005). The LDG signature was taken from purified LDGs DE to HC and 
SLE neutrophils (79) and consists mainly of  neutrophil granule proteins from module B as described in 
Kegerreis et al. (43). The overlap in genes between some signatures was intentional and used to check that 
signatures were behaving cohesively in patients.

WGCNA. WGCNA (83) is an open source R package (https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/WGCNA/).

Log2 normalized microarray expression values for the GSE88884 data set cohorts ILL1 and ILL2 were 
filtered using an IQR to remove saturated probes with low variability between samples and used as inputs to 
WGCNA (V1.51). Adjacency coexpression matrices for all probes in a given set were calculated by Pearson’s 
correlation using signed network type–specific formulae. Blockwise network construction was performed 
using soft threshold power values that were manually selected and specific to each data set in order to pre-
serve maximal scale free topology of  the networks. Resultant dendrograms of  correlation networks were 
trimmed to isolate individual modular groups of  probes, labeled using semirandom color assignments, based 
on a detection cut height of  1, with a merging cut height of  0.2, with the additional use of  a partitioning 
around medoids function. Correlation to ancestry was performed using Pearson’s r against Module eigen-
genes (MEs), defining modules as either positively or negatively correlated with those traits as a whole.

Gene overlap. Gene overlap is an open source R bioconductor package (www.bioconductor.org/
packages/release/bioc/html/GeneOverlap.html) used to test the significance of  overlap between 2 sets 
of  gene lists. It uses the Fisher’s exact test to compute both an OR and overlap P value. For comparison 
of  data sets on different array platforms (Illuminate versus Affymetrix), FDR < 0.2 was used.

Stepwise logistic regression modeling. SAS 9.4 was used for stepwise logistic regression. GSVA enrichment 
scores greater or less than HC averages ± 1 SD were determined, and SLE patients were assigned a 1 or 0 based 
on having a signature greater or less (low) than HC. These scores were used as 34 dependent binary variables to 
be modeled individually as the outcome variable to 26 independent binary variables: ancestry (AA, EA, NAA), 
drugs (corticosteroids, anti-malarials, NSAIDs, AZA, MTX, MMF, Cyclophosphamide), SLE manifestations 
(rash, arthritis, mucosal ulcers, vasculitis, alopecia), autoantibodies and complement (anti-RNP+dsDNA+ plus 
any of SSA, SSB, or Sm; anti-RNP+dsDNA– plus any of SSA, SSB, or Sm; anti-RNP–dsDNA+ plus any of  
SSA, SSB, or Sm; and SSA, SSB, or Sm, low C3, or low C4) and time (age > 50, time from onset of disease [≤1 
year, >1 year ≤ 5 years, > 5 years ≤ 10 years, > 10 years]). Spearman’s correlation coefficients were determined 
between variables before stepwise logistic regression in order to determine whether groups were too similar to 
give independent information to the model (colinearity). The ethnic term Hispanic as a general category was 
removed since it had an rs > 0.5 compared with NAA (Supplemental Table 17). The stepwise approach was 
used to produce the statistically significant model. The results of any model that violated the Hosmer Leme-
show test were discarded. The P values, OR, and CI are listed in Supplemental Tables 18–21.
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CIRCOS. CIRCOS (V0.69.3) software was used to visualize the OR determined by stepwise logistic 
regression analysis. OR do not go below zero, and a change from an OR of  0.5 to 0.25 is the same relative 
change as that between 2.0 and 4.0. For representative visualization, OR between 0 and 1 were converted 
to the 1/X value where X is an OR between 0 and 1. An interval graph was used to assign thickness of  the 
lines where OR < 2, 1pt; 2 ≥ OR < 3, 5pt; 3 ≥ OR < 10, 10pt; OR ≥ 10, 20pt.

Machine learning analysis. Logistic regression, an elastic GLM, and SVM were used to predict the ances-
try status of  SLE samples and determine the top 25 predictors using the gene importance score. R was used 
for implementation, as it is an open source statistical language with access to machine learning algorithms. 
Logistic regression, GLM, and SVM were implemented using glmnet, nnet, and e1071 R packages, respec-
tively. The performance of  the models was evaluated by 10-fold cross validation. This method avoids the 
problem of  over-fitting by using all the observations for both training and validation by randomly assigning 
each patient to 1 of  10 groups. The model was fit using the first 9 folds for training and validated using the 
remaining 10th fold for testing. Similarly, each fold was validated. Performance metrics such as sensitivity 
and specificity were determined by averaging class probabilities from each fold. Receiver operating charac-
teristic (ROC) curves and AUC were plotted and measured for each model using R.

Data availability. All microarray data sets in this publication are available on the NCBI’s database Gene 
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). The data set accession numbers are 
GSE88884, GSE45291, GSE35846, and GSE111368.

Code availability. All bioinformatic software used in this publication is open source, freely available 
for R. Additionally, example code used in this paper for LIMMA, GSVA, and WGCNA are available 
at figshare, www.figshare.com. File names are “AMPEL BioSolutions LIMMA Differential Expression 
Analysis Code”, “AMPEL BioSolutions Gene Set Variation Analysis Code”, and “AMPEL BioSolutions 
Weighted Correlation Network Analysis Code”.

Statistics. GraphPad PRISM 8 version 8.2.1 was used to perform mean, median, mode, SD, Tukey’s mul-
tiple comparisons test, Sidak multiple comparisons test, linear regression analysis, and unpaired, 2-tailed t test 
with Welch’s correction. P < 0.05 were considered significant. The Fisher’s exact test was performed in R.

Study approval. Publicly available data sets were used for this work. The IRB approvals are as follows. 
Data set GSE88884: Clinical Trials NCT01205438 and NCT01196091 were conducted by Eli Lilly and 

Company. The protocol was approved by each IRB, subject to applicable laws and regulations and ethical prin-
ciples consistent with the Declaration of Helsinki. IRB approval was obtained and written informed consent at 
each of the 186 clinical trial sites for NCT01205438 and the 192 study locations for NCT01196091 (31).

Data set GSE35846: All samples were obtained under written informed consent for participation in 
the Center for Health Discovery and Well Being study with the approval of  the IRBs of  Emory University 
(Atlanta, Georgia, USA) and the Georgia Tech (Atlanta, Georgia, USA) (84).

Data set GSE45291: The study protocol for SPARE (Study of  biological Pathways, disease Activity 
and REsponse markers in patients with SLE) was approved by the Johns Hopkins University School of  
Medicine IRB. All patients provided written informed consent (28).

Data set GSE111368: The study was approved by the NHS National Research Ethics Service, Outer West 
London REC (09/H0709/52, 09/MRE00/67). Patients or their legally authorized representatives provided 
informed consent. Additional adult HC were recruited as part of  a separate study and consented to their 
samples being used in additional studies (Central London 3 Research Ethics Committee, 09/H0716/41). 
Informed consent was obtained from all participants, and all relevant ethical regulations were followed (85).
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