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Single-cell sequencing technologies have emerged to address new and longstanding
biological and biomedical questions. Previous studies focused on the analysis of bulk
tissue samples composed of millions of cells. However, the genomes within the cells of
an individual multicellular organism are not always the same. In this study, we aimed to
identify the crucial and characteristically expressed genes that may play functional roles
in tissue development and organogenesis, by analyzing a single-cell transcriptomic atlas
of mice. We identified the most relevant gene features and decision rules classifying
18 cell categories, providing a list of genes that may perform important functions in
the process of tissue development because of their tissue-specific expression patterns.
These genes may serve as biomarkers to identify the origin of unknown cell subgroups
so as to recognize specific cell stages/states during the dynamic process, and also be
applied as potential therapy targets for developmental disorders.

Keywords: cell type, expression rule, single-cell transcriptomics, tissue development, multi-class classification

INTRODUCTION

The increasing development of next-generation sequencing technologies has prompted great
research progress in the areas of genomics, epigenomics, and transcriptomics (Schuster, 2007).
Numerous notable achievements have been made through macro-scale studies. Nevertheless,
scientists have begun to focus on the subtle differences among individual cells originating
from the same organ or tissue to identify cellular heterogeneity, which plays crucial functional
roles in cancers or other complex diseases (Meacham and Morrison, 2013). Cutting-edge
single-cell sequencing technologies have emerged to address longstanding biological and
biomedical questions.

The human body is composed of approximately 1013 single cells that live harmoniously in
various sites and tissues (Bianconi et al., 2013). Each single cell is the fundamental unit of living
organisms, and it plays a unique role in maintaining normal biological processes. In diseases such
as cancer, the abnormal alteration of one single cell can initiate the progression of tumorigenesis
and the subsequent downfall of the entire organism (Nowell, 1976). Previous studies usually
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focused on the analysis of bulk tissue samples, which are
composed of millions of cells, to elucidate the mechanism and
establish therapeutic strategies for treating diseases. However, the
genomes within the cells of an individual multicellular organism
are not always the same. Hence, identifying the key factors
from averaged data sets is difficult. The recent developments
in single cell sequencing techniques have provided insights into
the detailed and comprehensive research of individual cells
(Grün and van Oudenaarden, 2015).

Identifying cell components and cell types to understand cell
functions is important because many organs comprise cells of
various types and with interdependent functions. In addition, cell
functions vary depending on the cells’ active or inhibited state,
and they cause changes during organ development (Serewko
et al., 2002). These factors cause huge challenges in classifying
and cataloging the various cells in the human body. All adult
diverse cells originate from a single zygote through a series of
cell divisions and fate decisions in which one cell transitions from
one type to another. The changes during embryonic development
are driven by intricate gene expression programming (Maston
et al., 2006), which reveals specific expression patterns in different
types of cells at different development stages. At present, we can
assay the expression profiles of every gene within genomes across
thousands of individual cells in one experiment. Hence, we are
capable of rigorously classifying cell types, defining the potential
function of each cell type, and predicting the behavior of cells
during biological development.

Many important genes play crucial roles in tissue development
or cell differentiation with specific expression patterns. For
instance, laminin can mediate tissue-specific gene expression
in mammary epithelia in the presence of lactogenic hormones
(Streuli et al., 1995). The expression level of transcription
factor from zinc finger family turns out to be stable in
hematopoietic stem cells but they turns out to have quite different
expression patterns in the differentiated cells like erythroid cells,
and megakaryocytes (Orkin, 2004). In various mesoderm- and
endoderm-derived tissues, genes in the GATA family play a
critical role in adjusting tissue-specific gene expression (Kelley
et al., 1993; Laverriere et al., 1994). The expression levels of toll-
like receptors and some related genes, such as CD14, MyD88,
and LY96, vary across different adult human tissues, including
the brain, heart, placenta, prostate, and trachea (Nishimura
and Naito, 2005). These genes and their specific expression
patterns during development and differentiation may be applied
as biomarkers to recognize specific cell stages/states during the
dynamic process.

On the basis of existing single-cell profiling datasets from
a transcriptomic atlas of mice (Tabula Muris Consortium,
2018), we applied our newly presented computational approach
to select crucial and characteristically expressed genes, which
may perform essential functions in tissue development and
organogenesis. We constructed some accurate classifiers that
can group millions of cells into 18 tissue types depending
on their gene expression profiles. We applied the minimum
redundancy maximum relevance (mRMR) (Peng et al., 2005)
and Monto Carlo feature selection (MCFS) (Draminski et al.,
2008) methods to identify the most relevant gene features and

decision rules classifying 18 cell categories and then ranked
the features characterizing gene expression levels (Peng et al.,
2005; Draminski et al., 2008). The selected features provided
a meaningful list of genes that may have important functions
during tissue development because of their specific expression
patterns in distinct tissues. Further research of these genes
may clarify the detailed mechanism of tissue development. In
addition, these genes can be used as biomarkers to identify the
origin of some unknown subgroups of cells. They can also be
applied as potential targets for developmental disorders.

MATERIALS AND METHODS

Datasets
We downloaded the single-cell expression profiles of 53,760
mouse cells in 18 tissues from Gene Expression Omnibus under
accession number GSE109774 (Tabula Muris Consortium, 2018).
The sample sizes of the tissues are listed in Table 1. The
expression levels of 23,433 genes were measured using NovaSeq.
We aimed to investigate the tissue differences at the single-
cell level.

Feature Selection
We designed a rigorous feature selection procedure for evaluating
features. The purpose was to remove unimportant features
for classifying cells from different tissues and rank remaining
features according to their importance. First, each cell was
represented in a vector of expression values of 23,433 genes,
which were reduced to 5,451 by discarding features with low
mutual information (MI) to targets. Second, remaining features
were further reduced to 3,384 by using Boruta feature selection
(BFS) (Kursa and Rudnicki, 2010). Third, these features were
ranked by using mRMR (Peng et al., 2005) and MCFS (Draminski

TABLE 1 | Sample size of each tissue.

Index Tissue Sample size

1 Bladder 1638

2 Brain microglia 4762

3 Brain neurons 5799

4 Colon 4149

5 Fat 5862

6 Heart 7115

7 Kidney 865

8 Liver 981

9 Lung 1923

10 Mammary 2663

11 Marrow 5355

12 Muscle 2102

13 Pancreas 1961

14 Skin 2464

15 Spleen 1718

16 Thymus 1580

17 Tongue 1432

18 Trachea 1391
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et al., 2008), resulting in two feature lists, respectively. Finally, on
the basis of the ranked feature lists, incremental feature selection
(IFS) (Liu and Setiono, 1998) with a supervised classifier was used
to select the optimum features for classifying different cell types.

Evaluating Features by MI
Important criteria should be designed to determine important
features according to meaningful correlations between variables
and outputs. The direct way to measure the importance of
features was to evaluate their correlations to targets. MI is a
widely used and accepted measurement to assess features in this
regard. The MI value for two variables x and y can be calculated by

I(x, y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (1)

where p(x) and p(y) stand for marginal probabilistic density,
and p(x, y) stands for joint probabilistic density. Here, for each
feature, we calculated its MI value to targets (class labels) and
selected those with MI values larger than 0.02. Remaining features
would be poured into the following feature selection steps.

Boruta Feature Selection
In this step, features with MI values > 0.02 were analyzed
by BFS (Kursa and Rudnicki, 2010). It is a wrapper feature
selection method based on random forest (RF) (Breiman, 2001)
that evaluates feature importance by comparing the features with
randomized ones. BFS is different from most of the other wrapper
feature selection algorithms that achieve minimal errors for a
supervised classifier on a small subset of features, that is, BFS
selects all features that may be either strongly or weakly relevant
to outcome variables.

BFS mainly creates a shuffled version of original features
and then uses an RF classifier to measure the importance
score of the combined shuffled and original features. Only
those features with importance scores higher than those of
the randomized features are selected, and these significantly
correlated features are considered relevant to the outcome
variables. The difference between the RF and BFS importance
scores lies in the introduction of the statistical significance
of variable importance. A random permutation procedure is
repeated to obtain statistically robust important features. BFS
proceeds as follows by repeating multiple iterations:

1. Randomness is added to the given data set by shuffling
original features.

2. The shuffled data set and original data set are combined.
3. An RF classifier is trained on the combined data set, and

the importance of each feature is evaluated.
4. The Z-scores of the original and shuffled features

are calculated. The Z-scores of individual features are
calculated as the mean of the importance scores divided by
the standard error. Each real feature is evaluated in terms of
whether it has a higher Z-score than the maximum shuffled
feature. If so, this feature is tagged as important; otherwise,
it is unimportant.

5. Finally, the algorithm stops when one of the two following
conditions is met: (1) all features are either tagged as

“unimportant” or “important”; (2) a predefined number of
iterations is reached.

In this study, we used the Python implementation of BFS
from https://github.com/scikit-learn-contrib/boruta_py, along
with the default parameters. Selected features were evaluated by
mRMR and MCFS methods, respectively.

Minimum Redundancy Maximum Relevance
mRMR (Peng et al., 2005; Chen et al., 2017, 2018; Li et al., 2019) is
a feature selection method based on MI. The merit of this method
is that it considers both the relevance between input features
and targets and the redundancy between features themselves.
To indicate the importance of features, they are ranked in a
feature list, named mRMR feature list. The list is generated
by repeatedly selecting features from the feature pool until all
features have been selected. In detail, for any feature in the
feature pool, calculate its MI value to targets and its average MI
value to already-selected features. Then, the difference of above-
mentioned two values is computed. The feature with maximum
difference is selected and appended to the list. In this study, the
mRMR feature list was denoted by Fm.

Monto Carlo Feature Selection
Different from mRMR method, MCFS (Draminski et al., 2008;
Cai et al., 2018; Li et al., 2018; Chen et al., 2019) method evaluates
the importance of features in a completely different way. This
method is based on decision trees. First, it generates m bootstrap
sets and t feature subsets from the original dataset. Then, one tree
is grown for each combination of m bootstrap sets and t feature
subsets. In total, m × t decision trees are grown. On the basis of
these decision trees, we calculated the relative importance (RI)
score for each input feature. The RI score is calculated in terms of
how frequent a feature is involved in growing the decision trees,
which can be computed by:

RIf =

mt∑
τ=1

(wAcc)uIG(nf (τ))

(no.in nf (τ)

no.in τ

)v
(2)

where f stands for a feature, wAcc indicates the weighted accuracy
of the decision tree τ, IG(nf (τ)) is the information gain of node
nf (τ), no.in nf (τ) is the number of samples in nf (τ), (no. in τ)
represents the number of samples in tree τ. u and v are weighted
factors, which is set to 1. Clearly, features with high RI values are
more important than others. Accordingly, features were ranked
in another feature list with the decreasing order of their RI values.
For convenience, this list was denoted as FM .

Incremental Feature Selection
Although, according to the results of mRMR and MCFS methods,
we can obtain two feature lists, it is still difficult to access the
optimum feature subspace for a given classifier. In view of this,
IFS (Liu and Setiono, 1998) integrated with a supervised classifier
was employed to select the optimum number of features for the
classifier, thereby constructing the optimum classifier. On the
basis of the feature list (Fm or FM), a series of feature subsets
with step 5 is generated, that is, the first feature subset has
the top 5 features, the second feature subset has the top 10
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features, and so on. Then, for each feature subset, a supervised
classifier (e.g., RF) is trained on the samples consisting of the
features from this feature subset, and the classifier is evaluated
using 10-fold cross-validation (Kohavi, 1995). The classifier
with the best performance is selected and termed the optimum
classifier, and the features used for this classifier are called the
optimum features.

Random Forest
RF (Breiman, 2001) is a supervised classifier comprising multiple
decision trees, each of which is grown from a bootstrap set and a
feature subset randomly selected from original features. RF has
been widely used for many biological applications (Pan et al.,
2010; Zhao et al., 2018; Zhao R. et al., 2019; Zhao X. et al., 2019;
Zhang et al., 2019). One advantage of RF is that it does not
require much effort in hyperparameter optimization; in general,
only default parameters are necessary.

PART Rule Learning
Contrary to black-box machine learning models, rule learning
methods can learn rules about making a prediction from the data,
and these rules are easy to understand. The most widely used rules
is the if–then rule; IF one condition is met, THEN a prediction
is generated. These simple rules can assist experts in analyzing
learned knowledge so that it is aligned with established facts.

In comparison with another widely used rule learning method
RIPPER, PART (Frank and Witten, 1998) learns a rule at a
time without global optimization, and it is considerably simple.
PART generates multiple partial decision trees and combines the
rules from the decision trees using the separate-and-conquer
technique. A pruned decision tree is built, and then a rule
set is generated. Under this rule set, each rule walks along
each path from the root to a leaf. The separate-and-conquer
technique generates a rule at a time. Then, the instances aligned
with this rule are removed from the training set until all
instances are covered by the learned rules. PART repeatedly grows
partial decision trees instead of a fully explored tree, and each
partial tree is grown as follows: (1) dividing the samples into
subsets; (2) expanding all subsets until each subset is expanded
to a leaf in the same way as C4.5, with the only difference
being the selection of the node with the lowest entropy for
expansion; and (3) backtracking is intrigued when all child nodes
of internal nodes are expanded into a leaf. PART prunes the
trees by checking if an internal node can be replaced with
a leaf. Once a tree is built, a rule can be extracted from its
leaf to the root.

RESULTS

In this study, we used several machine learning algorithms to
analyze the single-cell expression profiles of mouse cells in 18
tissues. The whole procedures are illustrated in Figure 1.

Results of Feature Selection Procedure
There were more than 50,000 features to encode each mouse
cell in 18 tissues. A rigorous feature selection procedure was

TABLE 2 | Performance and optimum number of features of IFS with RF when
using different feature ranking methods.

Feature ranking Number of
optimum features

MCC Overall
accuracy

mRMR 2265 0.882 0.890

MCFS 1170 0.892 0.899

necessary to analyze them. First, we evaluated the importance
of each feature by its MI value to targets. Those with MI values
larger than 0.02 were picked up, resulting in 5,451 features. Then,
the BFS method was applied on the remaining features to further
select relevant features, producing 3,384 features.

Above-obtained features were fed into mRMR and MCFS
methods, respectively. Accordingly, we obtained two feature
lists, which are summarized in Supplementary Tables S1,
S2, respectively.

Results of IFS With RF
The mRMR and MCFS methods provided different rankings of
the remaining 3,384 features. We used IFS with RF to analyze
the ranked features and thereby obtain the optimum features for
classifying different cells with RF.

First, we applied IFS with RF to select the optimum features
on the basis of the mRMR feature list yielded by mRMR method.
Step five was adopted to construct a series of feature subsets. On
each feature subset, one RF classifier was trained and evaluated
on the samples consisting of the features from this feature
subset by using 10-fold cross-validation (Kohavi, 1995; Che et al.,
2019; Cui and Chen, 2019; Zhou et al., 2019). The performance
corresponding to the different numbers of features is given in
Supplementary Table S3. For an easy observation, an IFS curve
was plotted in Figure 2 with Matthew’s correlation coefficient
(MCC) (Matthews, 1975) as Y-axis and number of features as
X-axis. We can see that when the top 2,265 features were used,
the RF classifier yielded a maximum MCC value of 0.882 and
an overall accuracy of 0.890 (Table 2). The performance of such
optimum classifier on 18 tissues is shown in Figure 3. 12 tissues
received accuracies over 0.900, suggesting the good performance
of such classifier.

We also applied IFS with RF to select the optimum features
from the feature list produced by MCFS. The performance
corresponding to the different numbers of features is provided
in Supplementary Table S4. An IFS curve was also plotted in
Figure 2 for clearly displaying the performance of RF classifier
on different numbers of top features. When top 1,170 features
were adopted, the RF classifier generated the highest MCC of
0.892 and overall accuracy of 0.899 (Table 2), which were a litter
better than those of the optimum RF classifier on the feature
list yielded by mRMR method. The detailed performance of
such classifier on 18 tissues is illustrated in Figure 3. 13 tissues
were assigned accuracies exceeding 0.900. These results indicate
that this optimum RF classifier yielded better performance when
using much fewer features from MCFS than from mRMR.

As analyzed above, the optimum features for RF on the list
yielded by mRMR method were top 2,265 features, and they
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FIGURE 1 | The entire procedures for analyzing the single-cell expression profiles of mouse cells in 18 tissues.

FIGURE 2 | IFS curves for IFS with RF on the feature list yielded by mRMR and MCFS methods, respectively. The best MCC for RF on the list yielded by mRMR
method is 0.882 when top 2265 features are used. The highest MCC for RF on the list yielded by MCFS method is 0.892 when top 1170 features are adopted.

were top 1,170 features for RF on the list yielded by MCFS
method. A Venn diagram was plotted in Figure 4A to show
the intersection of two optimum feature sets. There were 957
common feature (genes). We used hypergeometric test to assess
their overlapping significance, obtaining P-value less than 0.05.
Thus, these two feature select methods tend to output the same
important features.

Results of IFS With PART
In addition to the use of the black-box classifier RF as the
supervised classifier, the rule learning classifier PART is also
utilized to select the optimum features for classifying different
cells. Because PART is a rule learning algorithm with low
efficiency, we only tried the top 200 features on the list of
mRMR method. The 10-fold cross-validation results of PART

classifier on different numbers of top features is listed in
Supplementary Table S5. An IFS curve was plotted in Figure 5,
from which we can see that the highest MCC was 0.709
when top 200 features were used. The overall accuracy was
0.730 (Table 3) and the detailed performance on 18 tissues
is displayed in Figure 6. There were four tissues receiving
accuracies higher than 0.900. All these suggest that such classifier
provided an acceptable performance. Thus, the PART used
these 200 features to construct rules based on all mouse cells,
resulting in 7085 classification rules. These rules are listed in
Supplementary Table S6.

Similarly, we performed IFS with PART on the feature
list from MCFS. We tried top 400 features this time. The
performance of PART classifier corresponding to different
numbers of top features is summarized in Supplementary
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FIGURE 3 | Bar chart to show accuracies on 18 tissues yielded by the
optimum RF classifiers on the feature lists of mRMR and MCFS methods.

Table S7. An IFS curve was plotted in Figure 5. It can be observed
that when top 400 features were used, the PART classifier yielded
the best MCC value of 0.781 and an overall accuracy of 0.798
(Table 3), which were higher than those of the PART classifier on
the feature list of mRMR method. The detailed performance of
such classifier on 18 tissues is shown in Figure 6. The accuracies
on six tissues were higher than 0.900, also better than those of
PART classifier generated by mRMR results. Furthermore, PART
used obtained 400 features to build classification rules with all
cells, generating 7,413 classification rules, which are listed in
Supplementary Table S8.

Of the top 200 features in the mRMR feature list and top
400 features in the list of MCFS method, exactly 122 genes were
common (Figure 4B). The overlapping significance on these two
feature sets was at P < 0.05. Therefore, these two methods also
tended to robustly select the same important features for PART.

DISCUSSION

In this study, the single-cell expression profiles of mouse
cells in 18 tissues were analyzed by several machine learning
algorithms. With two feature selection methods, mRMR and
MCFS, two optimum RF classifiers were built and important
genes were listed in two feature lists. However, the optimum RF
classifiers were black-box classifiers, which can not reveal the
different expression patterns of cells in different tissues. Thus,
we further employed the rule learning algorithm, PART. With
different feature selection methods, we obtained two groups of
classification rules, which are provided in Supplementary Tables
S6, S8. The first rule group (Supplementary Table S6) contained
7085 rules, involving 95 crucial features (genes) and the second
group consisted of 7413 rules, using 130 crucial features (genes).
In this section, we focused on some crucial features and decision
rules with classification significance. These characteristics of gene

expressions play key roles in tissue-specific differentiation or
organ specificity.

Analysis of Top Gene Features and
Decision Rules Identified Using mRMR
We identified 7085 decision rules involving 95 features via the
mRMR method to distinguish 18 different types of tissues. Here,
we briefly summarized some experimental evidence for the most
significant features and rules in the classifier to validate the
efficacy and accuracy of our prediction.

The protein coding gene Hexb, which was identified as the
most relevant feature through the mRMR method, produced the
beta subunit of the lysosomal enzyme beta-hexosaminidase that
can degrade various substrates containing N-acetylgalactosamine
residues. Hexb transcripts distribute widespread tissues, thus
playing a housekeeping role in the enzyme. However, the
expression patterns of Hexb exhibit tissue-specific differences
with relatively low levels in the lung, liver, and testis, which
imply its unique biological function in tissue differentiation
(Yamanaka et al., 1994). Similarly, another study analyzed
the tissue distribution of the Hexb mRNA in mice and
revealed remarkable tissue-specific variations, with the kidney
showing the highest gene expression, which are consistent with
past research (Triggs-Raine et al., 1994). These findings are
consistent with our expectation that Hexb displays a restricted
pattern in distinct tissues and is thus an effective feature
in classification.

Lgals7, also known as Galectin7, is a member of beta-
galactoside-binding proteins that are implicated in modulating
cell–cell and cell–matrix interactions. Differential studies indicate
that lectin is specifically expressed in keratinocytes and is mainly
found in stratified squamous epithelium (Magnaldo et al., 1998;
Saussez and Kiss, 2006). This finding confirms our decision rules
that the high expression of Lgals7 leads to the identification of
skin tissues. Meanwhile, the increased expression of Lgals7 plays
a positive role in cell growth and dispersal by inducing MMP9
(Demers et al., 2005). However, the functional effects of Lgals7
vary across different tissue types, and thus, the multiple roles of
Lgals7 may be tissue-type dependent (Shadeo et al., 2007).

Protein coding gene Lgals4 or galection4, as another member
of the beta-galactoside-binding protein family, has a similar
function to galectin7 in protein interactions, but it shows a
differential expression pattern that is restricted to the intestine,
colon, and rectum (Huflejt et al., 1997). It is consistent with our
decision rules, which require a high level of Lgals4 expression
to classify cells into the category of the colon. Galectin4 is
overexpressed mainly in cells with highly differentiated polarized
monolayers but is absent in less differentiated ones, suggesting its
crucial roles in organogenesis and its potential as a tissue-specific
marker (Huflejt and Leffler, 2003).

The protein encoded by Krt5 (keratin 5) is a member of the
keratin gene family, which comprises cytoplasmic intermediate
filament proteins that are usually expressed in epithelial tissues in
a differentiation-dependent manner. Keratins display a complex
expression pattern that is tightly regulated by the differentiation
progress of the tissue in stratified epithelia (Alam et al., 2011).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 April 2020 | Volume 8 | Article 350

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00350 April 27, 2020 Time: 22:29 # 7

Yuan et al. Identifying Cell-Type Genes and Rules

FIGURE 4 | Venn diagrams to show the intersection of optimum features for RF and PART based on the feature lists of mRMR and MCFS methods. (A) Venn
diagram to show the intersection of optimum features for RF; (B) Venn diagram to show the intersection of optimum features for PART.

FIGURE 5 | IFS curves for IFS with PART on the feature list yielded by mRMR and MCFS methods, respectively. The best MCC for PART on the list yielded by mRMR
method is 0.709 when top 200 features are used. The highest MCC for PART on the list yielded by MCFS method is 0.781 when top 400 features are adopted.

TABLE 3 | Performance and optimum number of features of IFS with PART when
using different feature ranking methods.

Feature
ranking

Number of
optimum features

Number of
classification rules

MCC Overall
accuracy

mRMR 200 7085 0.709 0.730

MCFS 400 7413 0.781 0.798

Gene ontology annotations related to Krt5 contain structural
molecule activity, and mutations in this gene are associated
with epidermolysis bullosa simplex (Schuilenga-Hut et al., 2003).
KRT5 is one of the basal epithelial cell markers similar to
KRT7 and EGFR, which follow several rules in our prediction
in which Krt5 should have a low expression or even absent
expression in fat tissue.

The purinergic receptor P2Y12 (P2ry12), which belongs to
the family of P2 purinergic receptors, is a specific marker for
microglial cells in the human brain (Sasaki et al., 2003). Microglial

chemotaxis and the extension of microglial foot processes are
significantly inhibited by P2ry12 deficiency and thus perform
unique functions in microglia development (Haynes et al., 2006).
Notably, a highly expressed pattern of P2ry12 contribute to the
identification of brain microglia in our decision rules.

Another protein coding gene, Ctsd (Cathepsin D), produces a
member of the A1 family of peptidases. Cathepsin is a marker
of gastric differentiation, and its expression is significantly
correlated with the originated histological type of gastric cancer
cell line (Konno-Shimizu et al., 2013). This finding supports the
potential role of Ctsd in gastric-related tissue specificity.

P53 apoptosis effector related to PMP22 (Perp) is a
component of intercellular desmosome junctions. It plays a
role in stratified epithelial integrity and cell–cell adhesion by
promoting desmosome assembly (Ihrie et al., 2005; Kiseljak-
Vassiliades et al., 2017). Perp plays an antiapoptotic role, and
the loss of Perp function leads to strong apoptosis in the skin,
indicating that this gene is required for the survival of specific
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FIGURE 6 | Bar chart to show accuracies on 18 tissues yielded by the
optimum PART classifiers on the feature lists of mRMR and MCFS methods.

cell types during development (Nowak et al., 2005). Notably,
in the decision rules identifying heart tissues, several criteria
that involve Perp, which require a relatively high expression
of this gene, have experimental support. According to the
immunohistochemical analysis, the Perp message is present in the
intercalated discs of the cardiac muscle during embryogenesis but
not in tissues containing simple epithelia, such as the lung. These
results highlight the crucial role of Perp and the potential tissue-
specific marker in stratified epithelia (Marques et al., 2006).

Ptprcap, also called Cd45-AP, is a transmembrane
phosphoprotein that is associated with tyrosine phosphatase
PRPRC/CD45, which can regulate T- and B-lymphocyte
activation. It is overexpressed in PBMCs, which can enhance
the phosphate activity of CD45 and increase tumor progression
(Kitamura et al., 1995; Mao et al., 2008). It confirmed our
predicted rules that the highly expressed pattern of Ptprcap is the
indicator of marrow and thymus cell origin.

Legumain, also known as asparaginyl endopeptidase, which
is encoded by the Lgmn gene, plays a role in the regulation of
cell proliferation via its role in EGFR degradation and may be
involved in the processing of proteins for MHC class II antigen
presentation in the endosomal system (Manoury et al., 1998;
Chen et al., 2001; Clerin et al., 2008). Legumain acts by regulating
the differentiation fate of human bone marrow stromal cells,
thereby regulating bone formation, which is independent of its
enzymatic activity (Jafari et al., 2017). Legumain is overexpressed
in bone marrow adipocytes, thereby supporting our decision
rules regarding the classification of marrow, which require a
highly expressed level of Lgmn, thus confirming the reliability
of our predictor.

Analysis of Top Gene Features and
Decision Rules Identified Using MCFS
7413 decision rules, involving 130 crucial features, were
identified by MCFS and PART methods. Among the top

features with the most relevance in terms of classification, some
features had biological evidence of their potential tissue-specific
expression patterns, which can thus be applied as biomarkers for
distinguishing cell origins.

Notably, many of the features mentioned previously,
including P2ry12, Krt5, Lgals7, Lgals4, and Hexb, were
identified by mRMR and MCFS methods and have a remarkable
relevance to our classifiers. These results strongly suggest that
these genes have significant tissue-specific patterns and exert an
important effect on the classification of different tissue cells.

DSC3 (Desmocollin 3), which ranks third among the relevant
features identified by MCFS, may contribute to epidermal
cell positioning by mediating the differential adhesiveness
between cells that express different isoforms (Yue et al.,
1995). In the decision rules for identifying lung and trachea
tissues, Dsc3 should have a high expression level. RT-PCR
results constantly showed that Dsc3 is expressed in the
epithelium of the trachea and upregulated in the squamous
cell in the lung (Nuber et al., 1996; Kettunen et al., 2004).
Furthermore, desmosomal proteins are markers of epithelial
differentiation (Moll et al., 1986). The expression pattern
of Dsc3 changes with epidermal organization during skin
development (Chidgey et al., 1997). Hence, Dsc3 may display
specific expression patterns during cell differentiation and may
thus support the process of distinguishing diverse stages of
tissue development.

Cdx1 is a member of the caudal-related homeobox
transcription factor gene family. The encoded DNA-binding
protein regulates intestine-specific gene expression and
enterocyte differentiation (Park et al., 2009). Homeobox genes
are essential in the control of normal embryonic development.
Recent publications on Cdx1 suggested that early intestinal
development, differentiation, and phenotype modulation are
precisely regulated by effective transcription factors (Silberg
et al., 2000). In addition, Cdx1 is an important molecular
mediator, which induces intestinal metaplasia in mouse stomach
(Mutoh et al., 2004). These findings confirmed that in the criteria
involving the decision rules for identifying colon tissues, highly
expressed Cdx1 indicates that the tissue may derived from
colon associated tissues. In the same rules for identifying colon
tissues, Gpx2, which encodes the protein of the glutathione
peroxidase family, requires a high expression like that of Cdx1.
This gene is predominantly expressed in the gastrointestinal
tract, and the overexpression of Gpx2 is associated with increased
differentiation and proliferation in colorectal cancer (Komatsu
et al., 2001), thus contributing to colon development.

G protein-coupled receptors, such as Gpr34, mediate signals
to the interior of the cell by activating heterotrimeric G proteins.
Ubiquitous expression of Gpr34 is detectable in almost all
human tissues; however the activity of promoters shows tissue-
specific preference, which leads to different transcription patterns
and various expression levels (Schöneberg et al., 1999). This
special characteristic of Gpr34 allows its role in distinguishing
different tissues and confirms that Gpr34 occurs in many
decision rules with different criteria. Similarly, protein coding
gene Cx3cr1, which encodes fractalkine receptor, has diverse
expression patterns in different cell types. The expression of
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Cx3cr1 has been investigated in the mouse central nervous
system, and its expression is elevated on microglia during chronic
inflammation (Hughes et al., 2002). TGF-β1 plays an important
role in regulating Cx3cr1 expression in rat microglia and inhibits
fractalkine-stimulated signaling (Chen et al., 2002). The specific
expression pattern of Cx3cr1 is consistent with our decision rules
in which a high expression level indicates the category of brain
microglia, although the criteria for identifying brain neurons
require a low expression or absence of Cx3cr1.

Paired-like homeodomain 1 (Pitx1) encodes a member
of the PITX homeobox family, which is involved in organ
development and left-right asymmetry. This protein may act
in the development of anterior structures and in specifying
the identity or structure of hindlimbs (Logan and Tabin, 1999;
Klopocki et al., 2012). Pitx1 exhibits the preferential expression in
the hindlimb, and it critically modulates the potential patterning
of specific hindlimb regions (Szeto et al., 1999). Pitx1 is expressed
in lung epithelia cells, but its expression level varies during cancer
development and progression, indicating that homeobox genes
are associated with differentiation and show unique expression
patterns at different development stages (Chen et al., 2007). It
provides the basis for the use of Pitx1 as a potential biomarker.

Considering our single-cell profiling datasets, we carefully
selected the crucial and characteristically expressed genes by
using mRMR and MCFS, respectively, and their expression rules
by using PART. These relevant gene features and decision rules
may play essential roles in tissue development and organogenesis
corresponding to 18 tissue types. Many biological studies about
these may clarify the detailed mechanism of tissue development.
Thus, our identified feature genes can be used as biomarkers
to identify the origin of some unknown subgroups of cells,
which can also be applied as potential therapy targets for
developmental disorders.

CONCLUSION

This study gave an investigation on single-cell expression profiles
of mouse cells in 18 tissues using several machine learning
algorithms. Some essential genes that can be biomarkers for
distinguishing cells of different tissues were extracted by feature
selection methods and two RF classifiers were built to classify cells
with high performance. In addition, two rule groups yielded by

PART were reported to reveal specific expression patterns of cells
in different tissues. The findings reported in this study can give a
clear overview on the expression levels of different tissues.
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