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Abstract

Prediction of protein-ligand interactions is a critical step during the initial phase of drug dis-

covery. We propose a novel deep-learning-based prediction model based on a graph convo-

lutional neural network, named GraphBAR, for protein-ligand binding affinity. Graph

convolutional neural networks reduce the computational time and resources that are nor-

mally required by the traditional convolutional neural network models. In this technique, the

structure of a protein-ligand complex is represented as a graph of multiple adjacency matri-

ces whose entries are affected by distances, and a feature matrix that describes the molecu-

lar properties of the atoms. We evaluated the predictive power of GraphBAR for protein-

ligand binding affinities by using PDBbind datasets and proved the efficiency of the graph

convolution. Given the computational efficiency of graph convolutional neural networks, we

also performed data augmentation to improve the model performance. We found that data

augmentation with docking simulation data could improve the prediction accuracy although

the improvement seems not to be significant. The high prediction performance and speed of

GraphBAR suggest that such networks can serve as valuable tools in drug discovery.

Introduction

Computational methods, which have been developed and improved in the past decades, have

gained increased influence on drug discovery. During the initial phase of the drug discovery

process, the prediction of the binding affinity of a candidate ligand for a therapeutic target is

an important step. Although many computational techniques have been developed using

numerous tools, developing novel drug candidates remains a complicated and difficult task.

Conventionally, two main computational approaches, namely ligand-based and structure-

based methods, have been proposed to predict protein-ligand binding affinities.

The ligand-based method predicts the binding affinity by analyzing the important proper-

ties of the known ligands. Since the structural information of the target protein is not required

for the prediction, the ligand-based method can be used when the biological and chemical

information of the target protein and its ligands is available. This approach often utilizes

molecular fingerprints as the representation of ligand structures, allowing the model to use a

fixed-length vector effectively. However, missing structural information hampers accurate
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prediction of the molecular interaction. Structure-based methods can gather valuable informa-

tion from the 3D structures of compounds. Since molecular interactions are under the influ-

ence of the spatial conformation of the constituent atoms, information derived from the

structural features can improve prediction performance. Despite the limited number of avail-

able databases of 3D protein structures, structure-based approaches have been widely used to

predict protein-ligand interactions.

Recently, advances in deep learning algorithms have helped solve many challenging prob-

lems, including recognition of speech, inference of vision, and translation of languages, and its

applications have expanded to many other areas. Whereas manually generated features are

necessary for conventional machine learning algorithms, deep learning methods automatically

extract important features from a dataset. Since deep learning approaches have been proven

effective in predicting several biological activities, these approaches have also been used in

structure-based methods to predict protein-ligand binding affinities.

AtomNet [1] is a deep learning model that predicts molecular binding by using convolutional

neural networks (CNNs). It is known as the first major introduction of the deep learning technol-

ogy into the prediction of protein-ligand interactions by using 3D protein structure information.

AtomNet uses the complex structures of target proteins and small molecules, which are voxelized

into a cube of 20Å. To represent the structure of a protein-ligand complex, the environment of

the atoms in the 3D structure is encoded into the fixed form of the feature vectors. 3D CNNs are

applied to the voxel volumes of AtomNet, and then a binary classification model that classifies the

ligands as either active or decoy is developed. Pafnucy [2] is another convolutional neural network

model that predicts protein-ligand binding affinities by using 3D CNNs. It tries to solve the

regression problem, instead of binary classification problem, that predicts the value of the protein-

ligand binding affinity, which enhances its potential for use in drug discovery.

Although the major stream of the deep learning model with 3D structural information is

focused on convolutional neural networks [1, 2], this approach is costly and requires too many

computational resources. Moreover, 3D convolutional neural network models, which are very

sensitive to the orientation of the complex, can be trained by the same structures with many

different orientations. This approach may not be efficient, as it requires too much computing

time to use 3D convolutional neural networks with large databases to cover the rotational

information of the complex structures. To overcome these limitations in the 3D convolution

operation, we decided to use the graph convolutional network approach instead of the convo-

lutional neural network for a more effective feature representation of a binding structure.

Graph convolution has been used for improving the performance of the models based on a

CNN. Since the molecular structure, typically represented as a string, such as SMILES, can also

be easily represented in a graph form, many studies have used graph convolutional networks

for deep learning methods. Gomes et al. [3] have presented the concept of graph convolution

as atom type convolution with the distance matrix and neighbor list. GraphDTA [4] is a model

that combines two modules, the graph-based module with SMILES and a 1D convolutional

neural network model with protein sequences. DeepAffinity [5] has tried 2D-graphs-form

compound representation to overcome the limitation of SMILES strings, but the performance

achieved is not substantially different from those of other CNN models. Lim et al. [6] have pro-

posed a graph convolutional network model that directly incorporates the 3D structural infor-

mation of the complex. They have transcribed the 3D structure of a protein-ligand complex

into a graph and predicted the drug-target interaction. Torng and Altman [7] have combined

the 3D graph representation of a protein pocket structure with the 2D graph representations of

ligands from the SMILES. On virtual screening, their model shows better performance than

the CNN model and the docking simulation. Although these graph convolutional neural net-

work models have shown potential in predicting protein-ligand interactions, the previous
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studies have focused on classification of the drug-target interactions, and, to our knowledge,

there is no regression model predicting protein-ligand binding affinity values by using 3D

structural information with the graph convolutional neural network.

Francoeur et al. [8] have found that data augmentation with low quality re-docking data

can improve model performance. Despite the caution from the authors that the improvement

might have resulted from the expanded data volume, their report shows that data augmenta-

tion with structural information improve the predicting power of a model.

In this paper, we propose a novel model, GraphBAR, which uses a graph convolutional net-

work to assess protein-ligand binding affinities. Instead of using a 3D voxelized grid cube,

atomic features and environmental information are represented in a graph form, whereby the

model can predict binding affinities more efficiently and accurately. The reduced computing

power and increased speed from graph convolution enable data augmentation with docking

simulation. According to our model, data augmentation can slightly improve the performance

of a model in several datasets. Consequently, the data limitation in structure-based approaches

can be overcome. Accordingly, GraphBAR provides an alternative approach to use the 3D

structural information of protein-ligand complexes.

Materials and methods

Graph convolution

Here, we describe the structure of a protein-ligand complex in a graph representation. Graphs can

be constructed with nodes and edges, where the nodes retain feature vectors representing their

own properties and the edges retain information associated with the connections among nodes to

show the graph structure. The inputs of the graph convolution layer are an N×F feature matrix F,

where N is the number of nodes and F is the number of input features, and an N×N adjacency

matrix A, which has information regarding the node interactions. The value on the i-th row and j-

th column in the adjacency matrix A is> 0 when the i-th and j-th nodes are connected, and 0 oth-

erwise. After defining the modified adjacency matrix Ã as A + I, where I is an identity matrix, sim-

ple matrix multiplication of the feature matrix F and the modified adjacency matrix Ã by using a

dot product in the graph convolution layer (i.e., Ã �F) can sum the feature values of the neighbor-

ing nodes and pass it into the center node. After passing the graph convolution layer and a non-

linear activation function σ, an output matrix F’ is produced in the N×F’ matrix form, where F’

denotes the number of output features of the node. Since each graph depicts a different number of

nodes, the adjacency matrix should be normalized to stabilize the scale of the feature vectors. We

normalized the modified adjacency matrix by using the diagonal node degree matrix of Ã. Let W

be the trainable weight matrix, then the graph convolution can be written as in Eq 1 below.

F0 ¼ σ D� 1
2 ~AD� 1

2FW
� �

ð1Þ

The result of graph convolution shows that every node has its own feature vector value. How-

ever, to predict the final binding affinity value, we require the representative vector for the entire

graph. We found that the graph gather layer can be used to design the model [9]. In the graph

gather layer, all values are simply summed up to return graph featurization. The graph features

from the graph gather layer are used to predict the binding affinity of the graph at the final stage of

the model.

Dataset

In conventional molecular docking simulations, the structures of ligands are treated as flexible

when the structures of proteins are treated as rigid. The PDBbind database [10] is a collection
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of experimentally measured binding affinity data for protein-ligand complexes. This database

was divided into three subsets, namely the general, refined, and core sets. The general set

included all the data in the database, even in cases of low quality. The refined set included the

collected data with greater quality refinement and improved resolution. The core set was

selected from the refined set and consisted of representative data from the clustered refined set

data. We prepared several different datasets to determine the data handling of the graph con-

volutional neural network with different sizes of the data.

The simplest dataset, which was named “dataset 1,” consisted of the PDBbind 2016 refined

set. From the refined set, we removed 290 complexes of the core set, which was used as the test

set, and 82 overlapping complexes of the PDBbind 2013 core set, which was used as another

test set. The remaining complexes were split into two subsets—the training and validation sets

for model training. We collected the validation set, which consisted of 10% of the complexes in

the refined set, which were randomly selected.

The second dataset, “dataset 2,” was a data-augmented version of dataset 1. Since graph

representation uses less computational time than the 3D cube representation, it is possible to

use data augmentation to improve model performance. For the data augmentation, we gener-

ated the docking structure of the protein-ligand binding. The 3D structure of bound protein

and ligand was obtained from a docking simulation performed using the QuickVina2 program

(https://qvina.github.io/) [11] with structural information obtained from the PDBbind 2016

dataset. We added docking structures with the highest docking scores for each complex,

excluding the complexes whose RMSD was > 3.0. We restricted the number of docking struc-

tures up to three per complex to avoid bias from adding too many docking structures with low

RMSD for certain complexes, eventually leading to 11,973 structures of 3,316 complexes as the

training set, and 1,362 structures of 369 complexes as the validation set.

We built “dataset 3” and “dataset 4” by using the same criteria as used for datasets 1 and 2,

except the PDBbind 2016 general set instead of the PDBbind 2016 refined set was used for

datasets 3 and 4. We removed the overlapping structures from the PDBbind 2016 core set and

the PDBbind 2013 core set from all the complexes of PDBbind 2016, and partitioned these

into training and validation sets, with a 9:1 ratio. We curated the validation set from the

PDBbind 2016 refined set only, which had qualified structural information, and named this as

“dataset 3.” Additional docking simulation results for the complexes of dataset 3 were calcu-

lated and applied for the training of the model named “dataset 4.”

With these four datasets, we compared the cases with low numbers of well-refined com-

plexes to the cases with large numbers of disorganized complexes, and aimed to identify

whether data augmentation techniques are required for improved efficiency. The total number

of complexes included in each data set is reported in Table 1.

Graph representation

We translated the binding complexes to a collection of graphs. Fig 1 shows the scheme of

graph representation with the structural database. We defined the binding site of the complex

Table 1. Total number of complexes in each data set.

Dataset training set validation set

dataset 1 3,319 369

dataset 2 11,973 1,362

dataset 3 11,146 1,280

dataset 4 38,560 4,622

https://doi.org/10.1371/journal.pone.0249404.t001

PLOS ONE Graph convolutional neural network model for protein-ligand binding affinity

PLOS ONE | https://doi.org/10.1371/journal.pone.0249404 April 8, 2021 4 / 13

https://qvina.github.io/
https://doi.org/10.1371/journal.pone.0249404.t001
https://doi.org/10.1371/journal.pone.0249404


as the distance from ligand binding. All the atoms in the ligand structure and the protein

atoms within a cut-off distance of 4.0 Å from the ligand structure were treated as the nodes in

the binding pocket. The binding complex was featured into the fixed size of the feature matrix

and the adjacency matrix. Therefore, we filtered out complexes with > 200 nodes at the bind-

ing site and used zero-padding to make the size of the matrices equivalent. We adapted the set

of features based on those detailed by Stepniewska-Dziubinska et al. [2], and all the descriptors

were calculated using the Open Babel software (http://openbabel.org/) [12]. Consequently, 13

features were used for the featurization of each atom for GraphBAR (Table 2), and they were

integrated into a 200×13 matrix to enter the input layer.

To describe the graph structure of the complex, we constructed the adjacency matrix to

embed the information regarding the distances between the atoms at the binding site. Previous

research has shown that adjacency matrices embed distance information to reflect

Fig 1. Graph representation of protein-ligand binding structure. The 3D structure of the binding pocket is represented as a graph. The features of the atoms

and the features of the atomic interactions are embedded in the feature matrix and adjacency matrix, respectively.

https://doi.org/10.1371/journal.pone.0249404.g001

Table 2. Description of the features.

Features Description

Atom types One-hot (B, C, N, O, P, S, Se, Halogen, Metal)

Atom hybridization Integer (1,2,3)

Heavy-valence Integer (number of non-hydrogen atoms attached)

Hetero-valence Integer (number of hetero-atoms attached)

Partial charge Float

https://doi.org/10.1371/journal.pone.0249404.t002
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intermolecular reactions in float form, since the values in an adjacency matrix increase as the

distance between the nodes decreases. However, we have aimed for a model with a simpler cal-

culation and reduced computational time to enable data augmentation. Instead of one or two

matrices with the float values, we built several models consisting of different numbers of adja-

cency matrices (1, 2, 4, and 8) to search for the optimal adjacency matrix approach. Each

matrix with n adjacency matrices represents the distance between the atoms at intervals of (4/

n) Å. For example, in the case of the 4-adjacency-matrices model, the A1 matrix represents the

shortest interaction distances between atoms, and the A4 matrix embeds the longest interac-

tion distances. We limited the representation of the interactions in the adjacency matrix within

4 Å of inter-molecular distance (interaction between the protein and ligand), and 2 Å of intra-

molecular distance. Consequently, the matrices covered > 2 Å represented only the inter-

molecular interactions. The adjacency matrices were designed as follows:

Aki;j ¼
1 if

4ðk � 1Þ

n
< di;j �

4k
n

0 otherwise

8
><

>:
ð2Þ

ðk ¼ 1; 2;3; . . . nÞ

where di,j is the distance between node i and node j. Using these adjacency matrices, the inter-

actions between the atoms are categorized based on the distances between the atoms, and this

categorization allows the model to obtain information from each distance range. Eventually,

using multiple matrices with integer numbers allows the model to extract features more effi-

ciently and reduces calculation time.

Network architecture

GraphBAR was defined and implemented using TensorFlow v1.12 [13]. The architecture of the

proposed model is illustrated in Fig 2. The inputs of the model are one feature matrix and multi-

ple adjacency matrices. First, the input feature matrix was processed by the fully-connected layer

and the dropout layer. Features extracted from these layers were fed into the different graph con-

volution blocks with one of the adjacency matrices. The graph convolution block had three

graph convolution layers, composed of a fully-connected layer and a dropout layer between

them (Fig 3). The output of the last graph convolution layer was connected to the graph gather

layer, which sums all the node feature values to create features representing the entire graph. All

the outputs of the graph convolution blocks were concatenated, followed by the fully connected

layer with the dropout layer, and output layer for binding affinity prediction.

The model structure and hyperparameters were empirically determined. We searched for

possible options to select as the number of graph convolution layers (1 to 5), the number of

fully-connected layers in several locations (0 to 3), the dimension of the graph convolution

layer (8 to 1024), optimizer type (ADAM, SGD, RMSprop, Momentum), learning rate (0.001

to 1), and dropout rate (0.3 to 0.8). We used 128 neurons for the first and last fully-connected

layers, and (128, 128, 16×n) neurons for the three fully-connected layers in a graph convolu-

tion block with n-adjacency matrices. The dimensions of the three graph convolution layers

were (128, 128, 32). To train the model, Adam optimizer with 0.001 learning rate was used,

and to avoid overfitting, all the dropout layers had a dropout rate of 0.5. Both graph convolu-

tion layers and fully-connected layers were implemented with the ReLU activation function,

and the mean squared error was used as the loss function. We used the early-stopping algo-

rithm, to stop the training of the model when the monitored validation error exhibited an

increasing pattern.
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Results

Evaluation criteria

To evaluate the performance of the model, the root mean square error (RMSE) and the mean

absolute error (MAE) were calculated for prediction error, and the Pearson’s correlation

Fig 2. Overview of the GraphBAR architecture. Multiple graph convolution blocks process node features with different

adjacency matrices. All the outputs from the graph convolution blocks are concatenated and entered into the fully-connected

layer and dropout layer to predict the binding affinity.

https://doi.org/10.1371/journal.pone.0249404.g002

Fig 3. The framework of the graph convolutional block. Each graph convolutional block consists of three graph

convolutional layers. The graph convolutional layers are combined with a fully connected layer and a dropout layer,

except for the last graph convolutional layer, which is followed by the graph gather layer.

https://doi.org/10.1371/journal.pone.0249404.g003
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coefficient and the standard deviation (SD) were calculated for correlation between experi-

mentally measured values and predicted values. The SD in this study was defined as described

by Li et al. [14] as follows:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
½yi � ðaþ bxiÞ�

2

N � 1

s

; ð3Þ

where xi and yi are the predicted binding affinity and the experimentally measured binding

affinity of the i-th complex, respectively, and a and b are the slope and intercept of the regres-

sion line, respectively, between the predicted and actual values.

Model performance

In this study, we designed a novel model to predict the protein-ligand binding affinity by using

a graph convolutional network. We evaluated the model performance for the PDBbind v.2016

core set. Four datasets, which were prepared according to the description in the Dataset sec-

tion, were evaluated five times, and the mean values with the standard deviations in parenthe-

ses are presented in Table 3. We also evaluated the performance of Pafnucy [2] on the same

datasets, and compared our results with those obtained using the CNN model. As mentioned

in the Graph representation section, we filtered out 111 complexes that had> 200 nodes. It

appears that this removal caused the prediction accuracy of Pafnucy slightly lower than the

reported accuracy (RMSE 1.42, R 0.78), since the model showed a similar performance to the

reported one when we used all the structures. The performance of the model was improved for

datasets 2, 3, and 4, indicating that data number is critical for the performance of the model. In

particular, the results revealed that when the number of data was low (dataset 1), even simple

data augmentation with low quality docking data could improve the performance of the graph

Table 3. The performance of GraphBAR on the PDBbind v.2016 core set.

Dataset Model RMSE MAE SD R

dataset 1 Adj-1 1.609 (0.037) 1.298 (0.029) 1.527 (0.034) 0.712 (0.018)

Adj-2 1.498 (0.056) 1.202 (0.043) 1.452 (0.062) 0.746 (0.026)

Adj-4 1.522 (0.057) 1.216 (0.045 1.460 (0.037) 0.742 (0.018)

Adj-8 1.542 (0.051) 1.241 (0.047) 1.495 (0.037) 0.726 (0.015)

Pafnucy 1.600 (0.030) 1.304 (0.026) 1.573 (0.029) 0.690 (0.012)

dataset 2 Adj-1 1.548 (0.056) 1.253 (0.050) 1.478 (0.046) 0.734 (0.019)

Adj-2 1.495 (0.031) 1.204 (0.026) 1.440 (0.026) 0.748 (0.011)

Adj-4 1.535 (0.041) 1.223 (0.043) 1.501 (0.036) 0.724 (0.015)

Adj-8 1.533 (0.059) 1.233 (0.049) 1.474 (0.045) 0.734 (0.021)

Pafnucy 1.518 (0.039) 1.193 (0.032) 1.511 (0.022) 0.718 (0.011)

dataset 3 Adj-1 1.477(0.043) 1.197 (0.039) 1.437 (0.056) 0.750 (0.024)

Adj-2 1.441 (0.075) 1.155 (0.066) 1.404 (0.060) 0.764 (0.023)

Adj-4 1.468 (0.060) 1.182 (0.042) 1.406 (0.052) 0.764 (0.021)

Adj-8 1.502 (0.052) 1.202 (0.052) 1.455 (0.058) 0.742 (0.027)

Pafnucy 1.465 (0.033) 1.164 (0.026) 1.441 (0.043) 0.748 (0.018)

dataset 4 Adj-1 1.490 (0.034) 1.210 (0.030) 1.418 (0.030) 0.760 (0.012)

Adj-2 1.413 (0.038) 1.144 (0.033) 1.371 (0.048) 0.778 (0.016)

Adj-4 1.467 (0.046) 1.190 (0.036) 1.405 (0.035) 0.764 (0.015)

Adj-8 1.512 (0.040) 1.217 (0.030) 1.455 (0.026) 0.742 (0.011)

Pafnucy 1.511 (0.042) 1.210 (0.040) 1.503 (0.044) 0.722 (0.018)

https://doi.org/10.1371/journal.pone.0249404.t003
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convolution model as well as the CNN model. However, when the number of data was high

enough, data augmentation with docking simulation did not improve the prediction power

(dataset 4). Additionally, the graph convolution model showed a better performance than the

CNN model when the number of data was low.

We compared our results on the PDBbind v. 2013 core set with the results reported by

other groups–X-Score by Li et al. [15], which shows the best performance, and Pafnucy [2]

(Table 4). We chose the model with two adjacency matrices as the representative model since

this model showed the best performance on the PDBbind 2016 database. The results indicated

that our graph convolutional model showed competitive performance with the scoring func-

tion model or CNN model. However, the data augmentation with docking simulation was not

improved for small and large database on PDBbind v.2013 core set. We infer that this gap

stemmed from the composition of the data sets. Since the PDBbind v.2016 core set was

selected from the v.2016 refined set as the representative complexes, they shared certain pat-

terns regarding properties. In contrast, the PDBbind v.2013 core set contained a part of the

non-refined data from the v.2016 refined set; this pattern was not well arranged like data

newly introduced to a trained model. Despite the modest success with the low number of data

in the PDBbind 2016 database, the data augmentation with the docking simulation had a limi-

tation for the situation as the disparity between test data and trained data exists.

We also tested our model on the other independent data set, to measure generalization of

our model. CSAR NRC-HiQ data set [16] provided by CSAR (csardock.org) is another widely

known data, which involves two subsets of 176 and 167 complexes respectively. The complexes

overlapped with our training set were excluded resulting only 51 and 36 complexes were used

for testing. We compared GraphBAR model with two-adjacency matrices and Pafnucy which

is trained with the dataset3 to measure the performance on CSAR NRC-HiQ data set (Tables 5

and 6). GraphBAR outperforms on the CSAR NRC-HiQ set 1, whereas the data augmentation

did not improve the performance of the model as the test on PDBbind 2013 core set. On the

CSAR NRC-HiQ set 2, GraphBAR with the data augmentation shows similar performance to

the CNN model. Both methods show reasonable errors to predict the binding affinity on a new

dataset, and therefore, GraphBAR could be used more generally.

Table 4. The performance of GraphBAR with the PDBbind v.2013 core set.

Dataset RMSE MAE SD R

dataset1 1.694 (0.065) 1.368 (0.056) 1.680 (0.068) 0.662 (0.033)

dataset2 1.688 (0.032) 1.367 (0.019) 1.669 (0.030) 0.670 (0.019)

dataset3 1.616 (0.030) 1.322 (0.040) 1.597 (0.025) 0.704 (0.011)

dataset4 1.636 (0.035) 1.317 (0.031) 1.601 (0.041) 0.704 (0.018)

X-Score - - 1.78 0.61

Pafnucy 1.62 1.32 1.61 0.70

https://doi.org/10.1371/journal.pone.0249404.t004

Table 5. The performance of GraphBAR with the CSAR NRC-HiQ set 1 (51 complexes).

Dataset RMSE MAE SD R

dataset1 1.741 (0.046) 1.368 (0.059) 1.588 (0.057) 0.732 (0.023)

dataset2 1.709 (0.073) 1.373 (0.049) 1.651 (0.113) 0.704 (0.049)

dataset3 1.599 (0.108) 1.218 (0.105) 1.569 (0.123) 0.738 (0.047)

dataset4 1.592 (0.092) 1.280 (0.071) 1.534 (0.058) 0.754 (0.023)

Pafnucy 1.707 (0.100) 1.338 (0.092) 1.612 (0.069) 0.722 (0.025)

https://doi.org/10.1371/journal.pone.0249404.t005
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On the whole predictions, the data augmentation methods maintain the performance of the

model, and improve the performance in several cases for the graph convolutional model.

Though the effect of the data augmentation is not significant, we hope that this approach

could be a new suggestion for other areas suffering from low amount of data.

Efficient calculation with Graph convolutional neural network

We measured the computational time for training with the PDBbind database to assess

whether GraphBAR could be trained more efficiently with the reduced computational time

than the CNN model. We also compared our multiple-adjacency-matrices approach model

with the integer values relative to the model using the adjacency matrix with the float values.

We measured the computational time for training by summing all calculation times for each

training and validation epoch. The mean values and the standard deviations from four runs

per task are reported in Table 7. As expected, all the graph convolution models with integer

values required a shorter training time than the model with float values or the CNN model.

According to the results, the training with GraphBAR with two adjacency matrices required

roughly 5% of the training time required with the CNN model. We also measured the infer-

ence time for both models, however, the inference time is too short to discuss about the

computational efficiency. We provide the inference time and the data preparation time in S3

Table. These results indicate that the graph convolution method can decrease the computing

time while maintaining a competitive performance in comparison with other models, such as

Pafnucy [2]. Thus, GraphBAR is much more amenable to the data augmentation method than

other models.

Conclusions

In this paper, we introduced a novel prediction model for protein-ligand binding affinity,

which can be used for drug discovery. Instead of the conventionally used CNN model, the

graph convolution approach of GraphBAR offers several advantages. The model can predict

the binding affinity of a protein-ligand complex more efficiently, regarding computing effi-

ciency and calculation time, while displaying a competitive performance compared with

Table 6. The performance of GraphBAR with the CSAR NRC-HiQ set 2 (36 complexes).

Dataset RMSE MAE SD R

dataset1 1.873 (0.198) 1.414 (0.114) 1.756 (0.154) 0.456 (0.145)

dataset2 1.558 (0.040) 1.182 (0.074) 1.510 (0.075) 0.652 (0.041)

dataset3 1.715 (0.103) 1.349 (0.035) 1.683 (0.068) 0.538 (0.052)

dataset4 1.584 (0.104) 1.273 (0.073) 1.576 (0.129) 0.610 (0.083)

Pafnucy 1.554 (0.034) 1.256 (0.039) 1.540 (0.043) 0.636 (0.027)

https://doi.org/10.1371/journal.pone.0249404.t006

Table 7. The training time of the models with the PDBbind 2016 database.

Dataset Modela

Adj-float Adj-1 Adj-2 Adj-4 Adj-8 Pafnucy

dataset1 541.22 (3.33) 4.84 (0.02) 10.87 (0.06) 27.78 (0.10) 40.30 (0.18) 161.83 (0.04)

dataset2 2238.41 (11.64) 16.41 (0.05) 30.27 (0.02) 70.87 (0.19) 105.94 (0.52) 681.87 (0.12)

dataset3 2952.48 (10.20) 19.22 (0.03) 39.93 (0.16) 69.36 (0.30) 157.68 (0.29) 557.76 (0.13)

dataset4 8065.14 (20.47) 41.52 (0.11) 97.19 (0.27) 192.44 (0.41) 420.81 (1.31) 2236.35 (0.76)

aComputing time were measured in minute scale.

https://doi.org/10.1371/journal.pone.0249404.t007
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recently published prediction models. Moreover, the performance of GraphBAR can be fur-

ther improved via data augmentation.

A graph convolution model that uses 3D structural information underlies the aim of this

study. Our results show that the graph convolutional neural network can successfully predict

the binding affinity with acceptable accuracy. A graph convolutional model ensures that the

model can handle 3D structural information easily. This model can dramatically reduce the

calculation time while allowing data augmentation.

A limitation of this study is the limited data regarding structure-based deep learning

approaches to predict protein-ligand binding affinities. Available databases that contain

detailed structural information regarding both proteins and ligands are not abundant, and the

amount of data in the available databases is considerably low. Despite the promising features

of the 3D structural information of a protein-ligand complex, this limitation impedes efficient

prediction. We employed the data augmentation method, which is difficult to apply to the

CNN model due to computational cost. The effect of data augmentation with docking simula-

tion was verified using small datasets, indicating the potential of GraphBAR for data augmen-

tation applications alongside computational efficiency.

Moreover, we tried to improve the performance of GraphBAR via supporting methods,

such as graph attention network [17] and capsule network [18]. These layers normally employ

softmax functions and are optimized for classification prediction. As a result, a new model that

uses graph attention networks instead of graph convolutional layers, or a capsule network

instead of graph gather layers, showed a poor performance (S1 Table). These approaches may

improve drug-target interaction prediction as a binary classification, but did not work well in

binding affinity prediction.

For data augmentation, we used the docking results of the PDBbind database. The results

measuring the training time indicate that the graph convolutional neural network enables data

augmentation due to its computational efficiency. In addition, the results on several test data-

sets indicate that data augmentation with docking simulation slightly improves the prediction

accuracy although the performance gain seems not to be significantly high, and give a flexibil-

ity to the model for prediction on newly introduced data set. We hope that another data aug-

mentation method could be found to improve the performance of the model in such

situations. Further, with the graph convolutional approach, the model can overcome the lim-

ited availability of structural information regarding protein-ligand binding.

GraphBAR can provide the values for the predicted binding affinity of a protein-ligand

complex. Therefore, GraphBAR can be used for in silico screening to identify specific targets

or target prediction for specific chemicals. The model can be introduced into drug discovery

pipelines and further research endeavors, such as the prediction of ADMET properties. More-

over, the reduction in the computing resources needed ensure that the model can be used dur-

ing the early stages of drug discovery, which would be interesting in the computational biology

field.

Supporting information

S1 Fig. Distribution of the predicted values for dataset 1 best models on the PDBbind

v.2013 core set with 2-adjacency matrix model.

(TIF)

S2 Fig. Distribution of the predicted values for dataset 2 best models on the PDBbind

v.2013 core set with 2-adjacency matrix model.

(TIF)
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S3 Fig. Distribution of the predicted values for dataset 3 best models on the PDBbind

v.2013 core set.

(TIF)

S4 Fig. Distribution of the predicted values for dataset 4 best models on the PDBbind

v.2013 core set with 2-adjacency matrix model.

(TIF)

S1 Table. Model performance with graph attention network and capsule network based on

a dataset with a 4-adjacency matrix model. The graph attention model used a graph attention

network instead of a graph convolution network. The Capsule network model used a capsule

network instead of a graph gather layer.

(PDF)

S2 Table. Best performance of each model. The best performance of each model among 5

evaluations with the PDBbind v.2016 and 2013 core sets.

(PDF)

S3 Table. The inference time of the models with the PDBbind 2016 core set and the data

preparation time of the models with the CSAR NRC-HiQ set.

(PDF)
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