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ABSTRACT
Although simvastatin has been shown to inhibit vascular permeability, which might be amplified
via gap junction intercellular communication (GJIC), the underlying mechanism of action remains
unclear. In the present study, we investigated the effects and mechanisms of simvastatin on
endothelial cells GJIC. Specifically, human umbilical vein endothelial cells (HUVECs) were
stimulated with TNF-α (10 ng/mL) alone or in combination with simvastatin (5 µM), and their
effects on vascular endothelial cell GJIC tested via the scrape loading/dye transfer (SL/DT) assay.
Next, we performed immunofluorescence, real-time PCR and western blot assays to analyze
expression of Cx37, Cx40 and Cx43 in HUVECs. Results showed that GJIC activity in HUVECs was
markedly elevated in HUVECs treated with TNF-α in combination with simvastatin. In addition,
simvastatin treatment significantly upregulated expression of Cx37 and Cx40 but
downregulated Cx43 mRNAs and proteins. Taken together, these marked changes indicated
that simvastatin exerts its regulatory effects on gap junction function by upregulating Cx37 and
Cx40 and downregulating Cx43 expression.

Abbreviations: TNF-α Tumor necrosis factor-alpha, GJIC Gap junction intercellular
communication, Cx37 Connexin 37, Cx40 Connexin 40, Cx43 Connexin 43
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Introduction

Previous studies have shown that endothelial per-
meability increases and many inflammatory mediators
contribute to elevated vascular permeability during
early stages of atherosclerosis development (Lee 2005;
Sitia et al. 2010). Moreover, endothelial permeability is
reportedly affected by gap junction intercellular com-
munication (GJIC) between neighboring endothelial
cells (Figueroa et al. 2004; He et al. 2018). Gap junctions
are protein channels in the cell membrane made of con-
nexin molecules (Yeh et al. 2006). Connexin37 (Cx37),
Cx40, and Cx43 are known to be expressed in endo-
thelial cells at various sites along the vascular tree in
mammals (Yeh et al. 2000; Yeh et al. 2003). Particularly,
Cx37 and Cx40 have atheroprotective properties, while
Cx43 appears to be pro-atherogenic (Meens et al.
2013; Peng et al. 2015). Simvastatin is a cholesterol-low-
ering drug that inhibits the HMG–Coenzyme A reductase
enzyme. Findings from previous studies, conducted
under low and normal cholesterol conditions, have
shown that statins have both anti-inflammatory and

lipid-lowering effects (McGown and Brookes 2007).
Although recent investigations have demonstrated
that simvastatin can improve endothelial function
(O’Driscoll et al. 1997) and inhibit vascular permeability
(Miyahara et al. 2004), its inhibitory effects on common
inflammatory mediators via reduction of endothelial
GJIC remains unclear. Tumor necrosis factor-alpha
(TNF-α) plays an important role in orchestrating inflam-
matory responses in the vascular endothelium (van
Rijen et al. 1998). Notably, human umbilical vein endo-
thelial cells (HUVECs), a primary endothelial cell line,
have been extensively used to study regulation of
human endothelial cells genes, such as Cx37, Cx40 and
Cx43 (Johnson and Nerem 2007).

The purpose of the present study was to investigate
the effects and underlying mechanisms of simvastatin
action on endothelial cells GJIC using an in vitro endo-
thelial cell model. Specifically, HUVECs were stimulated
using TNF-α (10 ng/mL) alone or in combination with 5
µM simvastatin, and their effects on vascular endothelial
cell GJIC tested via the scrape loading/dye transfer (SL/
DT) assay. In addition, patterns of Cx37, Cx40 and Cx43
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expression in HUVECs were analysed via immunofluores-
cence, real-time PCR and western blot analyses.

Materials and methods

Cell line and treatment

HUVECs were provided by Prof. H. L. Sun (School of
Clinical Medicine of Guangdong Pharmaceutical Uni-
versity, China). Eighth-passage HUVECs were seeded
in 6-well plates, at a density of 4 × 105 cells/well
and grown to 80% confluence. Subsequently, the
cells were cultured in fresh medium (serum-free
media) supplemented with TNF-α (10 ng/mL) alone
or in combination with 5 μM simvastatin and incu-
bated for 24 h at 37°C (Zapolskadownar et al. 2004).
Stock solutions for simvastatin (Sigma, S6196) and
TNF-α (Peprotech, 300-01A), 0.5 and 0.57 nM, respect-
ively, were prepared. Prior to the experiment, these
stock solutions were mixed with 0.5% DMSO, to
obtain final working concentrations of 5 μM simvasta-
tin and 10 ng/mL TNF-α. In addition, control cells
across all experiments were treated with 0.5%
DMSO, which did not affect cellular responses to sim-
vastatin and/or TNF-α. GJIC in HUVECs was assessed
by scrape loading/dye transfer (SL/DT). Next, we per-
formed immunofluorescence, real-time PCR and
western blot assays to determine expression patterns
for Cx37, Cx40 and Cx43. The experimental process
followed in this study is illustrated in Figure 1.

Scrape loading/dye transfer (SL/DT) assay

Cell morphology was observed under a white light
microscope (200× magnification). The SL/DT assay
was used to measure gap junctional intercellular com-
munication (GJIC) activity, and investigate the transfer
of fluorescent Lucifer yellow dye from one cell into
adjacent ones through functional gap junctions as pre-
viously described (Sundaram et al. 2011; Lu et al.
2018). Briefly, confluent density-inhibited cells were
cultured in 60 mm polystyrene dishes, rinsed with
CaMg-PBS, then mixed with 0.5% rhodamine-dextran
and 0.5% Lucifer yellow in CaMg-PBS. The cell mono-
layer was scraped off, using a scalpel blade, and kept
in the dark for approximately 3 min. The dye solution
was then decanted, and the monolayer rinsed three
times with CaMg-PBS. Subsequently, the cells were
fixed with 4% (v/v) formalin, then subjected to fluor-
escence microscopy to observe the spread of the dye
from wounded to adjacent intact cells. Distances
between the transfer front and the scrape line, of
each group on both sides of the scrape, were

measured and calculated (Ke et al. 2013). Sizes of the
fluorescence area along the scrape line on monolayers
were quantified using Image pro plus software (Media
Cybernetics, Georgia. USA) to reveal levels of GJIC.

Immunofluorescence detection

Immunofluorescence assay was performed as described
by Le Gal et al. (2014). Briefly, confluent cells grown on
coverslips were fixed with 4% paraformaldehyde for 20
min, washed thoroughly with phosphate buffer saline
(PBS), then blocked with 10% FBS and 0.3% Triton X-
100 in PBS for 1 h. Next, the cells were incubated over-
night at 4°C with the following antibodies: anti-Cx37
antibody (rabbit polyclonal Cx37 antibody raised
against human; Cat. No. SAB4501180, Sigma-Aldrich),
anti-Cx40 antibody (rabbit polyclonal Cx40 antibody
raised against human; Cat. No. SAB1304973, Sigma-
Aldrich) and anti-Cx43 antibody (rabbit polyclonal
Cx43 antibody raised against human; Cat. No. C6219,
Sigma-Aldrich). Then cells were then counter stained
with secondary antibody conjugated with FITC (goat
polyclonal antibody raised against rabbit; Cat. No.
F0382, Sigma-Aldrich) for 1 h, and the nucleus stained
with 1 µM diisopropylamine (DIPA) (Cat. No. 386464,
Sigma-Aldrich). Finally, the cells were mounted and
observed under a Leica fluorescence microscope with
a ×20 objective. Fluorescent intensity for Cx 37, Cx 40
and Cx 43 in the cells were analyzed using Image J soft-
ware, with nuclei staining by DAPI used to normalize the
fluorescence intensity.

Real-time PCR

Gene expression analysis was performed via quantitat-
ive real-time polymerase chain reaction (qRT-PCR) as
described by Cervellati et al. (2011). Briefly, total RNA
was extracted using the Trizol reagent, according to
the manufacturer’s instructions, its concentration
determined using a nanodrop spectrophotometer,
and quality checked via agarose gel electrophoresis.
qRT-PCR was performed using the iQTM SYBR Green
Supermix (Bio-Rad), on a MyiQ Single-Color Real-Time
PCR Detection System (Bio-Rad), targeting specific
genes whose oligonucleotide primers are outlined in
Table 1. Relative gene expression was normalized to
that of β-actin, using the 2-ΔΔCT method against the
control.

Western blot assay

Detection of protein expression was performed as
described by Cervellati et al. (2011). Briefly, total
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proteins were extracted by lysing cells in the RIPA
buffer containing 150 mM NaCl, 5 mM EDTA, 1%
NP40, 2 mM PMSF and 50 mM Tris-HCl, pH 7.4 or SB
buffer containing 20% SDS, 0.1 M Tris-HCl, pH 6.8 and
10 mM EDTA, with a 30-sec sonication. Equal protein
concentrations (30 µg) were separated on 12% SDS-
PAGE, and transferred onto a PVDF membranes. The
membranes were blocked with with blocking buffer
(PBS containing 3%BSA and 0.1% sodium azide), for
the reason that the molecular weight of Cx isoforms
(37, 40, 43) and β-actin (42KD) are very close, then incu-
bated for 1 h at room temperature with the following
primary antibodies: rabbit polyclonal anti-Cx37 anti-
body (rabbit polyclonal Cx37 antibody raised against
human; Cat. No. SAB4501180, Sigma-Aldrich), anti-
Cx40 antibody (rabbit polyclonal Cx40 antibody raised
against human; Cat. No. SAB1304973, Sigma-Aldrich)
and anti-Cx43 antibody (rabbit polyclonal Cx43 anti-
body raised against human; Cat. No. C6219, Sigma-
Aldrich) (1:1000) and anti-β actin antibody (rabbit poly-
clonal antibody raised against human; Cat. No.
SAB5500001, Sigma-Aldrich) (1:1000). The membranes
were then incubated with horseradish peroxidase-con-
jugated goat anti-rabbit immunoglobulin G (Cat. No.
6154, Sigma-Aldrich) (Zhang et al. 2021), protein
expression detected via enhanced chemiluminescence,
and bands quantified using Bio-Rad Image Lab soft-
ware. Expression of target proteins was normalized to
that of β-actin.

Statistical analysis

All of data were statistically analyzed using SPSS 13.0
software and presented as means ± standard deviations
(SD) of the mean. Differences between groups (n = 6)
were analyzed using the t-test, at significance levels of
*P < 0.05 and **P < 0.01.

Results

Simvastatin prevents TNF-α-induced GJIC activity
inhibition in HUVECs

Observation of cells under white light (200× magnifi-
cation) revealed a higher number of pseudopods was
increased in the TNF-α treatment group compared to .
On the other hand, pseudo foots were significantly
lower in TNF-α combined with simvastatin treatment,
relative to the group treated with TNF-α alone (Figure
2). Confluent cultures were scraped and incubated
with the GJIC-permeable fluorescent Lucifer yellow (LY,
green) and the GJIC-impermeable fluorescent rhoda-
mine-dextran (RD, red) dyes (Figure 3). HUVEC colonies
in the control group exhibited extensive LY diffusion,
at an average LY transfer distance of 1.39 ± 0.08 mm.
TNF-α treatment significantly reduced LY transfer
among cells to an average of 0.33 ± 0.05 mm.
However, simvastatin treatment inhibited this effect
resulting in an average LY transfer distance of 0.67 ±
0.04 mm.

Effect of simvastatin on GJIC activity and
expression of Cx37, Cx40 and Cx43 proteins

Results from SL/DT assay showed that simvastatin treat-
ment suppressed TNF-α-induced inhibition of GJIC
activity in HUVECs, and affected expression of Cx37,
Cx40 and Cx43 in endothelial cells. These proteins play
an important role in GJIC. Immunofluorescence results
showed that TNF-α treatment downregulated
expression of Cx37 and Cx40 gap junctions in HUVECs
relative to those in the control group. However,
exposure of HUVECs simvastatin upregulated Cx37 and
Cx40 expression. In addition, TNF-α treatment upregu-
lated while exposure to simvastatin downregulated
Cx43 expression in HUVECs (Figure 4).

Figure 1. Schematic representation of the experimental design adopted in this study.
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Effect of simvastatin expression of Cx37, Cx40
and Cx43 mRNAs in HUVECs

Real-time PCR results showed that Cx37, Cx40 and Cx43
were expressed in HUVECs in both control and TNF-α
treatment groups, although expression levels Signifi-
cantly differed. Particularly, Cx37 and Cx40 mRNAs
showed a 2-fold downregulation, while Cx43 was upre-
gulated in TNF-α treatment relative to the control
group. However, treatment of HUVECs with TNF-α in
combination with simvastatin (5 µM) significantly upre-
gulated Cx37 (80 ± 7 vs 128 ± 14, P < 0.01) and Cx40
(14 ± 3 vs 21 ± 6, P < 0.01) relative to those treated with
TNF-α alone. On the other hand, Cx43 was significantly
downregulated in the combination relative to the TNF-
α alone group (180 ± 21 vs 115 ± 15, P < 0.01) (Figure 5).

Effect of simvastatin on expression of Cx37, Cx40
and Cx43 proteins in HUVECs

Western blots showed that treatment of HUVECs with
TNF-α for 24 h significantly downregulated expression
of Cx37 (145.85 ± 10.01 vs 90.94 ± 8.58) and Cx40
(64.25 ± 4.89 vs 28.50 ± 6.54) but upregulated that of
Cx43 (93.70 ± 12.36 vs 112.69 ± 7.21) proteins relative
to the control group. However, these patterns of
expression were reversed after simvastatin treatment.
In addition, Cx37 (90.94 ± 8.58 vs 98.75 ± 7.66) and
Cx40 (28.50 ± 6.54 vs 37.69 ± 9.58) proteins were signifi-
cantly upregulated, while Cx43 was significantly down-
regulated (112.69 ± 7.21 vs 81.03 ± 5.28) in HUVECs
treated with TNF-α in combination with simvastatin,
relative to those treated with TNF-α alone (Figure 6).

Discussion

Gap junctions, first identified in the 1960s, have been
shown to play an important role in maintenance of
normal cellular functions (Qu et al. 2014; Evans WH.
2015), while gap junction intercellular contact (GJIC)
has been associated with inflammatory-induced
increase in vascular permeability (O’Donnell et al.
2014). Statins are the most commonly used lipid-modify-
ing medications in the world (Adams et al. 2012). In the
gap junction, statins have been shown to exert

pharmacological activity against atherosclerosis, neointi-
mal hyperplasia, arrhythmia, and cancer (Barros et al.
2011; Mihos et al. 2014; Qu et al. 2014). In fact, some
researchers have hypothesized that simvastatin’s pleio-
tropic effects could be related to an increase in GJIC
seen in the current research (Wang et al. 2013).
However, statins’ effect in lowering endothelial GJIC
and subsequent prevention of activities of inflammatory
mediators remain unclear. Therefore, in the present
study, we activated HUVECs by treating them with
TNF-α alone, or in combination with simvastatin,
then evaluated their effects on vascular endothelial cell
GJIC.

Results of the SL/DT assay showed that TNF-α signifi-
cantly suppressed GJIC activity, which was consistent
with previous studies that have shown that TNF-α
could inhibit GJIC activity in vascular endothelial cells,
liver epithelial cells and human corneal fibroblasts
(Kimura et al. 2013; Mihos et al. 2014; Okamoto et al.
2014). Additional evidences have associated alterations
of gap junctions with cardiac abnormalities, such as
arrhythmia, necrosis and apoptosis of cardiomyocytes
in animals (Chen et al. 2010; Marsh et al. 2016). Results
of the present study further showed that treating
HUVECs with TNF-α in combination with simvastatin sig-
nificantly increased their GJIC activity indicating simvas-
tatin’s beneficial effects (Marsh et al. 2016).

Results from a previous study showed that simvasta-
tin improved sensitivity of Leydig tumor cells to che-
motherapeutic toxicity by enhancing gap junction
functions (Wang et al. 2015). Notably, gap junctions
are composed of transmembrane proteins, named con-
nexins (Cxs) (Thevenin et al. 2013). Previous studies
have identified various types of proteins in the gap junc-
tion, key among them being Cx37, Cx40 and Cx43, which
in arterial walls regulate the progression of atherosclero-
sis (Pfenniger et al. 2013). In contrast to the atheropro-
tective roles of Cx37 and Cx40, Cx43 merely acts as an
atherogenic protein (Morel et al. 2014). To further
clarify the simvastatin’s regulatory role on gap junction
functions, we performed immunofluorescence, real-
time PCR and western blot assays to analyze expression
of Cx37, Cx40 and Cx43 mRNAs and proteins. Results all
showed that simvastatin treatment upregulates Cx37
and Cx40 mRNAs and proteins. Previous studies have

Table 1. List of oligonucleotide primers used for real-time PCR analysis.
Gene(GeneBank ID) Primer sequence (5′→3′) Tm (⍰) Product size (bp)

Cx37 NM_021654 Antisense: GAAGAAGTGGTCGTAGCA, Sense: AGGAGTAGAAGGGAAAGC 53.5 314
Cx40 NM_019280 Antisense: CAATCTTCCCGTTCACCT-3′, Sense: TCTCCCACATTCGTTACTG 53.1 213
Cx43 NM_012567 Antisense: AGAGCACTGACAGCCACA, Sense: TCCAAGGAGTTCCACCAA 52.9 156
β-actin NM_031144 Antisense: TCCTTCTGACCCATACC, Sense: TTTGTGCCTTGATAGTTCG 55.6 260

ANIMAL CELLS AND SYSTEMS 13



shown that mouse aortic endothelial gap junctions and
connexins are downregulated during long-term hyperli-
pidemia, whereas short-term treatment with simvastatin
leads to recovery of Cx37 but not Cx40 expression (Yeh
et al. 2003). Other research evidences have shown that in
the presence of statins, formation of the neointima
induced by balloon injury is reduced along with downre-
gulation of Cx40 expression at the site of injury (Wang

et al. 2005). Results of the present study showed that
both Cx37 and Cx40 were upregulated, possibly due to
different experimental methods and models. Our
results were consistent with the findings of Hou et al.
(2008) who showed that simvastatin significantly
reversed the downregulation in endothelial Cx37 and
Cx40 expression in diabetic mice. Downregulation of
Cx43, a cardiovascular risk marker and a therapeutic

Figure 2. Profiles of cell morphology (200× magnification). Pseudopod increased in the TNF-α treatment, relative to the control group,
while pseudo foots were significantly lower in the TNF-α combined with simvastatin relative to the TNF-α alone group (red arrows).
Contrast phase microscope 100×. B: Analysis of the number of pseudo foot in each group. Error bars represent SD, n = 6, ###P < 0.001
versus the control group, ***P < 0.001 versus the TNF-α treatment group. Bar = 100 μm.

Figure 3. Simvastatin suppresses TNF-α-induced inhibition of GJIC activity in HUVECs, based on the Scrape loading assay. A: Fluor-
escence micrographs with Lucifer yellow (LY, MW: 457, 25 Da) and rhodamine-dextran (RD, MW: 10 kDa). (Original magnification ×10).
B: The distance between the dye transfer front and the scrape line in each group. Error bars represent SD (n = 6), **P < 0.01 versus the
TNF-α treatment group. Bar = 40 μm.
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target, was shown to inhibit atherosclerotic lesion for-
mation in low-density lipoprotein receptor-deficient
mice (Wei et al. 2013). To investigate the underlying
mechanism of simvastatin-mediated suppression of
GJIC activity dysfunction, we analyzed Cx43 expression
and found that treatment of HUVECs with TNF-α in com-
bination with simvastatin downregulated expression of
both its mRNA and protein. This was consistent with pre-
vious studies that have shown that simvastatin is a func-
tional factor with the ability to attenuate the additive
effects of TNF-α and IL-18 in Cx43 up-regulation and
over-proliferation of cultured aortic smooth muscle
cells (Lin et al. 2013).

Overall, these marked changes indicate that simvas-
tatin exerts its regulatory effects on gap junction func-
tions by upregulating Cx37 and Cx40 but
downregulating Cx43 expression. These findings may
also fortify the rationale underlying the atheroprotec-
tive mechanism of simvastatin therapy. Cx43 is the
most predominant gap junction protein among
various types of connexins, and has been shown to
play essential roles in coordinating activities of cardio-
vascular tissues, key among them being selective inhi-
bition of Cx43 hemichannels by Gap19 and its impact
on myocardial ischemia/reperfusion injury %J Basic
Research in Cardiology (Wang et al. 2013). Generally,
time and dose are also important factors affecting sim-
vastatin effect. Moreover, effects of other types of cell
models, such as vascular smooth muscle cell (VSMC)
and macrophages, as well as the intercellular inter-
action between vascular endothelial cell (VEC) and
VSMC, VEC and macrophage are expected to be eval-
uated in further studies. Future explorations, using
animal models and human subjects, are expected to
validate these findings.

To gain more mechanistic insights into the under-
lying biological mechanism, analyzing high-throughput
molecular measurements at the functional level was
selected. Especially, the knowledge base-driven
pathway analysis is becoming the first choice for many
investigators, which mainly exploit pathway knowledge
in public repositories (Du et al., 2016). KEGG pathway
enrichment results showed that the targeted genes
which were regulated by connexins were involved in
many pathways, including EGFR tyrosine kinase inhibitor
resistance, Endocrine resistance, and those regulating
MAPK, ErbB, Ras, Rap1, and Phospholipase D signaling,
among others. These signaling pathways could be
potential targets for future research.

Numerous studies have described simvastatin’s effect
on cadherin. Notably, adhesion junctions are extensively
distributed in microvessels, so few focus beneficial effect
of Simvastatin on tight junction (Zapolska-Downar et al.

Figure 4. Immunofluorescence results showing effect of simvas-
tatin on GJIC targeting Cx37, Cx40 and Cx43. Cx37 (A) and Cx40
(B) expression was downregulated in gap junctions of HUVECs
treated with TNF-α relative to the control group. Treatment of
HUVECs with simvastatin upregulated Cx37 and Cx40
expression. Similarly, HUVECs treated with TNF-α exhibited
Cx43 up-regulation (C) although simvastatin reversed this
phenomenon. D: Quantitative comparison of FITC staining inten-
sity normalized to control. n = 6, *P < 0.05, **P < 0.01 vs. Control;
#P < 0.05, ##P < 0.01 vs. TNF-α (+) Simvastain (−) group. Bar =
30 μm.
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2004; Khaidakov et al. 2009). These findings suggest that
statins modulate cell–cell adhesion, through VE-cad-
herin stimulation, thereby diminishing cellular

proliferation and migration. Since tight junction inter-
spersed with adhesion junction also play an important
role in maintaining vascular endothelial cell integrity,
we sought to demonstrate that simvastatin can also
affect the tight junction. Furthermore, we hypothesize
that cadherin interacts with the tight junction, although
the specific target proteins and underlying mechanism
of action remain unknown. These require further
explorations.
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