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ABSTRACT
The need to identify biomarkers to predict immunotherapy 
response for rare cancers has been long overdue. We 
aimed to study this in our paper, ‘Radiomics analysis 
for predicting pembrolizumab response in patients with 
advanced rare cancers’. In this response to the Letter 
to the Editor by Cunha et al, we explain and discuss the 
reasons behind choosing LASSO (Least Absolute Shrinkage 
and Selection Operator) and XGBoost (eXtreme Gradient 
Boosting) with LOOCV (Leave- One- Out Cross- Validation) 
as the feature selection and classifier method, respectively 
for our radiomics models. Also, we highlight what care 
was taken to avoid any overfitting on the models. Further, 
we checked for the multicollinearity of the features. 
Additionally, we performed 10- fold cross- validation 
instead of LOOCV to see the predictive performance of our 
radiomics models.

We appreciate the authors’ interest and 
commentary to highlight this important 
paper regarding the ability of radiomics to 
predict immunotherapy response in advanced 
cancer. As we know, there are multiple 
proven methods used in machine learning 
for radiomics analysis. Various feature selec-
tion methods and prediction models can be 
employed and yield sound data analysis and 
precise, accurate, and robust results. In our 
study, we have developed a pipeline for bioin-
formatic analysis that has been validated both 
preclinically and clinically for the processing 
of radiomics data1 derived from both MRI 
and CT imaging.

The commenting authors mention, ‘the 
investigators may adjust the algorithm’s 
hyperparameters and try again until satis-
factory performance is achieved. Since 
many changes are made to make the model 
more accurate for the validation data, over-
fitting may occur.’ While some investigators 
building tree- based classification algorithms 
(decision trees, random forests, and eXtreme 
Gradient Boosting (XGBoost)) use hyperpa-
rameter tuning to minimize a certain type of 
loss function or the classification error rate, 
we have not. In our case, while building our 

radiomics models, we have not performed 
any grid search for tuning of the algorithm’s 
hyperparameters. XGBoost parameters are 
divided into general parameters (booster), 
booster parameters (eta, min_child_weight, 
max_depth, max_leaf_nodes, gamma, max_
delta_step, subsample, etc), and learning 
task parameters (objective, eval_metric, and 
seed).2 Keeping in mind the small size of 
our dataset, we relied on the default values 
for major parameters from the XGBoost 
algorithm (booster=gbtree, eta=0.3, max_
depth=6, objective = “binary logistic”, and 
eval_metric=error).

The commenting authors also bring up 
sample size, tumor type heterogeneity, 
feature selection stability, and the use of 
leave- one- out cross- validation (LOOCV). 
As we acknowledge in our original article, a 
limitation of our study is the small sample size 
(N=57); however, we were still able to robustly 
predict immunotherapy response, thus 
demonstrating the feasibility of this method 
in advanced cancer. While we acknowledge 
the tumor type heterogeneity inherent in 
advanced rare cancers and while not every 
tumor histological subtype had responders, 
the advanced tumor group as per compliance 
with standard United States Food and Drug 
Administration (FDA) clinical trial protocol 
demonstrated that key radiomics features 
irrespective of tumor type predicted response 
to immunotherapy. Although it was not the 
primary aim of this study, we are able to see 
that tumor as a whole harbor specific radio-
mics features irrespective of tumor type that 
can robustly help with patient stratification. 
Regarding feature selection and predictive 
modeling, feature selection gains particular 
importance while working with high dimen-
sional datasets where small- n- large- p prob-
lems exist; and choosing the best feature 
selection method to overcome this problem is 
crucial. The LASSO feature selection method 
addresses the small- n- large- p issues by 
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applying a shrinkage (regularization) process,3 through 
penalizing the coefficients of the regression variables and 
shrinking some of them to zero.4 In doing so, this method 
reduces the variance without any significant increase of 
the bias; and hence, this is most useful in cases where there 
are small number of observations and many (radiomics) 
features. Moreover, the LASSO feature selection method 
helps eliminate irrelevant features not associated with 
the response variable, reduces overfitting, and success-
fully handles multicollinearity.5 Furthermore, LASSO, 
as a regularization method, is known to handle multicol-
linearity very well in small datasets when compared with 
other feature selection methods.6 The XGBoost, a tree 
boosting algorithm used in machine learning, is the most 
widely recognized classification algorithm and is exten-
sively used as it enables one to do the parallel compu-
tation, cross- validation, regularization, tree pruning, 
and missing value imputation (if needed).2 For building 
our radiomics classification models, we have chosen an 
ensemble modeling approach where we used least abso-
lute shrinkage and selection operator (LASSO) followed 
by XGBoost for feature selection and model building, 
respectively. Feature selection methods like minimum 
redundancy maximum relevance method and wrapper 
methods (forward and backward elimination) have been 
previously tested and implemented as a part of validating 
our pipeline during its development phase, and we have 
noted that the LASSO feature selection method resulted 
in higher predictive accuracy and the selection of more 

meaningful features when compared with others and was 
best in handling multicollinearity of the features.

Leave- one- out cross- validation is an extension of the 
k- fold cross- validation, where k is equal to the number 
of samples in the dataset. LOOCV is best when working 
with small datasets and when the estimation of the 
model performance is critical.7 Since our dataset is 
small (N=57 patients), we applied LOOCV as the cross- 
validation while building our radiomics models. Multiple 
studies have shown that LASSO for feature selection and 
XGBoost for classification offer good performance in 
predictive modeling.8 LASSO feature selection, XGBoost, 
and LOOCV were also used and confirmed in the land-
mark paper published by Zinn et al1 establishing a causal 
linkage between radiomics and genomics. Furthermore, 
this method and pipeline have been validated in both 
MRI and CT.1 In addition, immune- related Response 
Evaluation Criteria in Solid Tumors (irRECIST) adapted 
the concept of measurement similar to that of Response 
Evaluation Criteria in Solid Tumors (RECIST). So, we 
expect to have shared radiomics features extracted in 
patients assessed by irRECIST and RECIST in our radio-
mics models.

As per the authors’ suggestion, we have checked the 
multicollinearity of the features and performed 10- fold 
cross- validation as an alternative to LOOCV to see the 
predictive performance of our radiomics models. The 
results for multicollinearity identified by variance infla-
tion factor (VIF) on the top 10 radiomics features used 
to build the RECIST and irRECIST radiomic models 
are given in table 1. High VIFs (>10) indicate multi-
collinearity; this makes interpretation of the contribu-
tion of an individual feature challenging but does not 
necessarily impact predictive performance. Tree- based 
algorithms such as XGBoost are particularly robust to 
multi- collinearity. Furthermore, using the 10- fold cross- 
validation over 10 iterations, the predictive model using 
the top 10 out of the total 44 features identified from 
LASSO feature selection to predict RECIST response 

Table 1 Results for multicollinearity on the top 10 features 
using the variance inflation factor (VIF). A maximum VIF 
of 10 is chosen as the threshold and removing features 
with VIF greater than the threshold is said to reduce the 
multicollinearity. We see from table 1 that the features P_
F269 and P_F289 have VIF >10, meaning these predictors 
are highly correlated with the remaining features in the 
model

Top 10 features used for 
the prediction of RECIST 
response

Top 10 features used for 
the prediction of irRECIST 
response

Feature VIF Feature VIF

P_F7 1.36 P_F89 1.57

P_F84 1.49 P_F187 1.21

P_F269 15.12 P_F269 12.78

P_F289 15.40 P_F289 12.01

PV_F35 5.38 PV_F24 1.38

PV_F89 5.22 PV_F81 1.27

PV_F109 9.19 PV_F270 1.35

Ar_F152 1.09 Ar_F152 1.35

Ar_F154 1.16 ArV_F36 4.13

Ar_F238 1.17 ArV_F247 3.74

RECIST, Response Evaluation Criteria in Solid Tumors
irRECIST, immune- related Response Evaluation Criteria in Solid 
Tumors

Figure 1 (A) Receiver operating characteristic (ROC) curve 
representing the performance of the predictive model using 
top 10 radiomic features to predict RECIST response with 
10- fold cross- validation over 10 iterations. (B) ROC curve 
representing the performance of the predictive model using 
top 10 radiomic features to predict irRECIST response with 
10- fold cross validation over 10 iterations.
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resulted in a radiomics model that had an accuracy, sensi-
tivity, and specificity (89.47%, 91.89%, and 85%, respec-
tively) (figure 1A). Similarly, the predictive model using 
the top 10 out of the total of 56 features identified after 
LASSO feature selection to predict irRECIST response 
with 10- fold cross- validation over 10 iterations resulted in 
a radiomics model that had an accuracy, sensitivity, and 
specificity (87.72%, 90.91%, and 83.33%, respectively) 
(figure 1B).

In conclusion, we thank the authors for their comments, 
and we feel there are several ways to look at the radiomics 
and our approach has been one of these approaches. 
More studies are needed to solidify and validate the 
findings.
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