
RESEARCH ARTICLE

A parallel approximate string matching under

Levenshtein distance on graphics processing

units using warp-shuffle operations

ThienLuan Ho, Seung-Rohk Oh, HyunJin Kim*

School of Electronics and Electrical Engineering, Dankook University, Yongin-si, Republic of Korea

* hyunjin2.kim@gmail.com

Abstract

Approximate string matching with k-differences has a number of practical applications, rang-

ing from pattern recognition to computational biology. This paper proposes an efficient

memory-access algorithm for parallel approximate string matching with k-differences on

Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same

GPUs warp share data using warp-shuffle operation instead of accessing the shared mem-

ory. Moreover, we implement the proposed algorithm by exploiting the memory structure of

GPUs to optimize its performance. Experiment results for real DNA packages revealed that

the performance of the proposed algorithm and its implementation archived up to 122.64

and 1.53 times compared to that of sequential algorithm on CPU and previous parallel

approximate string matching algorithm on GPUs, respectively.

Introduction

Approximate string matching (ASM) has been widely applied in many fields, including net-

work intrusion detection systems, voice recognition, web searching, and computational biol-

ogy [1–3]. Basically, ASM is the problem of finding all positions of a string where a given

pattern occurs, allowing a limited number of errors in the matches. The closeness of a match is

measured by the minimum number of edit operations used to convert a factor of the input

string into an exact match of the pattern. The usual edit operations are insertion, deletion,

replacement, and transposition [1, 4]. There is a popular method for ASM that allows three

edit operations of insertion, deletion, and substitution to transform a factor of the input string

into the pattern, which is called ASM with differences. This method is also called as ASM with

edit distances or ASM with Levenshtein distance [5].

In order to improving the ASM computation, several techniques have been proposed

by adopting field-programmable gate array (FPGA) [6–9], central processing unit (CPU)

[10–12], multi-core processors [13], and GPUs [4, 14–18]. The GPU-based ASM provides

great parallelism with a large number of threads compared to multi-core processors. More-

over, GPUs have low cost, high flexibility, and updatability, compared to FPGA. In recent

years, NVIDIA has introduced CUDA (Compute Unified Device Architecture) with a new

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ho T, Oh S-R, Kim H (2017) A parallel

approximate string matching under Levenshtein

distance on graphics processing units using warp-

shuffle operations. PLoS ONE 12(10): e0186251.

https://doi.org/10.1371/journal.pone.0186251

Editor: Quan Zou, Tianjin University, CHINA

Received: July 3, 2017

Accepted: September 27, 2017

Published: October 10, 2017

Copyright: © 2017 Ho et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This research was supported by Basic

Science Research Program through the National

Research Foundation of Korea (NRF) funded by the

Ministry of Education. (2017R1D1A1B03030348).

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0186251
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186251&domain=pdf&date_stamp=2017-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186251&domain=pdf&date_stamp=2017-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186251&domain=pdf&date_stamp=2017-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186251&domain=pdf&date_stamp=2017-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186251&domain=pdf&date_stamp=2017-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186251&domain=pdf&date_stamp=2017-10-10
https://doi.org/10.1371/journal.pone.0186251
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

parallel programming model and instruction set architecture. CUDA provides a complete tool

to leverage the parallel compute engine in NVIDIA’s GPUs. GPUs and their CUDA create

new opportunities to study or improve current tools and algorithms.

Traditional sequential algorithms for ASM with k-differences adopt the dynamic program-

ming model. These algorithms can compute edit distance matrix D between input string and

pattern to get the minimum edit operations to convert each factor of input string to pattern.

Unfortunately, each element of the matrix D depends on the former elements on the same

row, or column. Therefore, it is difficult to design a parallel algorithms for ASM with k-

differences.

Previous researches [16, 17, 19–23] proposed several parallel algorithms for ASM with k-

differences on CREW-PRAM model and GPUs. The common idea of these researches was

that all elements in the same diagonal of the edit distance matrix could be computed in parallel.

The paper [20] presented an implementation of ASM algorithm with the hierarchical memory

machine (HMM) model on GPUs. The HMM model could capture the essential feature of

memory access of NVIDIA GPUs to enhance the performance of ASM algorithm. In [21], a

hybrid CPU-GPU model to accelerate ASM algorithm for protein sequences was proposed.

The main goal was to speed up computational time of ASM algorithms using a hybrid model

that combines the power of multicore CPUs and that of contemporary GPUs. In this case,

CPUs read the task and control the number of queries that were sent to GPUs. CPUs were pro-

cessed in parallel to enhance the reading task from multiple files. This hybrid model should be

adopted in the architecture of NVIDIA GPUs with computing capability 3.0 or higher, which

allows CPUs to send multiple jobs to GPUs. The research [22] presented a hybrid approach

that combines ASM with k-differences algorithm and Needleman–Wunsch (NW) algorithm

in order to find similarities of two long protein sequences. In this case, ASM with k-differences

algorithm was used to calculate the edit distances between pairs of parts of protein sequences.

When comparing two sequences, the NW algorithm was used to combine with some scored

edit distances to compute the final edit distance which can finally indicate the similarity level.

The hybrid approach of [22] was implemented in a parallelism model by coupling CPU multi-

threaded operations into GPU algorithm to maximize performance. In addition, database stor-

age matrix was transposed based on the ELL (Ellpack-Itpack) storage format for coalesced

memory access of GPU threads. Thus, the proposed parallel approach could achieve high com-

pute and storage efficiency. In [23], a heterogeneous CPU-GPU computing system for measur-

ing the similarity between RNA/DNA sequences was presented. In CPU-GPU

implementation, CPU handled work assignment and data distribution while GPU was respon-

sible for the whole parallel computation. To fully utilize the computing devices, the proposed

system took a co-run computation model so that workloads were assigned and computed on

both CPU and GPU devices simultaneously. In addition, a pre-computation mechanism was

developed to distribute workloads to CPU and GPU based on their computing capacity. The

computing system of [23] could maximize the utilization of computing resources to enhance

performance. The works of paper [24, 25] presented several approaches for checking the simi-

larity between the large-scale data of RNA/DNA sequences. The proposed approaches were

developed based on MapReduce model with Apache Hadoop platform [26]. These approaches

have archived significant performance and scalability. However, there was a problem of com-

bining GPUs and Hadoop platform. In this case, GPUs should be driven in the local disk. In

cloud computing system of Hadhoop, the graphic memory could not be found since the NVI-

DIA graphic card was not driven. The combination of GPU and Hadhoop has been proposed

to be a promising field by solving technique problem encountered by NVIDIA company and

Apache [24]. In addition, adopting MapReduce model to CPU-GPU systems without using

Apache Hadoop platform has been demonstrated previously [24, 27]. In this case, the long

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 2 / 15

https://doi.org/10.1371/journal.pone.0186251

RNA/DNA sequences were split and sent to different client nodes. In each client node, a cou-

ple of CPU and GPU were combined to process for each part of the RNA/DNA sequence in

parallel. Based on this idea, the paper [27] proposed a hybrid scheduling technique for GPU-

based computer clusters. A scheduling technique was developed by extending Hadoop proce-

dure to minimize the execution time of a submitted job on CPU cores and GPU devices. Thus,

the total execution time could be reduced. Two implementations of parallel ASM for DNA

sequencing on GPUs relying on warp-shuffle operations were proposed in [16, 17]. The main

parallel scheme was the same as that in previous studies [19, 20] that processed the edit dis-

tance matrix in parallel for all elements in the same diagonal flow. Moreover, the papers

[16, 17] adopted wrap-shuffle operations to reduce the communication overhead between

threads. By parallel computing for all elements in the same diagonal flow, the maximum num-

ber of threads processed in the same time was limited by the length of the input pattern. There-

fore, the parallelism scheme in [16, 17, 19] lacked the parallel expandability, especially when

adopting GPUs.

The paper in [4] proposed an algorithm with a parallel scheme difference from the works in

[16, 17, 19], where all elements in the same row of edit distance matrix could be calculated in

parallel by eliminating data dependency. This parallel scheme achieved the maximum number

of threads processed in the same time up to the length of input string. In addition, the length

of input string was much longer than that of pattern. Compared to the diagonal parallel

scheme, the row parallel scheme in [4] could thoroughly use processors when the number of

available processors was great, especially when using GPUs.

This paper proposes an efficient memory-access algorithm and its implementation for par-

allel ASM with k-differences on GPUs. Unlike the achievement in [4], to enhance the through-

put, all threads in the same warp can communicate with each other using the warp-shuffle

operations without accessing the memory. In this case, by using warp-shuffle operations, our

proposed algorithm can reduce the amount of read/write operations when computing all ele-

ments in the edit distance matrix. In order to overcome the limitation of warp-shuffle opera-

tions when they cannot be used for communication between threads in neighboring warps,

the proposed implementation adopts write/read operations in shared memory or global mem-

ory instead of using warp-shuffle operations. In the particular case of adopting GPUs, the pro-

posed algorithm can be implemented by exploiting memory structure of GPUs to enhance its

performance. The performance of the proposed approach is measured using random DNA

pattern from [28] and several input strings from raw DNA sequences [29]. Results of experi-

ments show that the performance of the proposed algorithm and its implementation is

enhanced up to 122.64 and 1.53 times, compared to that of sequential algorithm implemented

on CPU and previous parallel ASM algorithm on GPUs, respectively.

The rest of this paper is organized as follows. Previous Works section explains the problem

of ASM with k-differences. Traditional sequential algorithm and previous parallel algorithm

for solving ASM with k-differences are then shown. The details of the proposed algorithm and

its implementation are described next. Finally, experiments and performance comparisons are

discussed.

Previous works

Definition 1: Edit distance

For two strings X[0. . .n − 1] and Y[0. . .m − 1], the edit distance between X and Y, denoted as

ED(X, Y), is the minimum number of edit operations used to convert string X to Y. There are

three edit operations defined as follows:

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 3 / 15

https://doi.org/10.1371/journal.pone.0186251

• Insert a character to X.

• Delete a character from X.

• Replace a character of X.

Definition 2: ASM with k-differences

Given a string T[0. . .n − 1], a pattern P[0. . .m − 1], and a threshold k, where n>m> k, ASM

with k-mismatches searches for all factors u of length m in T that is formulated by ED(u, P)� k.

Traditional sequential algorithm for computing edit distance

Traditional sequential algorithm for solving ASM with k-differences is developed based on

dynamic programming model. In this case, the edit distance matrix D of input string T and

pattern P is calculated, where each element contains the minimum edit operations between a

factor of T and a factor of P.

Given i, j (0� i�m, 0� j� n), the element D[i, j] of the edit distance matrix D can be cal-

culated by (1).

D½i; j� ¼

0; if i ¼ 0

i; if j ¼ 0

D½i � 1; j � 1�; if T½j � 1� ¼ P½i � 1�

1þminfD½i � 1; j�;D½i; j � 1�;D½i � 1; j � 1�g; otherwise:

8
>>>><

>>>>:

ð1Þ

Fig 1 shows an example of edit distance matrix, where input string T = CATGACTG, pattern

P = TACTG, and threshold k = 2. In this case, each element D[i, j] contains the minimum edit

operations, which are used to convert factor T[l. . .j − 1] to P[0. . .i − 1] (0� l� j − 1).

To compute edit distance matrix D by using (1), the value of D[i, j] depends on its previous

elements D[i, j − 1], D[i − 1, j], and D[i − 1, j − 1]. Data dependency appears in the traditional

Fig 1. Edit distance matrix D for input string T = CATGACTG and pattern P = TACTG.

https://doi.org/10.1371/journal.pone.0186251.g001

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 4 / 15

https://doi.org/10.1371/journal.pone.0186251.g001
https://doi.org/10.1371/journal.pone.0186251

sequential algorithm. Therefore, it is difficult to develop a parallel algorithms for ASM with

k-differences.

Previous parallel algorithm for ASM with k-differences

To enhance the performance of ASM with k-differences, several parallel algorithms have been

developed in [16, 17, 19]. The main idea is based on the parallelism when all elements in the

same diagonal of the edit distance matrix D are computed in parallel. In this case, the maximal

number of threads processed at the same time is m + 1, where m is length of target pattern.

Therefore, these approaches cannot fully use threads when the number of available threads is

great.

To expand the number of threads that can process the edit distance matrix at the same time,

the paper [4] presented a technique for eliminating data dependency. In this case, a matrix X of

dimension |∑| � (n + 1) is constructed, where |∑| and n are size of character set ∑ and length of

input string T, respectively. Array Q[0, . . ., |∑| − 1] denotes characters in ∑. X[i, j] can be calcu-

lated as (2).

X½i; j� ¼

0; if i ¼ 0

j; if T½j � 1� ¼ Q½i�

X½i; j � 1�; otherwise:

8
><

>:
ð2Þ

Algorithm 1 Parallel algorithms for ASM with k-differences.
1: Input:T, P, n, m
2: Output:Edit distancematrixD
3: begin
4: for all i 2 ∑ paralleldo
5: for j 0 to n do
6: ComputematrixX using(2).
7: end for
8: end for
9: for all i 0 to m do
10: for j 0 to n paralleldo
11: Computeedit distancematrixD using (3).
12: end for
13: end for
14: end

Fig 2 shows an example of matrix X of the input string T = CATGACTG. In this case, data

of all rows are independent from each other. Therefore, all rows of matrix X can be computed

in parallel.

According to matrix X, (1) can be written as follows.

D½i; j� ¼

0; if i ¼ 0

i; if j ¼ 0

D½i � 1; j � 1�; if T½j � 1� ¼ P½i � 1�

1þminfD½i � 1; j�; D½i � 1; j � 1�; iþ j � 1g; ifX½l; j� ¼ 0

1þminfD½i � 1; j�; D½i � 1; j � 1�;

D½i � 1; X½l; j� � 1� þ ðj � 1 � X½l; j�Þg; otherwise:

8
>>>>>>>>>><

>>>>>>>>>>:

ð3Þ

In (3), l is the location of P[i − 1] (1� i�m) in array Q. Considering (3), data in the i-th

row of D only depends on data from the (i − 1)-th row. Therefore, the parallel of all elements

in each row of edit distance matrix D can be computed in parallel. However, the computation

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 5 / 15

https://doi.org/10.1371/journal.pone.0186251

of all elements in the same row should be completed before the processing of next row. The

pseudo code of previous parallel ASM with k-differences is described as Algorithm 1.

Fig 3 shows an example of adopting algorithm 1 for ASM with k-differences with input

string T = CATGACTG, target pattern P = TACTG, and threshold k = 2. Threads are assigned

to process all elements in the same row of the edit distance matrix D. The barrier sync is called

to guarantee that all threads can complete processing all elements of a row before going to the

next row. Finally, all elements in the m-th row are compared with k to store into array Result[].
For all j, 0� j� n − 1, if D[m, j + 1]� k, Result[j] = j; otherwise, Result[] = −1.

Fig 3. An example of Algorithm 1 for input string T = CATGACTG and pattern P = TACTG.

https://doi.org/10.1371/journal.pone.0186251.g003

Fig 2. Matrix X of input string T = CATGACTG.

https://doi.org/10.1371/journal.pone.0186251.g002

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0186251.g003
https://doi.org/10.1371/journal.pone.0186251.g002
https://doi.org/10.1371/journal.pone.0186251

Proposed parallel algorithm and its implementation for ASM with

k-differences on GPUs

This section proposes an efficient memory-access parallel algorithm and its implementation

for ASM with k-differences on GPUs. The key idea of the proposed algorithm is based on

adopting warp-shuffle operations to eliminate the assesses of global or shared memories.

Moreover, the proposed algorithm is implemented by exploiting the memory structure of

GPUs to optimize its performance. Details of warp-shuffle operation and the implementation

procedure are explained in this section.

Warp-shuffle operations on GPUs

NVIDIA has proposed a parallel computing platform and programming model, called CUDA.

It is adopted to leverage the parallel compute engine in GPUs to solve many complex computa-

tional problems with great parallelism [18, 30–32]. A CUDA contains a thousand general pur-

pose computing processors, named threads. The architecture of CUDA threads is organized by

blocks and grids. A block is a group of threads while a grid is a group of blocks. Each grid is

assigned to process a core program, named kernel, which is provided by host/CPU. In CUDA,

all blocks in a grid can be executed in parallel. However, there is no communication between

blocks [18, 30]. In a block, threads are organized into several groups of threads, called warps,
to execute the same instruction. Typically, all threads in the same block can communicate with

each other by using shared memory. In addition, recent NVIDIA GPU architecture with com-

puting capability 3.0 or higher provides a way to share data between threads in the same warp

directly. In this case, a thread can read registers of other threads in the same warp by using a

new instruction called warp-shuffle [16, 17, 33]. There are four warp-shuffle operations,

named __shfl(), __shfl_down(), __shfl_up(), and __shfl_xor(), to support threads within a warp

to collectively exchange or broadcast data.

Threads within a warp are referred to as lanes. They are indexed from 0 to w − 1, where w is

the number of threads in a warp. Considering the warp-shuffle function __shfl_up(par, delta),

it calculates a destination lane ID by subtracting delta from the caller’s lane ID. The calling

thread can then take a variable par from the local register of another thread according to desti-

nation lane ID. As an example, when a thread calls a warp-shuffle function __shfl_up(par, 1).

Because delta is 1, the __shfl_up(par, 1) operation allows the calling thread to get the value of

variable par in local register of the thread whose lane ID is immediately lower than that of the

calling thread.

Fig 4 shows an example of data transfer between threads in a warp. Fig 4(a) shows data

transfer of threads via __shfl_up(var, 1) operation. In this case, thread i uses __shfl_up(var, 1)

operation to directly get the value of var in local register of thread i − 1, where 0< i< w. On

the other hand, Fig 4(b) shows data transfer of threads via alternative write/read operations on

shared memory. Each thread writes the value of its variable var into the specific location in the

shared memory. The synchronize instruction should be called to wait until all threads

completely finish the write process. Thread then needs to access the shared memory to get the

value of var of the thread that has the immediate lower ID.

By using warp-shuffle operations, several advantages can be achieved. Firstly, the shuffle

instruction frees up shared memory to be used for other data. Secondly, the shuffle instruction

is faster than shared memory since it only requires one instruction versus three instructions

for shared memory (write, synchronize, and read). Finally, the shuffle instruction can be used

instead of warp-synchronous optimization.

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0186251

Proposed parallel algorithm and its implementation for ASM with k-

differences on GPUs using warp-shuffle operations

In this section, a parallel algorithm and its implementation for ASM with k-differences are

proposed. The proposed algorithm adopts warp-shuffle operation in order to enhance the per-

formance, compared to that in [4]. By using warp-shuffle operations, all threads in the same

warp can transfer data without using write/read/sync operations on shared memory. There-

fore, the communication overhead between threads in the same warp can be reduced. More-

over, the proposed algorithm exploits memory structure of GPUs to optimize performance of

the previous approach.

In the proposed algorithm, all threads are assigned to process elements in the same row of

the edit distance matrix D in parallel based on (2) and (3), where thread processing based on

warp-shuffle operations is implemented.

Considering (3), the element D[i, j] depends on values of D[i − 1, j − 1], D[i − 1, j], and

D[i − 1, X[l, j] − 1], which are already calculated in the previous row. Therefore, before a thread

calculates D[i, j], values of D[i − 1, j − 1], D[i − 1, j], and D[i − 1, X[l, j] − 1] should be trans-

ferred to the thread. Assuming that thread j stores its correlative D[i, j] value in its local

register Dvar, where 0< i� n. Let us consider how values D[i − 1, j − 1], D[i − 1, j], and

Fig 4. Data transference of threads in a warp: (a) Transferring data via __shf_up() operation; (b) Transferring data via alternative

write/read operations on shared memory.

https://doi.org/10.1371/journal.pone.0186251.g004

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 8 / 15

https://doi.org/10.1371/journal.pone.0186251.g004
https://doi.org/10.1371/journal.pone.0186251

D[i − 1, X[l, j] − 1] are transferred and stored in register Avar, Bvar, and Cvar of the calling

thread, respectively.

• The value of D[i − 1, j − 1] is stored in the register Dvar of the thread that has the immediate

lower ID. Therefore, __shfl_up() operation can be used. Therefore, Avar = __shfl_up(Dvar,
1)

• The value of D[i − 1, j] is stored in the register Dvar of the current thread. Therefore,

Bvar = Dvar.

• The value of D[i − 1, X[l, j] − 1] is stored in the previous row of the matrix D. Therefore,

Cvar = D[i − 1, X[l, j] − 1].

Based on values of Avar, Bvar, and Cvar, a thread can calculate the value of Dvar by using

(4).

Dvar ¼

0; if i ¼ 0

i; if j ¼ 0

Avar ; if T½j � 1� ¼ P½i � 1�

1þminfAvar;Bvar; iþ j � 1g; ifX½l; j� ¼ 0

1þminfAvar;Bvar;Cvar þ ðj � 1 � X½l; j�Þg; otherwise:

8
>>>>>>><

>>>>>>>:

ð4Þ

The pseudo code of the proposed algorithm is shown in Algorithm 2. Fig 5 shows an exam-

ple of adopting algorithm 2 for solving ASM with k-differences, where input string T = CAT-
GACTG, pattern P = TACTG, and threshold k = 2. Threads are assigned to process elements in

the same row of the edit distance matrix D. Before thread i processes its element, a warp-shuf-

fle operation is performed to get the Dvar value of thread that has the lane IDs i − 1. The bar-
rier sync instruction is called to guarantee that all threads can completely process all elements

of one row before going to the next row.

Fig 5. An example of Algorithm 2 for input string T = CATGACTG and pattern P = TACTG.

https://doi.org/10.1371/journal.pone.0186251.g005

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 9 / 15

https://doi.org/10.1371/journal.pone.0186251.g005
https://doi.org/10.1371/journal.pone.0186251

Algorithm 2 Proposed parallel algorithm for ASM with k-differences.
1: Input:T, P, n, m, w
2: Output:Edit distancematrixD
3: begin
4: for all i 2 ∑ paralleldo
5: for j 0 to n do
6: ComputematrixX using(2).
7: end for
8: end for
9: for all i 0 to m do
10: for j 0 to n paralleldo
11: if i%w = = 0 then
12: Avar = D[i − 1, j − 1];
13: else
14: Avar = __shfl_up(Dvar,1);
15: end if
16: Bvar = Dvar;
17: Cvar = D[i − 1, X[l, j] − 1];
18: Computeedit distancematrixD using (4).
19: D[i, j] = Dvar;
20: end for
21: end for
22: end

The limitation of warp-shuffle operations is that data transfer cannot be processed between

threads in two neighboring warps. Therefore, the leftmost or rightmost threads in two neigh-

boring warps should communicate with each other using write/read operations in shared

memory or global memory.

In addition, the performance of the proposed algorithm is implemented on GPUs by

exploiting CUDA memory structure. In CUDA memory architecture, global memory has

high-capacity. Shared memory can provide fast memory access for threads. However, the

capacity is smaller than that of global memory [30]. With the limitation of shared memory

size, one main contribution of our implementation is to find out which access part of global

memory to be replaced by that of shared memory. The obtained part of the global memory is

transferred to the shared memory of block. By accessing the shared memory instead of the

global memory, the execution time of threads can be reduced.

In the implemented version, threads are arranged into blocks to adopts the feature of

shared memory. Because threads start from continuous positions of input string, they

only need a part of input string for their processing. This part of input string can be

called substring. The length of substring is equal to the number of threads in one block. All

threads in the same block access substring and target pattern frequently. Before the execu-

tion of threads, all threads in the same block copy block substring and target pattern into

the shared memory. The copy should be done before the processing of threads. Thus,

a __syncthreads() is used. Threads can then execute ASM in parallel. However, the informa-

tion of substring and target pattern can be accessed in shared memory instead of global

memory.

Experimental results

In this section, performance of the proposed algorithm and its implementation was evalu-

ated on both NVIDIA GPU GeForce GTX 660 [34] and Intel Xeon CPU E31270 [35]. For

realistic experiments, input packets were extracted from [29]. Target patterns were captured

from [28]. The performance was presented by execution time, or throughput, which was

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 10 / 15

https://doi.org/10.1371/journal.pone.0186251

calculated as (5).

Throughput ¼
Number of bytes in input string

Total processing time
ð5Þ

For throughput or execution time comparisons, each approach was denoted as follows.

• ASM_CPU: The sequential ASM algorithm ran on CPU with CPU memory.

Table 1. Throughput comparison for several input packets.

info.* throughput(Gb/s)

input(Mbytes) Pat. Length1 k Matches2 ASM_CPU PASM_GPU WsPASM_GPU WsPASM_GPUshared

3.14 50.57K 0.025 1.59 1.83 1.94

4.87 76.94K 0.026 1.58 1.84 1.95

7.74 16 6 119.90K 0.025 1.52 1.87 1.99

12.88 198.74K 0.026 1.61 1.87 1.98

17.56 269.51K 0.026 1.59 1.84 1.97

22.87 585.16K 0.026 1.57 1.84 1.99

* The table shows throughput results from various sizes of input packets, a target pattern of length of 16, and threshold k = 6.
1 Length of patterns.
2 Number of matched patterns in the input string.

https://doi.org/10.1371/journal.pone.0186251.t001

Fig 6. Execution time of ASM_CPU, PASM_GPU, WsPASM_GPU, and WsPASM_GPUshared with various lengths of target

patterns.

https://doi.org/10.1371/journal.pone.0186251.g006

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 11 / 15

https://doi.org/10.1371/journal.pone.0186251.t001
https://doi.org/10.1371/journal.pone.0186251.g006
https://doi.org/10.1371/journal.pone.0186251

• PASM_GPU: The previous parallel ASM algorithm ran on GPU with global memory [4].

• WsPASM_GPU: The proposed parallel ASM algorithm ran on GPU with global memory.

• WsPASM_GPUshared: The proposed parallel ASM algorithm ran on GPU with global

memory and shared memory.

Table 1 shows the comparison of proposed and previous approaches with various sizes of

input string in terms of throughput. In discussion, there are three points that need to be con-

sidered. Firstly, by adopting parallel execution on GPUs, the performance was greatly

enhanced, compared to the processing on CPU. In the case of input string of 22.87Mbytes,

throughput of ASM_CPU, PASM_GPU, WsPASM_GPU, and WsPASM_GPUshared were

estimated to be 0.026, 1.57, 1.84, and 1.99 Gbps, respectively. The performance of

PASM_GPU, WsPASM_GPU, and WsPASM_GPUshared archived 60.38, 70.77, and 76.54

times faster than that of ASM_CPU. Secondly, WsPASM_GPUshared exploited the memory

model of GPUs to optimize the performance of WsPASM_GPU. With input string of

22.87Mbytes, WsPASM_GPUshared enhanced the throughput by 8.15%, compared to

WsPASM_GPU. Thus, WsPASM_GPUshared provided a good example by combining shared

memory and global memory of GPUs to optimize the performance. Thirdly, throughput

results showed the great performance enhancement of the proposed algorithms, compared to

that of previous algorithms. In the case of 7.74Mbytes of input string, throughput values of

WsPASM_GPUshared, PASM_GPU, and ASM_CPU were estimated by 1.99, 1.52, and 0.025

Gbps, respectively. Therefore, WsPASM_GPUshared outperformed PASM_GPU and

Fig 7. Execution time of PASM_GPU, WsPASM_GPU, and WsPASM_GPUshared with various lengths of target patterns.

https://doi.org/10.1371/journal.pone.0186251.g007

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 12 / 15

https://doi.org/10.1371/journal.pone.0186251.g007
https://doi.org/10.1371/journal.pone.0186251

ASM_CPU by 1.31 and 79.6 times, respectively. On average, WsPASM_GPUshared outper-

formed PASM_GPU and ASM_CPU by 1.25 and 76.26 times, respectively.

Figs 6 and 7 show the execution time of ASM_CPU, PASM_GPU, WsPASM_GPU, and

WsPASM_GPUshared with various length of patterns. It is noticed that the execution time

was increased as the size of pattern was increased. Therefore, the performance of these algo-

rithms decreased with increasing pattern length. Fig 6 shows the execution time of ASM_CPU

with other approaches on GPU. Parallel algorithms on GPUs achieved speedup ranging from

62.38 to 122.64 times, compared to CPU approach. Fig 7 shows the execution time comparison

of parallel algorithms on GPUs. WsPASM_GPUshared achieved speedup ranging from

25.89% to 53.11%, compared to previous approach (PASM_GPU).

Conclusion

This paper proposes a parallel algorithm and its implementation for ASM with k-differences

on GPUs. The key idea of the proposed algorithm is based on the use of warp-shuffle opera-

tions to eliminate the assess of global memory or shared memory. Moreover, this paper also

exploits the memory model of GPUs to optimize the performance the proposed algorithm.

With realistic DNA data, the performance of proposed algorithm has enhanced up to 1.53 and

122.64 times, compared to that of the previous parallel approach on GPUs and the sequential

algorithm on CPU, respectively. Therefore, the proposed algorithm and its implementation

can be used to effectively enhance the performance of ASM.

Author Contributions

Formal analysis: ThienLuan Ho.

Funding acquisition: HyunJin Kim.

Investigation: Seung-Rohk Oh, HyunJin Kim.

Methodology: ThienLuan Ho.

Project administration: Seung-Rohk Oh, HyunJin Kim.

Software: ThienLuan Ho.

Supervision: Seung-Rohk Oh, HyunJin Kim.

Validation: ThienLuan Ho, HyunJin Kim.

Writing – original draft: ThienLuan Ho.

Writing – review & editing: Seung-Rohk Oh, HyunJin Kim.

References
1. Navarro G. A guided tour to approximate string matching. ACM computing surveys (CSUR). 2001;

33(1):31–88. https://doi.org/10.1145/375360.375365

2. Inoue K, Shimozono S, Yoshida H, Kurata H. Application of approximate pattern matching in two dimen-

sional spaces to grid layout for biochemical network maps. PloS one. 2012; 7(6):e37739. https://doi.org/

10.1371/journal.pone.0037739 PMID: 22679486

3. Schulz MA, Schmalbach B, Brugger P, Witt K. Analysing humanly generated random number

sequences: a pattern-based approach. PloS one. 2012; 7(7):e41531. https://doi.org/10.1371/journal.

pone.0041531 PMID: 22844490

4. Guo L, Du S, Ren M, Liu Y, Li J, He J, et al. Parallel algorithm for approximate string matching with

k-differences. In: Networking, Architecture and Storage (NAS), 2013 IEEE Eighth International Confer-

ence on. IEEE; 2013. p. 257–261.

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 13 / 15

https://doi.org/10.1145/375360.375365
https://doi.org/10.1371/journal.pone.0037739
https://doi.org/10.1371/journal.pone.0037739
http://www.ncbi.nlm.nih.gov/pubmed/22679486
https://doi.org/10.1371/journal.pone.0041531
https://doi.org/10.1371/journal.pone.0041531
http://www.ncbi.nlm.nih.gov/pubmed/22844490
https://doi.org/10.1371/journal.pone.0186251

5. Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet phys-

ics doklady. vol. 10; 1966. p. 707–710.

6. Van Court T, Herbordt MC. Families of FPGA-based algorithms for approximate string matching. In:

Application-Specific Systems, Architectures and Processors, 2004. Proceedings. 15th IEEE Interna-

tional Conference on. IEEE; 2004. p. 354–364.

7. Herbordt MC, Model J, Gu Y, Sukhwani B, VanCourt T. Single pass, BLAST-like, approximate string

matching on FPGAs. In: Field-Programmable Custom Computing Machines, 2006. FCCM’06. 14th

Annual IEEE Symposium on. IEEE; 2006. p. 217–226.

8. Mikami S, Kawanaka Y, Wakabayashi S, Nagayama S. Efficient FPGA-based hardware algorithms for

approximate string matching. In: ITC-CSCC: International Technical Conference on Circuits Systems,

Computers and Communications; 2008. p. 201–204.

9. Kim H, Choi KI. A pipelined non-deterministic finite automaton-based string matching scheme using

merged state transitions in an FPGA. PloS one. 2016; 11(10):e0163535. https://doi.org/10.1371/

journal.pone.0163535 PMID: 27695114

10. Prasad R, Sharma AK, Singh A, Agarwal S, Misra S. Efficient bit-parallel multi-patterns approximate

string matching algorithms. Scientific Research and Essays. 2011; 6(4):876–881.

11. Fredriksson K, Grabowski S. Exploiting word-level parallelism for fast convolutions and their applica-

tions in approximate string matching. European Journal of Combinatorics. 2013; 34(1):38–51. https://

doi.org/10.1016/j.ejc.2012.07.013

12. Ho T, Oh SR, Kim H. Circular bit-vector-mismatches: A new approximate circular string matching with

k-mismatches. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Com-

puter Sciences. 2016; 99(9):1726–1729. https://doi.org/10.1587/transfun.E99.A.1726

13. Watanuki Y, Tamura K, Kitakami H, Takahashi Y. Parallel processing of approximate sequence match-

ing using disk-based suffix tree on multi-core CPU. In: Computational Intelligence & Applications

(IWCIA), 2013 IEEE Sixth International Workshop on. IEEE; 2013. p. 137–142.

14. Xu K, Cui W, Hu Y, Guo L. Bit-parallel multiple approximate string matching based on GPU. Procedia

Computer Science. 2013; 17:523–529. https://doi.org/10.1016/j.procs.2013.05.067

15. Lin CH, Wang GH, Huang CC. Hierarchical parallelism of bit-parallel algorithm for approximate string

matching on GPUs. In: Computer Applications and Communications (SCAC), 2014 IEEE Symposium

on. IEEE; 2014. p. 76–81.

16. Nunes LS, Bordim JL, Nakano K, Ito Y. A fast approximate string matching algorithm on GPU. In: Com-

puting and Networking (CANDAR), 2015 Third International Symposium on. IEEE; 2015. p. 188–192.

17. Nunes LS, Bordim J, Nakano K, Ito Y. A memory-access-efficient implementation of the approximate

string matching algorithm on GPU. In: Computing and Networking (CANDAR), 2016 Fourth Interna-

tional Symposium on. IEEE; 2016. p. 483–489.

18. Tran TT, Liu Y, Schmidt B. Bit-parallel approximate pattern matching: Kepler GPU versus Xeon Phi.

Parallel Computing. 2016; 54:128–138. https://doi.org/10.1016/j.parco.2015.11.001

19. Zhong C, Chen GL. Parallel algorithms for approximate string matching on PRAM and LARPBS. Jour-

nal of software. 2004; 15(2):159–169.

20. Man D, Nakano K, Ito Y. The approximate string matching on the hierarchical memory machine, with

performance evaluation. In: Embedded Multicore Socs (MCSoC), 2013 IEEE 7th International Sympo-

sium on. IEEE; 2013. p. 79–84.

21. Shehab MA, Ghadawi AA, Alawneh L, Al-Ayyoub M, Jararweh Y. A hybrid CPU-GPU implementation to

accelerate multiple pairwise protein sequence alignment. In: Information and Communication Systems

(ICICS), 2017 8th International Conference on. IEEE; 2017. p. 12–17.

22. Zhou W, Cai Z, Lian B, Wang J, Ma J. Protein database search of hybrid alignment algorithm based on

GPU parallel acceleration. The Journal of Supercomputing. 2017; p. 1–18.

23. Chen X, Wang C, Tang S, Yu C, Zou Q. CMSA: A heterogeneous CPU/GPU computing system for mul-

tiple similar RNA/DNA sequence alignment. BMC bioinformatics. 2017; 18(1):315. https://doi.org/10.

1186/s12859-017-1725-6 PMID: 28646874

24. Zou Q, Li XB, Jiang WR, Lin ZY, Li GL, Chen K. Survey of MapReduce frame operation in bioinformat-

ics. Briefings in bioinformatics. 2013; 15(4):637–647. https://doi.org/10.1093/bib/bbs088 PMID:

23396756

25. Zou Q, Hu Q, Guo M, Wang G. HAlign: Fast multiple similar DNA/RNA sequence alignment based on

the centre star strategy. Bioinformatics. 2015; 31(15):2475–2481. https://doi.org/10.1093/

bioinformatics/btv177 PMID: 25812743

26. The Apache Software Foundation. Apache Hadoop home page; 2017. http://hadoop.apache.org.

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 14 / 15

https://doi.org/10.1371/journal.pone.0163535
https://doi.org/10.1371/journal.pone.0163535
http://www.ncbi.nlm.nih.gov/pubmed/27695114
https://doi.org/10.1016/j.ejc.2012.07.013
https://doi.org/10.1016/j.ejc.2012.07.013
https://doi.org/10.1587/transfun.E99.A.1726
https://doi.org/10.1016/j.procs.2013.05.067
https://doi.org/10.1016/j.parco.2015.11.001
https://doi.org/10.1186/s12859-017-1725-6
https://doi.org/10.1186/s12859-017-1725-6
http://www.ncbi.nlm.nih.gov/pubmed/28646874
https://doi.org/10.1093/bib/bbs088
http://www.ncbi.nlm.nih.gov/pubmed/23396756
https://doi.org/10.1093/bioinformatics/btv177
https://doi.org/10.1093/bioinformatics/btv177
http://www.ncbi.nlm.nih.gov/pubmed/25812743
http://hadoop.apache.org
https://doi.org/10.1371/journal.pone.0186251

27. Shirahata K, Sato H, Matsuoka S. Hybrid map task scheduling for GPU-based heterogeneous clusters.

In: Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Confer-

ence on. IEEE; 2010. p. 733–740.

28. Stothard P. Ramdom DNA Pattern, Bioinformatics; 2017. http://www.bioinformatics.org/sms2/dna_

pattern.html.

29. Genome Database Saccharomyces. DNA sequences; 2017. http://downloads.yeastgenome.org/

sequence/S288C_reference/orf_dna.

30. Liu Y, Guo L, Li J, Ren M, Li K. Parallel algorithms for approximate string matching with k-mismatches

on CUDA. In: Proc. 26th IEEE Int. Parallel and Distrib. Process. Symp. Workshops & PhD Forum

(IPDPSW). IEEE; 2012. p. 2414–2422.

31. Lin CH, Liu CH, Chien LS, Chang SC. Accelerating pattern matching using a novel parallel algorithm on

GPUs. IEEE Transactions on Computers. 2013; 62(10):1906–1916. https://doi.org/10.1109/TC.2012.

254

32. Ho T, Oh SR, Kim H. PAC-k: A parallel Aho-Corasick string matching approach on graphic processing

units using non-overlapped threads. IEICE Transactions on Communications. 2016; 99(7):1523–1531.

https://doi.org/10.1587/transcom.2015EBP3411

33. NVIDIA. Nvidia CUDA C programming guide; 2017. http://docs.nvidia.com/cuda/cuda-c-programming-

guide/.

34. NVIDIA GeForce GTX 660; 2017. http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-660.

35. Intel. Xeon CPU E31270; 2017. http://ark.intel.com/products/52276/Intel-Xeon-Processor-E3-1270-

8M-Cache-3_40-GHz.

A parallel approximate string matching under Levenshtein distance on graphics processing units

PLOS ONE | https://doi.org/10.1371/journal.pone.0186251 October 10, 2017 15 / 15

http://www.bioinformatics.org/sms2/dna_pattern.html
http://www.bioinformatics.org/sms2/dna_pattern.html
http://downloads.yeastgenome.org/sequence/S288C_reference/orf_dna
http://downloads.yeastgenome.org/sequence/S288C_reference/orf_dna
https://doi.org/10.1109/TC.2012.254
https://doi.org/10.1109/TC.2012.254
https://doi.org/10.1587/transcom.2015EBP3411
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-660
http://ark.intel.com/products/52276/Intel-Xeon-Processor-E3-1270-8M-Cache-3_40-GHz
http://ark.intel.com/products/52276/Intel-Xeon-Processor-E3-1270-8M-Cache-3_40-GHz
https://doi.org/10.1371/journal.pone.0186251

