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Abstract

Background

Exposure to environmental chemicals may be a modifiable risk factor for progression of

chronic kidney disease (CKD). The purpose of this study was to examine the impact of seri-

ally assessed exposure to bisphenol A (BPA) and phthalates on measures of kidney func-

tion, tubular injury, and oxidative stress over time in a cohort of children with CKD.

Methods and findings

Samples were collected between 2005 and 2015 from 618 children and adolescents

enrolled in the Chronic Kidney Disease in Children study, an observational cohort study of

pediatric CKD patients from the US and Canada. Most study participants were male

(63.8%) and white (58.3%), and participants had a median age of 11.0 years (interquartile

range 7.6 to 14.6) at the baseline visit. In urine samples collected serially over an average of

3.0 years (standard deviation [SD] 1.6), concentrations of BPA, phthalic acid (PA), and

phthalate metabolites were measured as well as biomarkers of tubular injury (kidney injury

molecule-1 [KIM-1] and neutrophil gelatinase-associated lipocalin [NGAL]) and oxidative
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stress (8-hydroxy-20-deoxyguanosine [8-OHdG] and F2-isoprostane). Clinical renal function

measures included estimated glomerular filtration rate (eGFR), proteinuria, and blood pres-

sure. Linear mixed models were fit to estimate the associations between urinary concentra-

tions of 6 chemical exposure measures (i.e., BPA, PA, and 4 phthalate metabolite groups)

and clinical renal outcomes and urinary concentrations of KIM-1, NGAL, 8-OHdG, and F2-

isoprostane controlling for sex, age, race/ethnicity, glomerular status, birth weight, prema-

ture birth, angiotensin-converting enzyme inhibitor use, angiotensin receptor blocker use,

BMI z-score for age and sex, and urinary creatinine. Urinary concentrations of BPA, PA, and

phthalate metabolites were positively associated with urinary KIM-1, NGAL, 8-OHdG, and

F2-isoprostane levels over time. For example, a 1-SD increase in ∑di-n-octyl phthalate

metabolites was associated with increases in NGAL (β = 0.13 [95% CI: 0.05, 0.21], p =

0.001), KIM-1 (β = 0.30 [95% CI: 0.21, 0.40], p < 0.001), 8-OHdG (β = 0.10 [95% CI: 0.06,

0.13], p < 0.001), and F2-isoprostane (β = 0.13 [95% CI: 0.01, 0.25], p = 0.04) over time.

BPA and phthalate metabolites were not associated with eGFR, proteinuria, or blood pres-

sure, but PA was associated with lower eGFR over time. For a 1-SD increase in ln-trans-

formed PA, there was an average decrease in eGFR of 0.38 ml/min/1.73 m2 (95% CI:

−0.75, −0.01; p = 0.04). Limitations of this study included utilization of spot urine samples for

exposure assessment of non-persistent compounds and lack of specific information on

potential sources of exposure.

Conclusions

Although BPA and phthalate metabolites were not associated with clinical renal endpoints

such as eGFR or proteinuria, there was a consistent pattern of increased tubular injury and

oxidative stress over time, which have been shown to affect renal function in the long term.

This raises concerns about the potential for clinically significant changes in renal function in

relation to exposure to common environmental toxicants at current levels.

Author summary

Why was this study done?

• The prevalence of chronic kidney disease has been steadily increasing over the last 40

years.

• While there are several known risk factors, such as diabetes and hypertension, few are

potentially modifiable.

• Recent work has suggested kidney function may be affected by exposure to environmen-

tal chemicals such as bisphenols and phthalates, which are synthetic compounds used in

the manufacturing of plastics and other consumer products.

• However, these chemicals are non-persistent, and no longitudinal studies to our knowl-

edge have been conducted to investigate their potential impact on kidney function over

time.

PLOS MEDICINE BPA and phthalates associations with tubular injury in children with CKD

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003384 October 14, 2020 2 / 21

from the Chronic Kidney Disease in Children Study

(https://repository.niddk.nih.gov/studies/ckid/). The

data are owned by a third party and the authors do

not have permission to share the data. This study

represents the work of an ancillary study to the

parent CKiD study. Access to the data may be

arranged through contacting the parent study

through the given link.

Funding: This work was supported by the National

Institutes of Health, National Institute of Diabetes

and Digestive and Kidney Diseases (https://www.

nih.gov/about-nih/what-we-do/nih-almanac/

national-institute-diabetes-digestive-kidney-

diseases-niddk) grant number R01 DK100307 (LT

and HT). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: HT reports NIDDK

grants and consultancy agreements with

Retrophin, Goldfinch Bio, Chemocentryx and

Otsuka Pharmaceutical.

Abbreviations: BPA, bisphenol A; CKD, chronic

kidney disease; CKiD, Chronic Kidney Disease in

Children; CV, coefficient of variation; DBP, diastolic

blood pressure; DEHP, di(2-ethylhexyl) phthalate;

DOP, di-n-octyl phthalate; eGFR, estimated

glomerular filtration rate; ESKD, end-stage kidney

disease; HMW, high molecular weight; LME, linear

mixed-effects; LMW, low molecular weight; LOD,

limit of detection; PA, phthalic acid; SBP, systolic

blood pressure; UPCR, urinary protein-to-

creatinine ratio.

https://doi.org/10.1371/journal.pmed.1003384
https://repository.niddk.nih.gov/studies/ckid/
https://www.nih.gov/about-nih/what-we-do/nih-almanac/national-institute-diabetes-digestive-kidney-diseases-niddk
https://www.nih.gov/about-nih/what-we-do/nih-almanac/national-institute-diabetes-digestive-kidney-diseases-niddk
https://www.nih.gov/about-nih/what-we-do/nih-almanac/national-institute-diabetes-digestive-kidney-diseases-niddk
https://www.nih.gov/about-nih/what-we-do/nih-almanac/national-institute-diabetes-digestive-kidney-diseases-niddk


What did the researchers do and find?

• In urine samples collected annually over 5 years from 618 children and adolescents with

chronic kidney disease, we measured bisphenol A, phthalates, and biomarkers of tubular

injury and oxidative stress.

• Clinical renal function outcomes were also monitored and collected over 5 years.

• We found that bisphenol A and phthalates were associated with increased tubular injury

and oxidative stress biomarkers.

• Although phthalic acid was associated with lower estimated glomerular filtration rate

over time, neither bisphenol A nor other phthalates were associated with clinical renal

outcomes.

What do these findings mean?

• Bisphenol A and phthalates were not associated with clinical renal function outcomes,

but showed consistent positive associations with tubular injury and oxidative stress,

which may signal the potential for clinical events to manifest with prolonged follow-up.

• These findings raise concern about the potential for clinically relevant changes to renal

function to develop over time in relation to environmental exposures at current levels.

• This study suggests that exposure to environmental chemicals may be a potentially mod-

ifiable risk factor for the progression of chronic kidney disease.

Introduction

Chronic kidney disease (CKD) is a growing health problem in children and adults [1]. In the

United States between 2002 and 2016, there was a significant increase in disability-adjusted life

years and mortality related to CKD, especially in young adults [2]. Furthermore, the incidence

and prevalence of CKD among children has been steadily increasing since the 1980s [3–6].

CKD can progress to end-stage kidney disease (ESKD), which requires either renal replace-

ment therapy (such as dialysis) or transplantation, which has significant impacts on morbidity,

mortality, and healthcare costs [7–9].

There are a number of traditional risk factors associated with CKD progression to ESKD in

children including hypertension, obesity, diabetes, and altered divalent mineral metabolism

[3,10–12]. In addition, there is growing evidence suggesting that exposure to environmental

chemicals may play a role as well [13]. For example, heavy metals such as lead and arsenic have

been established as environmental nephrotoxins [14]. Furthermore, several recent studies have

documented associations between other more common and low-level synthetic chemical

exposures, such as bisphenol A (BPA) and phthalates, and kidney function [15–17]. These

exposures have been hypothesized to affect kidney function through promotion of oxidative

stress [18–24]. Because it has been shown that the kidney is vulnerable to environmental toxi-

cants, especially prenatally and in early life [14,25], these exposures may be particularly rele-

vant to pediatric CKD.

Surveys of healthy children and adults in the US indicate that exposure to BPA and phthal-

ates is ubiquitous [26–28], and children are disproportionately exposed [29,30]. BPA is used in
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the manufacturing of polycarbonate plastics, medical devices, metal food can sealants, and

thermal paper receipts [31,32], and phthalates are found in personal hygiene and cosmetic

products [33,34], food packaging, medical devices (e.g., in polyvinyl chloride [PVC] intrave-

nous tubing and in medications), and construction materials [35,36]. The often unavoidable

sources of exposure beginning in childhood and adolescence may lead to a greater cumulative

toxicological burden over a lifetime [37,38]. This may be exacerbated in children with CKD

because a reduced glomerular filtration rate and impaired tubular secretion may compromise

renal excretion of BPA and phthalates [39]. In addition, sources of exposure may be greater

due to medication use and frequent contact with plastics in medical devices and tubing,

including dialyzer materials [40,41].

We previously reported findings from a cross-sectional analysis of urinary BPA and phthal-

ate levels in relation to kidney function in children and adolescents with CKD enrolled in the

Chronic Kidney Disease in Children (CKiD) observational study [16,42]. Our results demon-

strated lower urinary excretion of BPA and phthalates in children with CKD compared with

the general healthy pediatric population. Urinary BPA levels were not significantly associated

with any index of kidney function, but low molecular weight phthalates were associated with

lower proteinuria and greater estimated glomerular filtration rate (eGFR). However, pharma-

cokinetic studies have shown that BPA and phthalates are rapidly metabolized and have half-

lives of less than 24 hours in the human body [43–46]. Studies with serial urinary BPA mea-

surements have identified correlation coefficients in the range of 0.22–0.57 over 1- to 6-month

periods [47,48], which suggests that spot measurements at single time points may not be suffi-

cient to characterize chronic exposure. Furthermore, any effects of BPA and phthalates on kid-

ney function are likely to be cumulative. Therefore, a more complete investigation of the

potential adverse effects of exposure to these compounds may require serial measures over

time assessed in relation to the longitudinal course of kidney function.

In this study, we evaluated the associations between longitudinally measured urinary BPA

and phthalates and the trajectory of renal function over a 5-year observation period using a

variety of measures over time: eGFR, proteinuria, systolic and diastolic blood pressure (SBP

and DBP, respectively), and urinary biomarkers of tubular injury: kidney injury molecule-1

(KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). In addition, in order to assess

the plausibility of a potential mechanism of action, we examined the associations between lon-

gitudinally measured urinary BPA and phthalates and serially assessed urinary oxidative stress

biomarkers: 8-hydroxy-20-deoxyguanosine (8-OHdG) and F2-isoprostane.

Methods

A prospective analysis plan was followed and is provided in S1 Text. This study is reported as

per the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)

guideline (S1 STROBE Checklist).

Study population

The CKiD study is a multi-center prospective cohort study of children aged 6 months to 16

years with mild-to-moderate CKD with the overall goal of identifying predictors and sequelae

of CKD progression. The CKiD study procedures and protocol have been previously described

[42,49]. Briefly, pediatric patients with prevalent CKD were recruited at 57 clinical sites

throughout the US and Canada, such as Boston, Massachusetts; Kansas City, Missouri; Seattle,

Washington; and Winnipeg, Manitoba [42]. Children were enrolled, assessed 3–6 months

after study entry (i.e., baseline), and every year thereafter. These annual data collection study

visits were conducted until the initiation of renal replacement therapy for treatment of ESKD.
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Annual study visits included a physical examination conducted by study staff, biological speci-

men collection (e.g., urine samples; specimens were stored in a biorepository for future use in

ancillary studies), standardized blood pressure measurement, and questionnaire administra-

tion. Biological specimens used in this study were collected between July 21, 2005, and Novem-

ber 12, 2015, and were stored at −80 ºC in a central biorepository until being used for exposure

and outcome assessment.

Ethics statement

The institutional review board at each CKiD study site approved the study protocol, and all

research was performed in accordance with established guidelines. Written informed consent

was obtained from all parents or legal guardians, and assent from all participants depending

on their age and institutional guidelines. The New York University School of Medicine Institu-

tional Review Board deemed this project exempt from review due to data collection being

complete and the dataset de-identified.

Exposure measures

Longitudinally collected and stored urine samples were used for exposure assessment. Phthalic

acid (PA), 21 individual phthalate metabolites, BPA, and creatinine were analyzed at the

Wadsworth Center, New York State Department of Health, Albany, NY. Details on the ana-

lytic methods for the phthalates and BPA have been previously described [16]. Briefly, urine

samples were processed using enzymatic deconjugation and extracted, and analysis was per-

formed with high-performance liquid chromatography coupled with electrospray tandem

mass spectrometry under negative mode of ionization.

For all exposures, measures below the limit of detection (LOD) were imputed by the LOD

divided by the square root of 2 [50]. For statistical analyses, phthalates were analyzed in groups

as micromolar sums of metabolites corresponding to their use in product categories: ∑di

(2-ethylhexyl) phthalate (DEHP), ∑high molecular weight (HMW) phthalates (comprising

metabolites� 250 Da), ∑low molecular weight (LMW) phthalates (comprising metabolites <

250 Da), and ∑di-n-octyl phthalate (DOP). All calculations excluded metabolites that were

detected in <50% of samples (i.e., mCHP, mOP, mIDP, mPeP, mIPrP, and mINP). Thus,

sums were calculated with the following metabolites: ∑DEHP: mECPP, mEHHP, mEOHP,

and mCMHP; ∑HMW phthalates: mCPP, mECPP, mEHHP, mEOHP, mBzP, mHxP, mHPP,

mCMHP, mCHpP, mCIOP, and mCINP; ∑LMW phthalates: mMP, mEP, mBP, and mIBP;

and ∑DOP: mCPP and mCHpP. BPA and PA were examined as individual exposures.

Outcomes

Renal function measures. Several correlates of renal function were examined over time.

The primary outcome was eGFR, calculated using the modified Schwartz (i.e., bedside) equa-

tion [51]: eGFR (ml/min/1.73 m2) = 0.413 × height (cm)/serum creatinine.

Other outcome measures of interest included urinary protein-to-creatinine ratio (UPCR),

SBP, and DBP. Analytical methods for these measures in the CKiD study have been previously

described. All laboratory measures were conducted at the central CKiD laboratory (University

of Rochester) [52,53]. Briefly, total urine protein was determined using an immunoturbidi-

metric assay, and UPCR was calculated as the ratio of total urinary protein concentration to

urinary creatinine concentration (mg/dl:mg/dl). SBP and DBP were measured in the right arm

by auscultation using an aneroid sphygmomanometer [54]. Three measurements at 30-second

intervals were taken, and the average of the 3 readings was calculated. Blood pressure measures
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were standardized to z-scores according to the National High Blood Pressure Education Pro-

gram Fourth Report [55].

Biomarkers of tubular injury. Two biomarkers of tubular injury were measured: kidney

injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). KIM-1 and

NGAL were measured in urine samples at the New York University High Throughput Biology

Laboratory. They were quantified by solid phase sandwich ELISAs using the Quantikine

Human TIM-1 Immunoassay and Quantikine Human Lipocalin-2 Immunoassay, respectively

(R&D Systems, Minneapolis, MN), according to the manufacturer protocol. All analyses were

conducted in duplicate. Intra-assay coefficients of variation (CVs) ranged from 3.6% to 3.7%

for KIM-1 and from 2.3% to 3.9% for NGAL. Inter-assay CVs ranged from 0.7% to 4.3% for

KIM-1 and from 0.6% to 4.8% for NGAL. Measures below the LOD were imputed by the LOD

divided by the square root of 2 [50].

Oxidative stress. Urine samples with sufficient volume were analyzed for 8-OHdG and

F2-isoprostane at the New York University High Throughput Biology Laboratory (N = 2,465

samples, N = 618 individuals, and N = 1,287 samples, N = 522 individuals, respectively).

8-OHdG was quantified by competitive ELISA using the OxiSelect Oxidative DNA Damage

ELISA (Cell Biolabs, San Diego, CA). Similarly, F2-isoprostane was measured with a competi-

tive enzyme-linked immunoassay, the OxiSelect 8-iso-Prostaglandin F2α ELISA Kit (Cell Bio-

labs). All analyses were conducted in duplicate as directed by the manufacturer. Intra-assay

CVs ranged from 4.6% to 11.1% for 8-OHdG and from 6.8% to 9.7% for F2-isoprostane. Inter-

assay CVs ranged from 3.9% to 16.6% for 8-OHdG and from 14.2% to 15.9% for F2-isopros-

tane. Measures below the LOD were imputed by the LOD divided by the square root of 2 [50].

Statistical analysis

Participant characteristics were evaluated over time. Counts and percentages were calculated

for categorical variables, and means and standard deviations (SDs) (or medians and interquar-

tile ranges [IQRs], as appropriate) are presented for continuous variables. Distributions of all

environmental exposures, renal outcomes, and biomarkers of tubular injury and oxidative

stress were examined by study visit over time. Due to the right-skewed distributions of all uri-

nary biomarkers of environmental exposures, they were natural-log-transformed in order to

reduce the influence of extreme outliers. Biomarkers of tubular injury, KIM-1 and NGAL; oxi-

dative stress biomarkers, 8-OHdG and F2-isoprostane; and UPCR were also natural-log-trans-

formed before multivariable analysis in order to better approximate a normal distribution.

In order to estimate the longitudinal associations between serially assessed BPA and phthal-

ate measures and the longitudinal course of the outcomes of interest (i.e., eGFR, UPCR, SBP,

DBP, KIM-1, NGAL, 8-OHdG, and F2-isoprostane), separate linear mixed-effects (LME) mod-

els were fit for each exposure–outcome combination. Random intercepts were included to

account for cross-subject heterogeneity and within-individual correlation. In addition, based

on both graphic assessments of between-visit correlations of the outcomes and a likelihood

ratio test, a first-order autoregressive (AR(1)) covariance structure was applied in order to

model the correlation pattern over time.

For each outcome, we first fit a LME model with log-transformed exposure variable, time

(i.e., months from the baseline assessment), and a quadratic term for time included as main

fixed effects, as well as baseline covariates hypothesized to act as confounders and/or key pre-

dictors of the outcome based on previous literature [16,17,42,56]. These included sex, age,

race/ethnicity, glomerular status, birth weight, premature birth, angiotensin-converting

enzyme inhibitor (ACEI) use, angiotensin receptor blocker (ARB) use, BMI z-score for age

and sex, and time-dependent log-transformed creatinine. Models were fit with chemical
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exposures expressed on a volume basis (ng/ml or nmol/ml), and creatinine was controlled for

as a covariate instead of indexing the exposure measures by creatinine (ng/mg Cr or nmol/mg

Cr), in order to separate any impacts of the chemicals and creatinine [57], and because the

same urinary creatinine measure was included in one of the primary outcomes of interest (i.e.,

UPCR), which could induce a spurious correlation due to urinary creatinine associations

rather than chemical exposure associations [39]. In models for eGFR, UPCR, KIM-1, NGAL,

8-OHdG, and F2-isoprostane, SBP z-score was additionally controlled for. In all models, the

log-transformed exposure variables were standardized so that the estimates represented the

average change in the outcome in response to a 1-SD change in the log-transformed exposure.

From these models, if there was a statistically significant (p< 0.05) estimate for the main

effect of the exposure variable, we further examined the potential for an interaction between

the exposure variable (centered with mean = 0) and time. In subsequent models, interaction

cross-product terms between each exposure and time (both linear and quadratic terms) were

included, and time-specific estimates of exposure were output and plotted by linear contrasts

from the fitted models. Details of the modeling strategy are provided in S1 Fig.

Finally, we conducted sensitivity analyses. First, we evaluated the potential for associations

of the outcomes with cumulative levels of BPA and phthalate metabolites over time. The

cumulative average over time was calculated as the average of the log-transformed measures

up until each visit time (i.e., cumulative average). These measures were then fitted using the

same LME modeling strategy as described above. Second, we examined whether controlling

for year of study enrollment affected the measures of association.

Analyses were performed using complete case analysis. All analyses were conducted in R

version 3.5.0 for Windows [58], using the package “nlme” [59] version 3.1–137 for LME

models.

Results

The analytic sample included 618 participants, contributing 2,469 total visits (mean number of

visits ± SD: 4.0 ± 1.6), representing 1,839.3 total person-years of observation (3.0 ± 1.6 years

per patient). Most study participants were male (63.8%) and white (58.3%), and participants

had a median age of 11.0 years (IQR = 7.6 to 14.6) at the baseline visit (Table 1). The majority

(89.2% overall and 88.3% at baseline) of the patients had non-glomerular disease. At baseline,

kidney function was moderately impaired, with an average eGFR of 51.9 ml/min/1.73 m2

(standard deviation = 19.8) and most participants (60.4%) having stage G3a CKD or better

(�45 ml/min/1.73 m2). At baseline, participants had on average slightly above average body

mass index (BMI) (mean ± SD z-score adjusted for age and sex: 0.4 ± 1.2) and SBP (mean ±
SD z-score adjusted for age, sex, and height: 0.3 ± 1.1), which both generally decreased over

the course of follow-up.

BPA was detected in 78.3% of samples (Table 2). PA was detected in 99.1% of samples, and

detection frequencies for the individual phthalate metabolites included in the group sums ran-

ged from 50% to 100%. The distributions of urinary BPA and phthalates were right-skewed,

with the 95th percentile typically being an order of magnitude greater than the median level.

Urinary concentrations of exposures had a substantial degree of within-individual variability

over time, with intraclass correlation coefficients ranging from 0.12 for ∑DOP to 0.39 for

∑LMW phthalates (S1 Table). Over the course of the study enrollment period (i.e., 2005–

2015), chemical exposure concentrations decreased over time, although within-individual con-

centrations of some chemicals remained steady or increased slightly over follow-up (S2 Table).

In multivariable LME models, urinary concentrations of BPA and phthalate metabolite

groups were not associated with eGFR, UPCR, SBP, or DBP (Table 3). However, PA was
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Table 1. Characteristics of study population by study visit: Chronic Kidney Disease in Children (CKiD) study, 2005–2015.

Characteristic Baseline Visit 1 Visit 2 Visit 3 Visit 4 Visit 5

Number of participants 538 523 470 416 295 227

Participant characteristics
Age (years), median [IQR] 10.98 [7.63,

14.56]

11.37 [9.02, 14.92] 12.25 [8.95, 15.77] 12.94 [9.54, 16.71] 13.54 [10.31, 17.23] 14.02 [10.44, 17.61]

Time from baseline (months), mean

(SD)

0.00 (0.00) 7.56 (2.57) 19.71 (3.55) 31.82 (3.95) 44.31 (3.87) 56.12 (3.85)

Sex = male, N (%) 344 (63.9) 327 (62.5) 303 (64.5) 268 (64.4) 185 (62.7) 139 (61.2)

Race/ethnicity, N (%)

Hispanic 76 (14.1) 74 (14.1) 64 (13.6) 57 (13.7) 38 (12.9) 33 (14.5)

Non-Hispanic white 313 (58.2) 305 (58.3) 288 (61.3) 259 (62.3) 181 (61.4) 137 (60.4)

Non-Hispanic black 86 (16.0) 79 (15.1) 69 (14.7) 56 (13.5) 43 (14.6) 33 (14.5)

Multi-race/other 63 (11.7) 65 (12.4) 49 (10.4) 44 (10.6) 33 (11.2) 24 (10.6)

Birth weight (kilograms), mean (SD) 3.08 (0.75) 3.07 (0.73) 3.05 (0.76) 3.03 (0.76) 3.09 (0.70) 3.04 (0.74)

Prematurity, N (%)

No 453 (84.2) 438 (83.7) 394 (83.8) 350 (84.1) 255 (86.4) 195 (85.9)

Yes 62 (11.5) 63 (12.0) 61 (13.0) 54 (13.0) 34 (11.5) 27 (11.9)

Missing 23 (4.3) 22 (4.2) 15 (3.2) 12 (2.9) 6 (2.0) 5 (2.2)

ACEI = yes, N (%) 241 (44.8) 244 (46.7) 213 (45.3) 194 (46.6) 133 (45.1) 98 (43.2)

ARB = yes, N (%) 47 (8.7) 40 (7.6) 32 (6.8) 38 (9.1) 28 (9.5) 23 (10.1)

BMI z-score, mean (SD) 0.41 (1.15) 0.34 (1.17) 0.36 (1.12) 0.31 (1.15) 0.28 (1.16) 0.25 (1.14)

Urinary creatinine (mg/dl), mean (SD) 66.08 (57.78) 168.08 (83.85) 129.15 (89.38) 69.09 (58.44) 82.15 (51.28) 61.32 (31.48)

Non-glomerular disease, N (%) 475 (88.3) 464 (88.7) 432 (91.9) 389 (93.5) 276 (93.6) 216 (95.2)

Outcomes
eGFR (ml/min/1.73 m2), mean (SD) 51.90 (19.80) 51.47 (21.02) 49.52 (20.62) 48.74 (20.22) 44.09 (19.48) 41.10 (17.80)

UPCR (mg/dl:mg/dl), median [IQR] 0.30 [0.11, 0.84] 0.29 [0.12, 0.87] 0.30 [0.11, 0.93] 0.31 [0.12, 0.90] 0.35 [0.14, 1.00] 0.40 [0.11, 1.06]

SBP z-score, mean (SD) 0.32 (1.08) 0.34 (1.13) 0.21 (1.21) 0.14 (1.11) 0.07 (1.07) 0.18 (1.11)

DBP z-score, mean (SD) 0.52 (0.99) 0.41 (1.03) 0.34 (0.98) 0.27 (0.90) 0.27 (0.98) 0.30 (1.02)

8-OHdG (ng/ml), median [IQR] 30.02 [18.29,

48.11]

23.68 [14.89,

38.13]

23.92 [14.24,

43.36]

32.62 [19.04,

51.77]

38.28 [26.88, 54.60] 33.04 [21.18, 49.96]

F2-isoprostane (ng/ml), median [IQR] 6.61 [0.88, 24.33] 7.37 [0.95, 32.05] 20.74 [8.08, 36.97] 3.53 [0.71, 18.95] 1.68 [0.64, 6.02] 0.69 [0.43, 1.36]

NGAL (ng/ml), median [IQR] 5.28 [1.30, 20.29] 4.73 [0.93, 28.81] 4.61 [0.72, 19.82] 6.69 [1.60, 35.18] 8.17 [2.18, 41.05] 6.69 [2.14, 37.73]

KIM-1 (ng/ml), median [IQR] 0.13 [0.03, 0.33] 0.11 [0.03, 0.25] 0.09 [0.01, 0.24] 0.10 [0.02, 0.23] 0.12 [0.07, 0.24] 0.10 [0.04, 0.22]

Exposures
BPA (ng/ml), median [IQR] 0.78 [0.18, 1.66] 0.50 [0.26, 0.98] 0.47 [0.27, 0.81] 0.60 [0.11, 1.31] 1.47 [0.40, 2.11] 0.64 [0.11, 1.85]

PA (ng/ml), median [IQR] 42.18 [14.75,

95.95]

62.93 [36.93,

107.64]

53.89 [30.00,

100.66]

96.70 [55.01,

157.10]

112.60 [78.12,

191.65]

104.60 [62.35,

169.15]

LMW phthalates (nmol/ml), median

[IQR]

0.16 [0.09, 0.35] 0.25 [0.12, 0.49] 0.18 [0.10, 0.35] 0.18 [0.10, 0.34] 0.23 [0.13, 0.46] 0.18 [0.11, 0.37]

HMW phthalates (nmol/ml), median

[IQR]

0.18 [0.10, 0.32] 0.14 [0.08, 0.27] 0.18 [0.11, 0.30] 0.22 [0.13, 0.37] 0.23 [0.15, 0.39] 0.21 [0.13, 0.35]

DEHP (nmol/ml), median [IQR] 0.08 [0.04, 0.17] 0.05 [0.03, 0.11] 0.10 [0.06, 0.18] 0.11 [0.06, 0.22] 0.10 [0.07, 0.18] 0.09 [0.06, 0.15]

DOP (nmol/ml), median [IQR] 0.02 [0.01, 0.05] 0.01 [0.01, 0.03] 0.01 [0.00, 0.02] 0.01 [0.01, 0.01] 0.01 [0.01, 0.02] 0.01 [0.01, 0.02]

Percent missing for covariates: age, sex, race/ethnicity, glomerular status, ARB/ACEI use, creatinine, 0%; birthweight, 5.5%; prematurity, 4.2%; BMI, 3.2%; SBP, 7.3%.

8-OHdG, 8-hydroxy-20-deoxyguanosine; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; BPA, bisphenol A;

DBP, diastolic blood pressure; DEHP, di(2-ethylhexyl) phthalate; DOP, di-n-octyl phthalate; eGFR, estimated glomerular filtration rate; HMW, high molecular weight;

IQR, interquartile range; KIM-1, kidney injury molecule-1; LMW, low molecular weight; NGAL, neutrophil gelatinase-associated lipocalin; PA, phthalic acid; SBP,

systolic blood pressure; SD, standard deviation; UPCR, urinary protein-to-creatinine ratio.

https://doi.org/10.1371/journal.pmed.1003384.t001
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associated with lower eGFR over time. For a 1-SD increase in ln-transformed PA, we estimated

an average decrease in eGFR of 0.38 ml/min/1.73 m2 (95% CI: −0.75, −0.01). PA was not asso-

ciated with UPCR, SBP, or DBP.

In contrast to the findings for clinical renal outcomes, urinary concentrations of BPA, PA,

and phthalate metabolite groups were associated with increased NGAL and KIM-1 over time

(Table 4). For example, a 1-SD increase in ln-transformed BPA was associated with a 9.0%

increase in NGAL (95% CI: 1.4%, 17.2%) and 11.7% increase in KIM-1 (95% CI: 5.6%, 18.2%)

(calculated from Table 4 by computing eβ). The associations of PA, ∑HMW phthalates, and

∑DOP with KIM-1 varied over time and are shown in Fig 1. PA and ∑HMW phthalates were

positively associated with KIM-1 and increased in magnitude through 3 years, but associations

Table 2. Distributions of urinary BPA, PA, and phthalate metabolites collected over time.

Chemical LOD Percent < LOD GM GSD Percentile

25th 50th 75th 95th

Bisphenol A (BPA) (ng/ml) 0.15 21.7 0.59 3.49 0.22 0.60 1.42 4.53

Phthalic acid (PA) (ng/ml) 0.122 0.9 63.95 3.43 35.80 72.83 129.35 355.26

Individual phthalate metabolites
Monomethylphthalate (mMP) (ng/ml) 0.027 6.2 1.59 4.43 1.00 1.92 3.59 10.54

Monoethylphthalate (mEP) (ng/ml) 0.035 0.2 21.43 3.78 8.86 18.44 44.87 223.12

Mono(3-carboxypropyl) phthalate (mCPP) (ng/ml) 0.221 2.8 2.22 2.80 1.22 2.14 3.88 12.26

Mono(2-ethyl-5-hydroxyhexyl) phthalate (mEHHP) (ng/ml) 0.035 0.0 5.44 3.32 2.43 5.52 11.60 41.72

Monobenzyl phthalate (mBzP) (ng/ml) 0.03 1.3 7.85 3.61 4.06 8.26 16.91 49.98

Monocyclohexyl phthalate (mCHP) (ng/ml) 0.038 83.9 — — <LOD <LOD <LOD 0.14

Mono-n-octyl phthalate (mOP) (ng/ml) 0.036 63.9 — — <LOD <LOD 0.2 1.51

Mono(8-methyl-1-nonyl) phthalate (mIDP) (ng/ml) 0.016 63.8 — — <LOD <LOD 0.44 3.82

Mono-hexyl phthalate (mHxP) (ng/ml) 0.018 36.2 0.09 5.72 <LOD 0.12 0.35 1.35

Mono(2-heptyl) phthalate (mHPP) (ng/ml) 0.029 30.8 0.26 7.42 <LOD 0.38 1.28 4.57

Mono(carboxyisooctyl) phthalate (mCIOP) (ng/ml) 0.15 38.4 1.17 8.98 <LOD 1.67 7.32 36.36

Mono(carboxy-isononyl) phthalate (mCINP) (ng/ml) 0.169 43.4 0.45 4.11 <LOD 0.32 1.39 5.22

Mono-n-pentenyl phthalate (mPeP) (ng/ml) 0.187 95.4 — — <LOD <LOD <LOD <LOD

Monoisopropyl phthalate (mIPrP) (ng/ml) 0.146 75.1 — — <LOD <LOD <LOD 2.47

Monobutyl phthalate (mBP) (ng/ml) 0.039 0.1 8.92 2.59 4.91 8.91 15.77 41.56

Mono-isobutyl phthalate (mIBP) (ng/ml) 0.019 6.2 2.86 5.38 1.91 3.62 7.24 20.72

Mono(2-ethyl-5-carboxypentyl) phthalate (mECPP) (ng/ml) 0.046 0.5 6.8 4.55 3.09 9.06 18.10 59.26

Mono(2-carboxymethylhexyl) phthalate (mCMHP) (ng/ml) 0.173 14.4 3.06 5.50 1.47 4.12 9.48 33.23

Mono(7-carboxy-n-heptyl) phthalate (mCHpP) (ng/ml) 0.112 21.6 0.54 5.64 0.13 0.33 1.66 13.86

Mono(2-ethyl-5-oxohexyl) phthalate (mEOHP) (ng/ml) 0.016 8.7 2.48 8.20 1.16 3.64 8.64 41.00

Monoisononyl phthalate (mINP) (ng/ml) 0.018 63.4 — — <LOD <LOD 0.17 2.57

Phthalate metabolite groups
∑Low-molecular weight (LMW) phthalates (nmol/ml) — — 0.218 2.88 0.11 0.19 0.40 1.40

∑High-molecular weight (HMW) phthalates (nmol/ml) — — 0.19 2.36 0.11 0.19 0.33 0.85

∑Di(2-ethylhexyl) phthalate (DEHP) (nmol/ml) — — 0.09 2.64 0.05 0.09 0.17 0.54

∑Di-n-octyl phthalate (DOP) (nmol/ml) — — 0.01 2.92 0.01 0.01 0.02 0.08

Geometric means were not calculated for chemicals with�50% of measures < LOD. ∑LMW phthalates is a micromolar sum of mMP, mEP, mBP, and mIBP. mCHP,

mPeP, and mIPrP were excluded because they were detected in <50% of samples. ∑HMW phthalates is a micromolar sum of mCPP, mECPP, mEHHP, mEOHP, mBzP,

mHxP, mHPP, mCMHP, mCHpP, mCIOP, and mCINP. mOP, mIDP, and mINP were excluded because they were detected in <50% of samples. ∑DEHP is a

micromolar sum of mECPP, mEHHP, mEOHP, and mCMHP. ∑DOP is a micromolar sum of mCPP and mCHpP. mOP was excluded because it was detected in <50%

of samples.

GM, geometric mean; GSD, geometric standard deviation; LOD, limit of detection.

https://doi.org/10.1371/journal.pmed.1003384.t002
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attenuated at year 4 and were null by year 5 (Fig 1; S3 Table). In contrast, the association of

KIM-1 with ∑DOP was strongest at baseline and attenuated over time. Associations with

NGAL were all positive and did not vary over time.

In sensitivity analyses, chemical exposures were considered cumulatively over time as time-

weighted averages (S5–S9 Tables). Results were largely consistent, although the association

between PA and eGFR was no longer statistically significant (β = −0.31; 95% CI: −0.92, 0.30),

and there was a significant positive association between ∑LMW phthalates and eGFR (β =

1.56; 95% CI: 0.66, 2.47) (S4 Table). In addition, positive associations remained between

Table 3. Associations between ln-transformed chemical exposures and eGFR, ln-transformed UPCR, SBP z-score,

and DBP z-score from linear mixed-effects models.

Outcome and exposure β 95% CI p-Value

eGFRa (N = 2,112)

BPA −0.22 −0.56, 0.13 0.22

PA −0.38 −0.75, −0.01 0.04

LMW phthalates 0.23 −0.16, 0.62 0.25

HMW phthalates 0.11 −0.26, 0.48 0.55

DEHP 0.13 −0.23, 0.49 0.49

DOP −0.30 −0.68, 0.07 0.12

Ln-UPCRa (N = 2,052)

BPA 0.01 −0.02, 0.04 0.53

PA 0.02 −0.02, 0.05 0.31

LMW phthalates −0.00 −0.04, 0.04 0.90

HMW phthalates 0.01 −0.02, 0.05 0.49

DEHP 0.02 −0.01, 0.05 0.23

DOP 0.00 −0.04, 0.04 0.98

SBP z-scoreb (N = 2,122)

BPA 0.01 −0.03, 0.05 0.66

PA 0.00 −0.04, 0.04 0.94

LMW phthalates −0.01 −0.05, 0.04 0.76

HMW phthalates 0.00 −0.04, 0.04 0.95

DEHP 0.01 −0.03, 0.05 0.55

DOP −0.01 −0.05, 0.04 0.76

DBP z-scoreb (N = 2,121)

BPA 0.01 −0.03, 0.04 0.70

PA 0.02 −0.02, 0.05 0.37

LMW phthalates 0.00 −0.04, 0.04 0.99

HMW phthalates −0.01 −0.05, 0.03 0.49

DEHP −0.01 −0.05, 0.03 0.73

DOP −0.01 −0.05, 0.03 0.60

β: estimate per SD change.
aThe model controlled for age, sex, race/ethnicity, glomerular status, birth weight, prematurity, ARB, ACEI, BMI z-
score, and systolic blood pressure z-score (all measured at each patient’s first visit) and creatinine.
bThe model controlled for age, sex, race/ethnicity, glomerular status, birth weight, prematurity, ARB, ACEI, and BMI

z-score (all measured at each patient’s first visit) and creatinine.

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BPA, bisphenol A; DBP,

diastolic blood pressure; DEHP, di(2-ethylhexyl) phthalate; DOP, di-n-octyl phthalate; eGFR, estimated glomerular

filtration rate; HMW, high molecular weight; LMW, low molecular weight; PA, phthalic acid; UPCR, urinary

protein-to-creatinine ratio.

https://doi.org/10.1371/journal.pmed.1003384.t003
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chemical exposures and NGAL and KIM-1 (S6 and S7 Tables) and between chemical expo-

sures and 8-OHdG and F2-isoprostane (S8 and S9 Tables). Model fit diagnostics were similar

comparing these models with the primary analyses. Finally, additionally controlling for calen-

dar year of study enrollment did not measurably change the results of the primary analysis.

Discussion

In this longitudinal study of 618 children with CKD, urinary concentrations of BPA and

phthalate metabolites were not associated with eGFR, UPCR, SBP, and DBP, but PA was

inversely associated with eGFR. Despite the general paucity of associations with clinically rele-

vant renal outcomes, urinary concentrations of chemical exposures were robustly associated

with biomarkers of tubular injury, NGAL and KIM-1. Specifically, serially assessed urinary

concentrations of BPA, PA, and phthalate metabolites were associated with increased NGAL

and KIM-1 concentrations over time. Similarly, chemical exposure concentrations were asso-

ciated with increases in oxidative stress biomarkers, 8-OHdG and F2-isoprostane, which sug-

gests a potential mechanism of action through which these chemical exposures may impart

renal injury. These observations were consistent when chemical exposures were considered

cumulatively over time.

Table 4. Associations between ln-transformed chemical exposures and ln-transformed tubular injury biomarkers

from linear mixed-effects models.

Outcome and exposure β 95% CI p-Value

ln-NGAL (N = 2,010)

BPA 0.09 0.01, 0.16 0.02

PA 0.20 0.13, 0.28 <0.001

LMW phthalates 0.12 0.04, 0.20 0.004

HMW phthalates 0.14 0.06, 0.21 <0.001

DEHP 0.11 0.04, 0.19 0.002

DOP 0.13 0.05, 0.21 0.001

ln-KIM-1 (N = 2,010)

BPA 0.11 0.05, 0.17 <0.001

PA� −0.01 −0.08, 0.07 0.87

LMW phthalates 0.21 0.15, 0.27 <0.001

HMW phthalates� 0.13 0.03, 0.22 0.01

DEHP 0.13 0.08, 0.19 <0.001

DOP� 0.30 0.21, 0.40 <0.001

β: estimate per SD change. All models controlled for age, sex, race/ethnicity, glomerular status, birth weight,

premature birth, angiotensin receptor blocker, angiotensin-converting enzyme inhibitor, BMI z-score, and systolic

blood pressure z-score (all measured at each patient’s first visit) and creatinine.

�Exposure has significant interaction with time (p< 0.05), and estimate for exposure at baseline is presented here;

time-specific estimates are plotted in Fig 1.

BPA, bisphenol A; DEHP, di(2-ethylhexyl) phthalate; DOP, di-n-octyl phthalate; HMW, high molecular weight;

KIM-1, kidney injury molecule-1; LMW, low molecular weight; NGAL, neutrophil gelatinase-associated lipocalin;

PA, phthalic acid.

BPA, PA, and phthalate metabolite groups were also positively associated with oxidative stress biomarkers,

particularly 8-OHdG (Table 5). In addition, PA, ∑LMW phthalates, and ∑DOP were associated with increases in F2-

isoprostane. Associations between BPA and PA and 8-OHdG, and between BPA and ∑DEHP and F2-isoprostane,

were shown to increase over the course of follow-up (Fig 2; S4 Table).

https://doi.org/10.1371/journal.pmed.1003384.t004
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Our findings highlight the importance of considering environmental exposures as poten-

tially modifiable risk factors for renal function decline and CKD progression. Although we did

not detect associations of chemical exposures with clinical renal outcomes (i.e., eGFR), we

report robust and consistent positive associations with biomarkers of tubular injury, NGAL

and KIM-1. Although we observed some differences in these associations across time, these

were mostly in magnitude and not direction, and the positive correlations between chemical

exposures and NGAL and KIM-1 largely persisted. For example, the positive association of PA

and ∑HMW phthalates with KIM-1 attenuated at 4 years of follow-up and was null at year 5,

likely due to sparse counts in the later years of follow-up. These findings are novel and have

important implications for long-term renal function. Several studies have documented NGAL

and/or KIM-1 as early prognostic biomarkers of CKD and/or CKD progression [60–65], and

one study identified KIM-1 as a cause of eGFR decline [61]. It is possible that we did not detect

associations with clinical renal outcomes such as eGFR in this study because of the modest

duration of follow-up, the relatively well-preserved eGFR over time, and the slow pace of pro-

gression of disease in children with CKD of tubular origin (i.e., congenital anomalies of the

kidney and urinary tract). In addition, the incremental harm induced by environmental chem-

icals may be below the level of clinical detection, given the already existing underlying kidney

disease of study participants, whereas subclinical impacts on tubular injury biomarkers may

have been an easier signal to identify. This proposal is supported by our findings of increased

oxidative stress in relation to BPA and phthalates. Given the literature supporting strong asso-

ciations between both tubular injury and oxidative stress biomarkers and CKD progression

Fig 1. Associations between ln-transformed chemical exposures and ln-transformed biomarkers of tubular injury by study

visit. Outcome estimates were derived from adjusted linear mixed-effects (LME) models and correspond to a 1–standard deviation

change in each ln-transformed chemical exposure. Numerical estimates are shown in S3 Table. The horizontal dashed line indicates

0. Black dots indicate that the estimate had a p-value< 0.05; white dots indicate a p-value� 0.05. B, baseline; BPA, bisphenol A;

DEHP, di(2-ethylhexyl) phthalate; DOP, di-n-octyl phthalate; HMW, high molecular weight phthalates; KIM1, kidney injury

molecule-1; LMW, low molecular weight phthalates; Ngal, neutrophil gelatinase-associated lipocalin; PA, phthalic acid; Y[number],

year [number].

https://doi.org/10.1371/journal.pmed.1003384.g001
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and/or renal function, the observed changes in NGAL and KIM-1 and 8-OHdG and F2-iso-

prostane in relation to BPA and phthalates raise concerns about the potential for clinically sig-

nificant alterations in chronic kidney function to emerge in the long term.

The current analysis complements our previous work in which we analyzed the cross-sec-

tional relationships between baseline levels of BPA and phthalates and kidney function mea-

sures at CKiD enrollment [16]. That study found that ∑LMW phthalates were associated with

lower proteinuria and greater eGFR, which suggests a more favorable renal profile. In contrast,

another recent study among hypertensive adults examined serum BPA in relation to CKD pro-

gression and found that baseline BPA levels were associated with decrements in eGFR over

time [66]. In the current longitudinal investigation, we did not find any significant associations

between urinary BPA and phthalates and clinical renal outcomes, except for an association

between PA and lower eGFR over time. These disparate findings, and the addition of the find-

ings for biomarkers of tubular injury, underscore the importance of incorporating both base-

line and serial assessments of exposure to short-lived organic environmental chemicals to

clarify the long-term effects of these exposures on kidney function.

BPA and phthalates have consistently been shown to be related to increased oxidative stress.

Both oxidative DNA damage and lipid peroxidation have been documented in association

with exposure to these chemicals in diverse populations, such as adolescents and pregnant and

postmenopausal women [22,23,67–69]. Toxicological studies support these associations [18–

20,70–72]. This study, conducted among children with CKD, found similar results. Taken in

conjunction with our results that showed links between BPA and phthalates and markers of

tubular injury, as well as the other studies that have documented associations between BPA

and phthalates and deterioration in other measures of renal function [15,16,73–75], this study

Table 5. Associations between ln-transformed chemical exposures and ln-transformed oxidative stress biomark-

ers from linear mixed-effects models.

Outcome and exposure β 95% CI p-Value

8-OHdG (N = 2,118)

BPA� 0.05 −0.00, 0.10 0.06

PA� 0.10 0.05, 0.14 <0.001

LMW phthalates 0.17 0.14, 0.21 <0.001

HMW phthalates 0.18 0.15, 0.21 <0.001

DEHP 0.16 0.13, 0.19 <0.001

DOP 0.10 0.06, 0.13 <0.001

F2-isoprostane (N = 1,113)

BPA� 0.11 −0.15, 0.37 0.40

PA 0.17 0.03, 0.31 0.02

LMW phthalates 0.19 0.08, 0.30 0.001

HMW phthalates 0.08 −0.03, 0.19 0.17

DEHP� −0.10 −0.35, 0.14 0.41

DOP 0.13 0.01, 0.25 0.04

β: estimate per SD change. All models controlled for age, sex, race/ethnicity, glomerular status, birth weight,

premature birth, angiotensin receptor blocker, angiotensin-converting enzyme inhibitor, BMI z-score, and systolic

blood pressure z-score (all measured at each patient’s first visit) and creatinine.

�Exposure has significant interaction with time (p< 0.05), and estimate for exposure at baseline is presented here;

time-specific estimates are plotted in Fig 2.

8-OHdG, 8-hydroxy-20-deoxyguanosine; BPA, bisphenol A; DEHP, di(2-ethylhexyl) phthalate; DOP, di-n-octyl

phthalate; HMW, high molecular weight; LMW, low molecular weight; PA, phthalic acid.

https://doi.org/10.1371/journal.pmed.1003384.t005
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provides preliminary evidence for oxidative stress as a potential biological pathway for envi-

ronmental chemicals to influence kidney function.

This study benefited from several strengths. First, the longitudinal study design allowed us

to examine chemical exposures, renal function, and biomarkers of tubular injury and oxidative

stress over time. This was particularly important in this study of non-persistent chemical expo-

sures. These chemicals have been shown to be metabolized rapidly in the human body, with

half-lives ranging from 3 to 16 hours [43,44,46], and thus exhibit substantial intra-individual

variability in spot urine samples [76,77]. Furthermore, we employed a time-averaged statistical

approach, which allowed us to evaluate whether there were any associations with cumulative

levels of these exposures over time. Second, we measured several chemical exposures, as well as

diverse biomarkers of both tubular injury and oxidative stress, which complemented the clini-

cal data we had on renal function. The measures of tubular injury, NGAL and KIM-1, were of

paramount importance, in light of the lack of impact of the exposures on the clinically relevant

renal endpoints. In addition, measuring both NGAL and KIM-1 was important because

NGAL, normally present in the kidney but rapidly upregulated in response to renal injury, rep-

resents damage specifically to the distal tubule [78], while KIM-1, a type I cell membrane gly-

coprotein that is typically undetectable in the healthy kidney but is synthesized rapidly

following acute kidney injury, represents damage to the proximal tubule [79]. With regard to

oxidative stress, we had measures of both DNA damage (i.e., 8-OHdG) [80] and lipid peroxi-

dation (i.e., F2-isoprostane) [81], which allowed us to gain a more comprehensive picture of

the chemical influences on different types of oxidative damage. Lastly, we were able to examine

Fig 2. Associations between ln-transformed chemical exposures and ln-transformed oxidative stress biomarkers by study visit.

Outcome estimates were derived from adjusted linear mixed-effects (LME) models and correspond to a 1–standard deviation change

in each ln-transformed chemical exposure. Numerical estimates are shown in S4 Table. The horizontal dashed line indicates 0. Black

dots indicate that the estimate had a p-value< 0.05; white dots indicate a p-value� 0.05. 8-OHDG: 8-hydroxy-20-deoxyguanosine; B,

baseline; BPA, bisphenol A; DEHP, di(2-ethylhexyl) phthalate; DOP, di-n-octyl phthalate; HMW, high molecular weight phthalates;

LMW, low molecular weight phthalates; PA, phthalic acid; Y[number], year [number].

https://doi.org/10.1371/journal.pmed.1003384.g002
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a unique cohort of children with CKD from across the US and Canada that had detailed longi-

tudinal clinical information, including eGFR and UPCR.

However, there were some limitations. Spot urine samples were used for exposure assessment,

and BPA and phthalates, the targets of interest in this study, are non-persistent and rapidly metab-

olized in the body. Indeed, the exposures in this study had a large degree of within-person vari-

ability and poor reliability over time, which is similar to other studies of BPA and phthalates

[47,77]. However, our longitudinal design and cumulative average exposure approach attempted

to ameliorate this issue and represent an improvement over previous studies. Furthermore, mea-

suring urinary analytes among those with kidney dysfunction is complex because the kidneys are

responsible for filtering bodily waste products that are ultimately excreted [39]. If that process is

impaired, the concentration of analytes in urine may in turn be affected. Since the exposures and

many of the outcomes of interest in this study were measured in the urine, this could potentially

impact study results. Another potential limitation is that we did not have information on the

sources of environmental exposure, which could help translate these findings into actionable pre-

vention efforts. We measured exposure to each of the chemicals by using biomarkers, which rep-

resent not only exposures from multiple sources, but also differences in metabolism of these

exposures. For example, phthalate exposure could result from food packaging, personal care prod-

ucts, and medical devices or pharmaceuticals; the last of these likely has increased importance in

this population of children with CKD [33–36]. In addition, if we had had information on potential

sources of exposure, we could have evaluated whether the amount excreted in urine was corre-

lated with estimated exposure dose, a particular concern among those with kidney disease or

impaired excretory capacity. Another limitation was that even though we had longitudinal data

over time, our sample size was not large. Lastly, as is the case with all observational studies, our

study may have been vulnerable to unmeasured confounding.

In conclusion, in a longitudinal study among children with CKD, we documented consis-

tent and robust associations between serially assessed urinary concentrations of common envi-

ronmental toxicants, BPA and phthalates, and increased urinary levels of NGAL and KIM-1

over time, reflecting tubular injury in the kidney. However, it is important to note that we did

not detect consistent associations between these chemicals and the longitudinal trajectory of

clinically relevant renal outcomes, including eGFR, proteinuria, and blood pressure. Finally,

we found that BPA and phthalates were associated with increased oxidative stress, which pro-

vides a potential pathway through which these chemical exposures may induce damage to the

kidney. This detected signal of increased tubular injury and oxidative stress in relation to envi-

ronmental exposures at current levels raises concern about the potential for clinically relevant

changes to renal function to develop over time. Given that this study was conducted among

children, these findings highlight the importance of considering environmental exposures in

the context of CKD management before clinical changes are observed. Furthermore, attention

to the impact of exposure to environmental chemicals on the course of CKD in children is

important because it is a potentially modifiable risk factor.
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