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Whole transcriptome RNA-sequencing was performed to quantify RNA expression
changes in whole blood samples collected from steady state sickle cell anemia (SCA)
and control subjects. Pediatric SCA and control subjects were recruited from Atlanta
(GA)—based hospital(s) systems and consented for RNA sequencing. RNA sequencing
was performed on an Ion Torrent S5 sequencer, using the Ion Total RNA-seq v2 protocol.
Data were aligned to the hg19 reference genome and analyzed in the Partek Genomics
studio package (v7.0). 223 genes were differentially expressed between SCA and controls
(± 1.5 fold change FDR p < 0.001) and 441 genes show differential transcript expression
(± 1.5 fold FDR p < 0.001). Differentially expressed RNA are enriched for hemoglobin
associated genes and ubiquitin-proteasome pathway genes. Further analysis shows
higher gamma globin gene expression in SCA (33-fold HBG1 and 49-fold HBG2, both
FDR p < 0.05), which did not correlate with hemoglobin F protein levels. eQTL analysis
identified SNPs in novel non-coding RNA RYR2 gene as having a potential regulatory role
in HBG1 and HBG2 expression levels. Gene expression correlation identified JHDM1D-
AS1(KDM7A-DT), a non-coding RNA associated with angiogenesis, enhanced GATA1
and decreased JAK-STAT signaling to correlate with HBG1 and HBG2 mRNA levels.
These data suggest novel regulatory mechanisms for fetal hemoglobin regulation, which
may offer innovative therapeutic approaches for SCA.
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INTRODUCTION

Sickle cell anemia (SCA) is a genetically inherited blood disorder. Homozygous hemoglobin SS is
characterized by a single point mutation (T to A) of the beta hemoglobin gene (Hbb), resulting in a
non-conservative protein mutation at the sixth codon (Glu to Val) (Pauling et al., 1949; Ingram,
1958). This mutation results in polymerization of the hemoglobin molecules under low oxygen
conditions, and the classic sickling morphology of red blood cells (Scriver andWaugh, 1930). Despite
a single genetic mutation being the root cause, there is considerable heterogeneity between each
individual’s disease severity, and predicting who is at heightened risk of vascular complications is
challenging. Circulating immune cells are in contact with the vasculature and are involved in
cardiovascular diseases. Using these circulating cells as sentinels, one can diagnose various brain
insults using RNA expression patterns in peripheral blood, including stroke (Sharp et al., 2007; Sharp
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et al., 2011; Meller et al., 2016), with high accuracy and the
sensitivity to different causes of stroke (Jickling et al., 2011;
Jickling et al., 2012; Jickling et al., 2013). A recent study
described a link between such peripheral blood transcriptome
profiles with patient mortality in sickle disease (Desai et al., 2017).
To date, published studies have used microarray technology to
assess known gene expression profiles in sickle cell disease (Jison
et al., 2004; Raghavachari et al., 2007; Raghavachari et al., 2009;
Raghavachari et al., 2012; Desai et al., 2017). Based on the number
of inflammatory derangements described in sickle cell disease [for
a review see (Balandya et al., 2016)], we expect that, in
comparison to people without SCA, circulating immune cells
from SCA subjects will express distinctly different genes that
mediate the disease phenotype. In order to further study the
pathologic mechanisms of SCA, and identify potential
therapeutic targets, we investigated peripheral blood whole
transcriptome profiling in pediatric patients with SCA.

METHODS

Study Approval
All procedures were reviewed and approved by Institutional
Review Boards at Children’s Healthcare of Atlanta and
Morehouse School of Medicine (14-125 CHOA). All
participants or guardians gave written informed consent prior
to their enrollment in the study. Samples were de-identified prior
to analysis.

Participant Recruitment
African American children and young adults (3–21 years old)
were recruited from Children’s Healthcare of Atlanta Aflac Sickle
Cell Clinics and Morehouse Healthcare Pediatrics Clinic, Atlanta,
GA. Subjects with SCA had Hemoglobin SS or S-β0-thalassemia,
without transfusions in the past 3 months or hydroxyurea
therapy in the past 6 months. Healthy controls were self-
identified African American children or young adults
(3–21 years old), with hemoglobin genotypes AA, AS, AC, or
β-thalassemia trait confirmed by electrophoresis (Quest
Diagnostics). Exclusions included acute illness, chronic
diseases other than SCA, pregnancy, and history of
cardiovascular risk factors (BMI >95th %ile for age, high
cholesterol or other hyperlipidemia, diabetes, cigarette
smoking more than five per day, or hypertension treated with
medications). Whole blood (3 ml) was collected in PAXgene
RNA tubes. Clinical data were extracted from the medical
record included anthropometrics, complete blood count, and
medical history.

RNA-Seq Library Assembly
RNA was extracted from 3 ml samples of blood (stored in
Paxgene tubes at −20°C) using the Pre-Analytix RNA
extraction kit (Qiagen). RNA-seq libraries were constructed
using the Ion Total RNA-Seq Kit v2 (ThermoFisher Scientific)
with 500 ng total RNA as starting material (not globin depleted).
RNA was sheared using RNaseIII, ligated to adapters, and reverse
transcribed with Super ScriptTMIII. cDNA was size selected using

Ampure XL beads (Beckman Coulter) and amplified using
Platinum™ DNA polymerase (15 cycles) with IonXpress
barcode primers (1–16). Libraries were quantified using High
Sensitivity DNA Bioanalyzer chips, pooled, and cloned onto
sequencing spheres using an Ion OneTouch2. Templated
spheres were loaded on Ion 540 chips and sequenced on an
Ion Torrent S5 DNA sequencer, using the RNA-Seq analysis
plugin. Data were aligned to the hg19 reference genome using
STAR and Bowtie2. Resultant Bam data files were uploaded to
Partek Genomics Studio software (v 7.0). Gene and transcript
expression values were determined using the Ensemble v87
annotation guide for Hg19 (downloaded 01/2018). (Original
data has been submitted to dbGAP. For other data request
please contact rmeller@MSM.edu).

Differential Expression Analysis
Gene and transcript expression was calculated as reads per kilobase
of transcript per million mapped reads (RPKM) using Partek
Genomic Suite (V 7.0). Genes with a fewer than 10 aligned
reads in 25% of samples were filtered out. The data were
normalized using trimmed mean method. Data were subjected
to one-way analysis of variance (2-way ANCOVA) using clinical
SCA status as the factor, corrected for age, and sex in the linear
model. We did not correct for weight, because one control had that
data missing. Data with a 1.5-fold difference in expression levels
and passing a false discovery rate (FDR) of 0.001 were considered
significantly expressed and considered for further analysis. PCA
and hierarchical clustering was performed in Partek genomics suite
using gene expression values of significantly regulated genes and
transcripts. Volcano plot was generated using enhancedVolcano,
by importing the ANOVA output data sheet and selecting the
contrast specific p value and the fold change. Gene Set Ontology
Analysis was performed using Partek Genomics suite (v7.0) and
ClueGo App for Cytoscape (Bindea et al., 2009). Partek Genomics
Suite’s linear support vector machine (SVM) classifiers with
shrinking centroids was used to train models for predicting CA
diagnosis. Models with a normalized correct rate greater than 85%
were then tested using two level cross-validation (full leave one out
and groups of 10) to determine accuracy, sensitivity, and specificity.

Correlation Analysis
Correlation analysis was performed on the normalized rpkm values
of HGB1 and HGB2 vs the rest of the transcriptome using
Spearman correlation in Partek Gene studio (v 7.0) correlation
images were prepared in R using the Hmisc package. Data were
initially correlated together, and then for SCA and Control groups
separately. Significance was corrected for repeated measures using
the Benjamini-Hochberg/Bonferroni correction. An adjusted p
value of 0.05 was accepted as significant. Data for individual
gene pairs were plotted in Graphpad.

eQTL Analysis
Data were analyzed using MATRIXeQTL in R (Shabalin, 2012).
SNP calls were generated and processed in Partek, using the
detect nucleotide variation workflow. Data were called if LOR
greater or equal to 50, and then filtered for a mean number of
reads of 20. Data were annotated with known SNP (dbSNP151)
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identifiers in Partek. The resultant base call matrix was saved as a
text file (available on request from R.Meller) and transferred into
R for processing as a numerical matrix using the SNPready
package. Gene expression data and co-variates data were also
prepared as numeric databases (see attached script). Data were
analyzed for SNPS affecting HBG1 and HBG2 expression, using a
linear model, correcting for age, sex, and SCA status. Data were
plotted using CMplot (Yin et al., 2021). Significant genes were
plotted against base calls using Graphpad Prism v6. A script of R
based procedures is included in the Supplementary Material.

Statistics
The target number of subjects enrolled was based on power
analysis of previous data (Meller et al., 2016). Thirty subjects in
SCA and Control groups would enable detection of over 75% of
1.2-fold differences in gene expression, if the between group
differences were comparable to African American adults with or
without stroke. Normality, t-test, chi square, Mann Whitney U,
Wilcoxon signed rank, and Fisher’s exact tests were performed
with GraphPad Prism (v6.0). A p-value <0.05 was considered
significant. Analysis of variance (ANOVA) was performed on
TMM normalized RPKM values to determine differential
expression using Partek Genomics Suite at a significance cutoff
of ± 1.5 fold change and a post-hoc False Discovery Rate (FDR)
correction (p < 0.001). Principal component analysis and
hierarchical clustering were used to assess clustering of the
data (gene or transcript expression values). Accuracy,
sensitivity, specificity, and area under the curve (AUC) for the
prediction models were also determined using Partek Genomics
Suite (v 7).

RESULTS

Participant Enrollment
We recruited 48 subjects for this study, 31 with SCA and 18
controls. One participant was withdrawn from the study

because on subsequent chart review it was determined they
were being medicated with hydroxyurea (HU) therapy at the
time of blood sample collection (above exclusion criteria). All
HU-free SCA subjects were homozygous for the HbSS genotype,
based on medical history and confirmed by SNP analysis of the
sixth codon of the HBB gene. Patients heterozygous for the
sickle cell causing Hbb gene mutation (HbAS) were grouped
with the control samples (HbAA). All analysis was performed
on mixed sex samples corrected for age and sex (see Table 1).
The age of SCA patients was lower than controls, (8 vs. 12 years,
p � 0.0054 MannWhitney U test: Table 1). Control subjects had
a higher average BMI than SCA (20.27 ± 3.6 vs. 16.67 ± 2.7, p <
0.001 Student’s t test; Table 1). Average hemoglobin
concentration for controls was 13.09 g/dl, compared to 8.8 in
SCA (Table 1), and 8.2 in SCA with cerebral arteriopathy (not
shown). Average fetal hemoglobin was significantly higher for
SCA subjects compared to controls (14.9 ± 7.6% vs. < 1%, p <
0.0001, Wilcoxon Signed Rank test; g/dl shown in Table 1).
There was no difference in the mean corpuscular volume
between controls and SCA (Table 1).

Alignment and Mapping Statistics
We noted a higher yield of RNA extracted from SCA patients’
blood samples than controls (10.8 vs. 2.3 µg/3 ml blood sample,
p < 0.001 Student’s t test: Figure 1A). Three samples failed our
sequencing QC, either due to poor RNA library with evidence of
degradation (1), or low number of reads < 5 million (2: annotated
with an * in Figure 1B). These data, and that from the HU treated
subject, were excluded from further analysis.

Following alignment, we observed no significant difference in
the number of aligned reads between control of SCA patients
(32.8 vs. 26.2 million aligned reads, p > 0.05; Figure 1B). There
was no effect of age on the number of aligned reads (data not
shown). The detection of transcripts plateaued to
approximately 68% of transcripts in all samples (1/2 max at
five million reads: Figure 1C). The ratio of exonic, intronic,
and intergenic reads was similar to our previous blood

TABLE 1 | Patient information. Data provided on 46 participants who were sequenced and subjected to further analysis.

Patient data Control SCD p value Test

Age (Yr) Mean 12.1 8.4 0.0031 ** Mann Whitney U test
SD 3.6 3.8

Sex Mean 8 10 0.6193 ns chi-squared
Female 10 17 0.7582 Fishers exact test

Weight (kg) Mean 49.1a 28.1 0.0002 *** Student’s t test
SD 18.5a 15.04

Height (cm) Mean 152.2 126.5 0.004 *** Student’s t test
SD 17.6 23.4

BMI Mean 20.3 17.6 0.007 *** Mann Whitney U test
SD 3.6 2.8

Hbb (g/dl) Mean 13.09 8.83 < 0.0001 **** Student’s t test
SD 1.04 1.01

HbF (g/dl) Mean 0.13 1.3 < 0.0001 **** Wilcoxon Sign Ranked test
SD 0.01 0.654

Mean Corpuscular Mean 86.8 83.3 0.154 ns Student’s t test
Volume SD 5.8 9.2

adenotes data from 16 controls.
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transcriptome estimates (Meller et al., 2016; Hardy et al.,
2017). When we compared the mapping statistics, we
observed a significantly higher mapping of RNA to exonic
regions in libraries prepared from SCA subjects compared to
those prepared from controls. There was a converse reduction
of intronic mapping of reads in SCA-derived libraries
compared to control-derived libraries (Figure 1D; both
p < 0.001 1 way ANOVA with Sidak’s multiple comparison
test). There was no difference in intergenic mapping between
groups.

Differential Expression Analysis
We determined differential gene and transcript expression
between SCA and Control groups. Analysis revealed 557
genes with ± 1.5-fold differential expression in SCA
patients compared to controls, which was decreased to 223
differentially expressed genes when corrected for age and sex
[2-way ANCOVA (correcting for age and sex); FDR p < 0.001
(Benjamini-Hochberg)]. Many genes showed higher
expression in SCA compared to control (Figure 2A).
There was an enrichment of differential expression in
Chr1, Chr17, and Chr19, and an underrepresentation of
Chr13, Chr21 and ChrY (Figure 2B). The differentially
expressed genes were subjected to hierarchical clustering,
and principal component analysis (Figures 2C,D).

Hierarchical clustering of the samples shows a clear
clustering of the controls and the SCA subjects based on
gene expression values, with the exception of one SCA patient
(red denotes increased expression). Three principal
components account for 80.3% of the variability between
the samples (Figure 2D). Of note the first principal
component accounted for the effect of SCA status.

Analysis of transcript expression revealed 441 transcripts
to be differentially expressed (alternatively spliced) in SCA
compared to controls (1-way ANCOVA ± 1.5 fold change
with FDR p < 0.001). These data cluster with respect to SCA
or control conditions (Figure 2E). Principal component
analysis shows three components account for 50% of the
variability (Figure 2F). The differentially expressed
transcripts (441) were mapped to genes (223). When we
compare the genes with differential expression and the
genes with alternative splicing, we find 204 genes overlap
46% of transcripts map to differentially expressed genes, and
91% of DEGs map to alternatively spliced transcripts (not
shown). This suggests that most genes with differential
expression also show differential transcript usage in SCA.
Additionally, multiple genes express more than one
alternative spliced transcript. It was noted that multiple
hemoglobin-associated genes (HBB, HBD, HBG1, HBG2,
and HBM) show differential isoform usage in SCA.

FIGURE 1 | RNA sequencing of SCA(26) and control blood samples (18). (A) RNA was extracted from 3 ml whole blood samples using the preAnalytix isolation kit
and quantified by absorbance. Yield was calculated as µg in 18 control (blue) and 30 SCA (yellow) samples (Note three samples were excluded from further study. (B)
Following sequencing, the number of reads aligned to the hg19 reference genome was determined using Partek Genome Studio (V7.0). Samples marked as * show two
additional samples below our five million aligned reads cutoff value, and were excluded from further analysis, data were not significantly different (p � 0.07; unpaired
t-test). (C) The number of gene transcripts identified in SCA (yellow) and controls (blue) were shown with respect to the depth of sequencing (number of aligned reads).
(D). Following alignment and mapping, the number of reads aligning to exonic, intronic, or intergenic genomic regions was determined in Partek genomics studio. Data
were analyzed using 1 way ANOVA with post-hoc Sidak’s multiple comparison test subjected to (** denotes p < 0.001).
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FIGURE 2 | Differential gene expression and transcript splicing in SCA patients. (A) Volcano plot showing differentially expressed RNAs, as a measure of fold change and p-value.
Data in gray denote data with less than 1.5 fold change, or not significantly different [ANCOVA (correcting for age and sex) with adjusted FDR p < 0.001]. Data in red show up or down-
regulated genes passing fold change and p value cutoff. (B)Chromosome location of differentially expressed genes. Chromosome size is shown in blue bars. The number of differentially
expressed geneswere expressed as a ratio with respect to chromosome size. The line denotes expected ratio of all genes and all chromosome sizes. (C)Hierarchical cluster of 557
differentially expressed genes Red denotes genes with increased expression, and green denotes decreased expression. On the vertical axis blue and yellow bars denote control and SCA
patient samples, respectively. Black denotes patients with CA. (D)Principal component analysis of gene expression data shows 73.7%of the variability within the samples is accounted by
three principal components (calculated using Partek). Note clustering of SCA (yellow) vs. Controls (blue). (E)Hierarchical cluster of differential transcript expression. Red denotes increased
transcript splicing, andgreendenotesdecreasedsplicing.On thevertical axis blueandyellowbarsdenotecontrol andSCApatient samples, respectively. (F)Principal component analysis of
differential transcript expression data shows 69.6% of the variability within the samples is accounted by three principal components. Note clustering of SCA (yellow) vs. Controls (blue).
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TABLE 2 | Gene Ontology categories (Top 30) for enriched pathways, based on differential gene expression analysis between SCA and Controls.

Function Type Enrichment
score

Enrichment
pvalue

% Genes
in group

that
are

present

Disease
score

SCA vs.
Control
score

#
Genes
in list,
in

group

#
Genes
not in
list,
in

group

#
Genes
in list,
not in
group

#
Genes
not in
list,

not in
group

GO ID

oxygen transporter activity molecular
function

25.4421 8.92592E-12 50 5.837 5.837 7 7 149 18253 5344

oxygen transport biological
process

24.2523 2.93333E-11 43.75 5.837 5.837 7 9 149 18251 15671

porphyrin-containing
compound biosynthetic
process

biological
process

23.873 4.28619E-11 29.6296 6.22254 6.22254 8 19 148 18241 6779

tetrapyrrole biosynthetic
process

biological
process

22.9251 1.10596E-10 26.6667 6.22254 6.22254 8 22 148 18238 33014

gas transport biological
process

22.3673 1.93202E-10 35 5.837 5.837 7 13 149 18247 15669

hemoglobin complex cellular
component

21.9365 2.97225E-10 50 5.95258 5.95258 6 6 150 18254 5833

porphyrin-containing compound metabolic
Process biological

process
20.6371 1.08995E-09 20.5128 6.22254 6.22254 8 31 148 18229 6778

spectrin-associated
cytoskeleton

cellular
component

19.915 2.24401E-09 62.5 6.51057 6.51057 5 3 151 18257 14731

myeloid cell development biological
process

17.8016 1.85714E-08 19.4444 6.66374 6.66374 7 29 149 18231 61515

cell cortex part cellular
component

17.1603 3.52668E-08 9.00901 6.22375 6.22375 10 101 146 18159 44448

tetrapyrrole metabolic process biological
process

17.0597 3.90009E-08 13.3333 6.22254 6.22254 8 52 148 18208 33013

cofactor biosynthetic process biological
process

16.0256 1.09687E-07 8 6.16197 6.16197 10 115 146 18145 51188

protein ubiquitination biological
process

14.9672 3.16104E-07 3.36879 5.75224 5.75224 19 545 137 17715 16567

cortical cytoskeleton cellular
component

14.1374 7.2481E-07 11.6667 6.047 6.047 7 53 149 18207 30863

heme biosynthetic process biological
process

14.1086 7.45957E-07 23.8095 5.96327 5.96327 5 16 151 18244 6783

Cytosol cellular
component

14.0655 7.78838E-07 1.66889 5.83054 5.83054 50 2946 106 15314 5829

apoptotic signaling pathway biological
process

13.7862 1.02971E-06 4.1791 5.62833 5.62833 14 321 142 17939 97190

single-organism process biological
process

13.634 1.19899E-06 1.09694 5.78757 5.78757 123 11090 33 7170 44699

cofactor metabolic process biological
process

13.4312 1.46863E-06 4.39189 6.14075 6.14075 13 283 143 17977 51186

oxygen binding molecular
function

12.8207 2.70422E-06 12.766 5.95258 5.95258 6 41 150 18219 19825

protein modification by small
protein conjugation

biological
process

12.7395 2.93287E-06 2.90076 5.75224 5.75224 19 636 137 17624 32446

heme metabolic process biological
process

12.2238 4.91224E-06 16.6667 5.96327 5.96327 5 25 151 18235 42168

positive regulation of immune
system process

biological
process

11.7342 8.01482E-06 2.51196 5.7691 5.7691 21 815 135 17445 2684

protein binding molecular
function

11.6693 8.55213E-06 1.10676 5.79045 5.79045 113 10097 43 8163 5515

erythrocyte development biological
process

11.4341 1.08205E-05 23.5294 6.29449 6.29449 4 13 152 18247 48821

blood microparticle cellular
component

11.3935 1.12686E-05 6.4 5.93565 5.93565 8 117 148 18143 72562

transition metal ion
homeostasis

biological
process

11.2771 1.26596E-05 6.29921 5.41985 5.41985 8 119 148 18141 55076

T cell receptor signaling
pathway

biological
process

11.1709 1.40786E-05 7.52688 5.27692 5.27692 7 86 149 18174 50852

chemical homeostasis biological
process

11.1667 1.41374E-05 2.50313 5.70145 5.70145 20 779 136 17481 48878

signal transduction by p53 class
mediator

biological
process

11.1628 1.41926E-05 6.20155 5.53394 5.53394 8 121 148 18139 72331
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Functional Analysis of SCA-Regulated
Genes
Pathway analysis was performed on differentially expressed
genes using GO enrichment module of Partek Genomics
Studio. The two most prominent, most enriched pathways
were associated with hemoglobin complexes and protein
ubiquitination (Table2). The identification of hemoglobin
is unsurprising given multiple hemoglobin family of genes
showed higher RNA levels in SCA patients. In addition,
pathways associated with gas transport and hemoglobin
synthesis (porphyrin and tetrapyrrole synthesis) were also
enriched (Table 2). Genes associated with protein
ubiquitination and small molecule conjugation were
enhanced in the list of differentially expressed genes,
consistent with previous reports of enhanced ubiquitin
proteasome system activity in SCA (Anjum et al., 2013;
Warang et al., 2018). Many of these proteins were
associated with E3-ligase activity and proteasome
pathways, for example, SIAH2 and TRIM10. The last
major grouping of enriched pathways was associated with

cytoplasm and cytoskeletal structure. Results were verified
using the online DAVID gene function tool, and similar
results were obtained (not shown), except for the
identification of trypanosomiasis and malaria disease
pathways. Pathway analysis of the transcript splicing data
set reveals similar hemoglobin and protein ubiquitination
regulation functions (see Supplementary Material).
Pathways were visualized using ClueGO (Bindea et al.,
2009) (Figure 3).

Regulation of Hemoglobin Genes
We observed increased hemoglobin gene expression and alternative
splicing in SCA subjects compared to controls, and oxygen transport
andHb associated pathwayswere regulated inGO analysis. Therefore,
we asked whether RNA expression of the beta globin gene and the
gamma (1 and 2) globin genes correlated to their protein levels.
Protein levels of hemoglobin beta was significantly lower in SCA
subjects compared to controls (Table 1, p < 0001). In contrast, HBB
RNA levels were higher in SCA compared to controls (p < 0.0001
Student’s t-test) and RNA and protein levels appear inversely
correlated (r2 � 0.2239, Figure 4A).

FIGURE 3 | Visualization of differentially expressed genes following pathway enrichment in ClueGo. A list of differentially expressed genes were loaded into ClueGO
and analyzed using the KEGG biological data base. Nodes of features are depicted by the larger shapes, and smaller circles represent individual genes.
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Fetal hemoglobin (HbF) is developmentally regulated and
encoded by two RNAs (HBG1 and HBG2). Fetal hemoglobin
(HBF) protein levels in controls were below detection limits (<
1%). Fetal hemoglobin levels are significantly higher in SCA
subjects compared to controls (p < 0.001, Table 1). Even
though there is a range of HBF protein levels in blood of SCA
subjects, the protein concentration does not show a clear linear
correlation with either HBG1 or HBG2 mRNA expression levels
(Figures 4B,C). When compared to subject age, HBG1 and
HGB2 mRNA expression levels did not significantly correlate
with age in either SCA or control subjects (Figure 4D). Together,
these data show a disconnect between HBG protein levels and
mRNA expression, which may be associated with cell
composition of the blood, or different cells being responsible
for the measured HBG protein and mRNA.

Recent human genome data suggest that single nucleotide
variants may regulate gene expression and translation (GTEx
Consortium, 2017; Robert and Pelletier, 2018). To find potential
novel regulators of HBG we performed a targeted eQTL analysis
of RNA seq data, to identify identified potential SNPS regulating
HBG1 and HBG2 gene expression in SCA. Single nucleotide
variations were called using Partek Genomics Studio from the
RNA-Seq data, and filtered (> 20 coverage). First, basecalls were
correlated to all gene expression values using matrix eQTL using
disease status, age and sex as covariates (see appendix for script).
Combining the data from controls and SCA together, we
identified 58 and 287,111 locations potential trans and cis
eQTL events (passing post-hoc FDR p < 0.05). The
chromosomal locations of these cis and trans SNVs are
represented in CMplots in Figures 5A–C.

We then investigated whether any SNPs correlated with the
expression of HBG1 and HBG2. We performed matrix eQTL
using disease status, age and sex as covariates. No cis eQTLs
significantly mapped to either HBG1 or HBG2. In contrast there
were 9 trans eQTLs that correlate with HBG1 (4) and HBG2 (5)
gene expression patterns, and three of these overlap (Table 3)
(FDR corrected p < 0.05). The call of the SNVs is shown in
Figure 5D using the genomic coordinates, we identify that these
SNVs are all known SNVs (i.e., they are contained in clinVar/
dbSNP), and associate with HBB, RYR2, HLA1, ARHGEF18, and
Mir663A (Figure 5D). The HBB result (hemoglobin S mutation)
is consistent with higher HbF levels in SCA. Interestingly, many
of the other loci were intronic or intergenic RNAs (Table 3). We
highlight one intronic eQTL loci that appears to be a novel non-
coding RNA contained within the intron of the RYR2 gene
(Figure 6B), and the loci is a known SNV (dbSNP 155v2;
hg19; rs201281534) (Figure 6B).

Finally, we repeated out analysis using just the splitting the
SCA and control data into two individual analyses, to overcome
the potential effect of using HBG1/2 gene expression as a
surrogate for SCA status. Matrix eQTL analysis using age and
sex as covariates did not yield any significant trans or cis eQTLs.
These data suggest that SNPs associated with non-coding, or
novel RNAs may play a role in either HBG1/HBG2 gene

FIGURE 4 | Expression of mRNA and protein of hemoglobin genes in
SCA.We compared the expression of HBB, HBG1, and HBG2 with the plasma
protein levels of these geneproducts in SCA (yellow) and controls (blue). (A)HBB
gene expression and plasma protein levels appear inversely correlated. (B,
C) HBG1 and HBG2 mRNA and Hbf protein levels do not correlate. (D)
Comparison of HBG1 and HBG2 mRNA expression with participant age in
controls (blue and SCA). Note the >10 fold difference in control to SCA levels of
HBG1 and HBG2 gene expression values (RPKM).
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expression, but may also correlate to SCA status of a patient, and
therefore deserve further investigation.

We further investigated our data set for genes whose
expression may correlate with HBG genes, to identify potential
regulatory elements/factors. Correlation analysis was performed
to determine whether genes associated with HBG1 or HBG2
mRNA expression were regulated in SCA. SCA and controls data

were subjected to Spearman correlation (to reduce the influence
of outliers) and correlation coefficients were grouped using
hierarchical clustering (Figures 6A,B: The distributions of
correlation coefficients is shown in a histogram inset). The
control data appears more co-regulated, as determined by
clusters within the heatmap, with a trend towards lower
correlation values in the SCA data set. The difference between
the control and SCA data was also determined, from this analysis
we do not observe a strong-coordinated correlation shift between
the data (most data are distributed around 0: Figure 7C inset).
These data suggest that gene expression is less correlated in SCA.

We prepared a list of genes whose correlation changes by
0.5 and subjected the lists to pathway analysis. The most
differentially regulated was IRGQ (Figure 7E) with a
correlation change of 1.0 (from 0.63 to 0.44 controls to
SCA). Genes that show a reduced correlation in SCA
compared to control are enriched for transcription and
translation regulation pathways (Supplementary Material).
In contrast, no obvious key mechanisms appeared to be
overrepresented in the increased correlation data set
(Supplementary Material). This suggests that although
RNA expression is increased overall in SCA, it is less
coordinated with respect to biological pathways.

From these data, we searched for genes that correlate with
γ-globin genes, specifically potential transcription or translation
regulating genes, and microRNAs associated with these
regulators, or with direct correlation to the hemoglobin genes.
We found 1381 genes expression values correlated with either
HBG1 or HBG2 (Bonferroni corrected p-value p < 0.05). From
these we subjected the gene lists to Gene Ontology analysis. When
we split the data into SCA or control we observe the positively
correlated genes associated with protein ubiquitination associated
pathways, including E2 and E3 ligases (Supplementary
Material). We also identified within this list GATA1
expression levels correlating with HBG1 and HBG2 expression
levels (Figure 6B), suggesting an increased GATA 1 drive
associated with higher expression of fetal hemoglobin genes.
In contrast, the negatively associated genes appear to involve
immune responses to interleukins, and specifically members of
the JAK-STAT signaling pathway (Supplementary Material:
Figure 7B). JAK inhibitors have recently been investigated as
potential therapies for sickle cell disease (Pecoraro et al., 2015).
Again, whilst these correlations appear provocative, further
follow study is required.

DISCUSSION

In this study, we performed whole transcriptome analysis of
peripheral blood in children with sickle cell anemia and
identified differential gene and transcript expression in
SCA. We also identified potential eQTL loci which may be
responsible for higher γ-globin RNA expression in SCA
subjects, and potential novel regulators of HBG1 and
HBG2 RNA expression. While this is a relatively small
study, our observations regarding the overall
transcriptomic effect of sickle cell anemia appear

FIGURE 5 | Basecalls and RPKM gene expression data were extracted
using Partek and correlated using matrix eQTL package for R. Resultant data
were plotted using CMplots in R (CMplot). (A) cis Eqtl sites (B) trans eQTL sites
vs. entire genome expression data. (C) Enrichment of cis eQTLs on chr 6
and 19. The size of the chromosome inMbp is shown in blue bars.%of identified
eQTL loci/chromosome is represented by red (cis) or blue (trans) circles.
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consistent with multiple previous reports. Children with
sickle cell anemia show fundamental changes in their
blood transcriptome, with differential mapping, and
approximately 8% of the detected transcriptome showing
differential expression (Figure 2). This suggests that some
of the pathophysiologic responses of SCA may be due to this
considerable change in transcription. Furthermore, the
disorder appears to de-regulate the co-expression networks
of multiple genes. Similar to other published blood
transcriptome studies in adults (see below), we observe
changes in hemoglobin expression, and enhanced
expression of proteins associated with protein degradation
(ubiquitin proteasome system), cytoskeletal compensation,
and autophagy/mitophagy. This last biological pathway is
currently under investigation to reduce the mitochondria
content of red blood cells (Archer et al., 2015).

We observe both genes encoding γ-globin (HBG1 and HBG2)
are increased in SCA compared to controls, and the SCA subjects
in this study have higher HbF protein levels compared to controls.
To avoid treatment effects, we recruited SCA subjects who were
not receiving chronic red cell transfusions or hydroxyurea; this
approach selects for less symptomatic subjects who may have
higher Hb F levels. It is of note that hydroxyurea increases both
mRNA and protein levels two fold (Italia et al., 2013), whereas the
absolute difference between HBG1 and HBG2 mRNAs in SCA
subjects vs. controls in our study is in the order of 48 and 70 fold,
respectively.

Multiple transcriptional regulatory elements enhance or
inhibit the globin gene loci. Expression of known drivers of
HBG1 and HBG2 genes, such as KLF10 and SIRT1 were not
significantly increased in our samples (not shown) (Borg et al.,
2012; Dai et al., 2017). We also did not find any significant
differences in expression of the common inhibitory regulators of
HBG1 and HBG2 gene [KLF1 (Zhou et al., 2010; Grieco et al.,
2015; Vinjamur et al., 2016), ALAS1, Bcl11A, HGC1, and BGLT3
(Ivaldi et al., 2018)]. Furthermore, there was no correlation
between Hb F protein levels and either HBG1 or HBG2 RNA
expression levels. This suggests that the mechanisms driving
HBG1 and HBG2 mRNA expression in whole blood samples
appear different from those driving red blood cell γ-globin
translation and protein expression. Recent studies have
attempted to regulate HbF at the translational level (Hahn and
Lowrey, 2014). Together, this mismatch between γ-globin gene

and protein expression suggests that yet unidentified factors may
contribute to HbF transcription and translation and these could
make novel therapeutic targets.

In order to identify potential regulators of HBG1 and HBG2
RNA expression, we performed both eQTL and expression
correlation investigations. SNPs in the promotor of these
genes were associated with HbF expression in a Brazilian SCA
study (Barbosa et al., 2010). In our study, we did not identify any
cis (local) SNPs associated with differential HBG1 or HBG2
expression. We found some trans SNPs that correlate with
HBG1/HBG2 expression. These RNAs appear to be novel non-
coding regulatory RNAs, and were not found in the current
human genome annotation guides (ensembl), however all of the
SNVs were found in the current SNP database (dbSNP v 152).
The identification of these novel RNAs was only possible with
whole transcriptome RNA-seq methodology, and offer the
potential for novel approaches to regulate fetal hemogobin
expression.

We performed correlation analysis on controls and SCA
datasets to identify gene relationships within our dataset, and
potential regulators of HBG1 and HBG2. Such an approach has
not yet been performed on SCA blood data sets. HBG1 showed a
highest correlation with JHDM1D-As1, a long-noncoding RNA
associated with angiogenesis (Kondo et al., 2017). GATA 1, a
driver of globin gene expression (Testa, 2009), was modestly
positively correlated with HBG1 and HBG2 in SCA compared to
control. Correlation analysis of HBG1 and HBG2 with the rest of
the transcriptome reveals a negative correlation with JAK-STAT
signaling pathway members (JAK1 and JAK2), which is
consistent with reports identifying enhanced fetal γ-globin
levels in cells treated by JAK stat inhibitors (Pecoraro et al.,
2015). This suggests both a loss of repression and a promoting
effect of GATA1 may drive the increase in HBG gene expression
in SCA, which could be further investigated for therapeutic
synergy.

Comparison to Previous Transcriptome
Studies
Previous microarray studies in SCA using platelets, PBMCs, and
whole blood reveal similar patterns as those reported here (Desai
et al., 2017; Raghavachari et al., 2009; Raghavachari et al., 2007;
Raghavachari et al., 2012; Hounkpe et al., 2015). An increase in

TABLE 3 | Trans-SNPs identified in Matrix eQTL as correlating with HBG1 or HBG2 expression.

SNP Gene Beta t-stat p-value FDR dbSNP_151 Gene Location

chr11.5248232 HBG1 417.2 5.9930 4.43E-07 0.00068 rs334 HBB exon
chr11.5248232 HBG2 419.4 5.3095 4.12E-06 0.00393 rs334 HBB exon
chr1.237766442 HBG2 −1062.6 −4.9667 1.25E-05 0.00902 rs201281534 RYR2 intron
chr6.31238930 HBG1 671.7 4.9351 1.38E-05 0.00976 rs2308592 HLA_1 exon
chr21.9826993 HBG1 625.1 4.7840 2.24E-05 0.01389 rs1297551451 intergenic
chr19.7515839 HBG1 −616.5 −4.6012 4.00E-05 0.02111 rs372840184 ARHGEF18 intron
chr19.7515839 HBG2 −650.9 −4.4713 6.03E-05 0.02815 rs372840184 ARHGEF18 intron
chr21.9826993 HBG2 630.1 4.3350 9.23E-05 0.03783 rs1297551451 intergenic
chr20.26189963 HBG2 810.3 4.2602 1.16E-04 0.04454 RS126185226 mir663A exon *
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platelet RNA expression is observed in SCA patients (220 genes
were identified as DE, FC ± 5.0, FDR < 0.2) compared to controls
(Raghavachari et al., 2007). We observe multiple platelet
associated RNAs in our whole blood RNA-seq data (for
example, PPBP, PF4, and NRGN), suggesting a component of
whole blood RNA signal is derived from platelets. RNA

expression in adult SCA whole blood cells was analyzed using
microarray [compare Figure 2A this study vs. Figure 6A
(Raghavachari et al., 2009)]. They identified 112 genes with
differential expression (FC ± 2, FDR < 0.2), and in particular
multiple hemoglobin genes showing increased expression in SCA
(including HBM, HBG, and HBBP1) (Raghavachari et al., 2009).

FIGURE 6 | eQTL analysis of SCA RNA-Seq data reveals novel RNAs regulating HBG1 and HBG2 gene expression. (A)Nine loci correlated significantly with HBG1
or HBG2 gene expression (FDR adjusted p < 0.05). Genotype is depicted in the x axis, and HBG1 or HBG2 gene expression on the Y axis. Data show control (blue) and
SCA patients (yellow). (B) Identification of novel intronic RNA from RYR2 visualized using the integrated genome browser (Broad Institute). The Blue arrow depicts the
location of 23776642 on chr1. The gray bars represent the pile-up of reads aligning with this region. The annotation guide from ensemble release 74, depicts the
region as part of an intron of RYR2. Below shows the NCBI browser screen shot depicting know SNPs in this region. The location 237766442 aligns with rs201281534 in
bdSNP 152v2.
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The same group showed RNA-Seq identifies novel transcripts and
differential expression in SCA, although this study had lower
depth of sequencing than our study, and only investigated four
samples. In general, microarray responses show a smaller fold
change compared to RNA-Seq studies (Raghavachari et al., 2012).
Our study identified more differentially expressed genes,
probably due to the larger number of samples in our study,
and second due to our study using whole transcriptome analysis
with a newer reference, versus polyA transcripts (Raghavachari
et al., 2012).

A recent meta-analysis of sickle cell disease gene expression
data sets has been performed on previously reported microarray

data (Hounkpe et al., 2015). One of these studies (GEO
accession number GEO35007) investigated blood RNA
expression in children with SCA, both in acute crisis and
steady state. The meta-analysis identified similar pathways of
enriched genes following differential expression analysis,
including immune response, autophagy, stress, heme
metabolism, and synthesis (Hounkpe et al., 2015), consistent
with our observations. Meta-analysis also confirms a general
trend of increased gene expression in SCA vs. controls.
Interestingly, a recent study applied transcriptomic findings
to enhance clinical diagnosis (mortality prediction) in SCA
(Desai et al., 2017).

FIGURE 7 | Correlation analysis of RNA-Seq data reveals reduced coordination in SCA and identifies pathways regulating HBG1 and HBG2 expression. (A)
Heatmap of correlation matrices of gene expression values in control and SCA. The difference was normalized to 1 and also plotted. The frequency of correlation values
was determined using the histogram package, and plotted as inset. Note the reduced correlation in the SCA data. (B) Correlation between HBG1 and HBG2 with
JHDM1D-AS1 and GATA1 across all data sets: Control (blue) and SCA(yellow). Correlation r values and p values (Bonferroni corrected) are shown inset. (C) Inverse
correlation of HBG1 with Jak3 and HBG2 with Jak1. IRGQ showed the greatest change in correlation between the two patient groups, changing from a positive
correlation in Controls to a negative correlation in SCA (yellow) subjects. Spearman Correlation performed in Partek Genomics Studio, all p-values were p < 0.05 following
Bonferroni correction for multiple testing.
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Limitations
We acknowledge that our study has a small sample size (due
to patient cohort size), which may affect the power of some
observations. To correct for this all data were subjected to
post hoc correction. We did observe significant gene
expression and transcript usage changes in SCA vs.
controls. We did not perform validation of our expression
results with PCR because we noticed strong consistency with
similar studies (Raghavachari et al., 2007; Raghavachari et al.,
2009; Raghavachari et al., 2012; Hounkpe et al., 2015; Desai
et al., 2017).

In summary, while we identified some patterns of differential
gene expression observed in prior microarray and RNAseq
studies, our study is distinguished by several features. By
limiting our study to children not receiving HU or red cell
transfusion therapy, this group with higher baseline
hemoglobin F levels enabled discovery of potential novel
γ-globin regulators. The use of whole transcriptome, non-
ribosome/globin depleted RNA enables the identification of
novel RNAs and the correlation to hemoglobin genes. We
chose not to remove globin mRNA from our samples based
on our experiences of ribosomal reduction techniques in
PAXgene tube derived RNA, and the observations of others
(Liu et al., 2006; Raghavachari et al., 2012). This permitted
discovery of red cell gene expression while also identifying
many of the genes revealed in globin depleted microarray
studies, suggesting a potential advantage of RNA-seq
methodology without globin mRNA depletion. Other sickle
cell transcriptome studies have not previously applied eQTL
and gene expression correlation analysis. These methods
confirmed known γ-globin regulators, GATA 1 and JAK 1 and
JAK 2, and identified two non-coding sequences strongly
associated with HBG expression. Lastly, the lack of association
between HBG1 and HGB2 gene and Hemoglobin F protein
expression suggest that there is post-translational regulation of
fetal hemoglobin synthesis, potentially mediated by the
upregulated ubiquitin-proteasome pathways. Taken together,
these data show the depth of biological information to be
extracted from RNA-sequencing studies of SCA patients.
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