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Abstract

To assess the efficacy of HIV vaccine candidates or preventive treatment, many research groups have started to challenge
monkeys repeatedly with low doses of the virus. Such challenge data provide a unique opportunity to assess the
importance of exposure history for the acquisition of the infection. I developed stochastic models to analyze previously
published challenge data. In the mathematical models, I allowed for variation of the animals’ susceptibility to infection
across challenge repeats, or across animals. In none of the studies I analyzed, I found evidence for an immunizing effect of
non-infecting challenges, and in most studies, there is no evidence for variation in the susceptibilities to the challenges
across animals. A notable exception was a challenge experiment by Letvin et al. Sci Translat Med (2011) conducted with the
strain SIVsmE660. The challenge data of this experiment showed significant susceptibility variation from animal-to-animal,
which is consistent with previously established genetic differences between the involved animals. For the studies which did
not show significant immunizing effects and susceptibility differences, I conducted a power analysis and could thus exclude
a very strong immunization effect for some of the studies. These findings validate the assumption that non-infecting
challenges do not immunize an animal — an assumption that is central in the argument that repeated low-dose challenge
experiments increase the statistical power of preclinical HIV vaccine trials. They are also relevant for our understanding of
the role of exposure history for HIV acquisition and forecasting the epidemiological spread of HIV.
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Introduction

Before being tested clinically, vaccines or preventive treatment

strategies against human-immunodeficiency virus (HIV) are

assessed in non-human primates. The paradigm of how vaccine

candidates are assessed preclinically has been shifting in recent

years. A decade ago, vaccine protection was not quantified directly

by determining how much the vaccine candidate reduced the

susceptibility of the animal hosts to infection. Instead, indirect

measures were used, such as the level of virus-specific immune

responses, or as the reduction of the viral set-point induced by

vaccination.

Unfortunately, there are many uncertainties about how these

immunological and virological measures correlate with protection.

As a consequence, vaccines have recently been tested using

repeated low-dose challenge experiments [1–13]. In such exper-

iments animals are challenged repeatedly with doses of the virus,

which do not give rise to infection with certainty. This protocol not

just more realistically reflects the repeated exposure to HIV that

human hosts face in the epidemic, but also allows the experimenter

to directly measure the reduction of the hosts’ susceptibility

induced by the vaccine. Thus, repeated low dose challenge

experiments are conceptually closer to clinical studies [14].

The challenge data generated in such trials are usually analyzed

to infer the efficacy of a vaccine candidate, or post-exposure

prophylaxis. In addition to information on treatment efficacy,

however, these data contain information on other, very relevant

aspects of the transmission of HIV. In the present study, I analyzed

challenge data that had been published previously. I focused on

the challenge data from control animals that did not receive any

vaccine or treatment.

My first main question was if hosts are immunized by repeated

challenges. In SIV challenge experiments, potential immunization is

usually studied by measuring systemic or localized immune responses

in an animal after a non-infecting challenge. This approach relied on

the strong assumption that these immune measures are causatively

linked to protection. To my knowledge, however, no such link has

been systematically ascertained for SIV infection to date.

In this paper, I adopted an alternative approach to assess if

immunization has occurred after challenge: I essentially compared

the susceptibility of animals before and after challenge. Therefore,

throughout this paper, immunization denotes a reduction of

susceptibility that is brought about by non-infecting challenges.

This definition of immunization does not require to know and

measure the immune effector conferring protection, and directly

quantifies what matters epidemiologically.

The second main question I posed was if there are differences in

susceptibilities between animals. Again my approach focused on

differences of animals in terms of their susceptibility to infection,

and did not involve the quantification of target cells or their

susceptibility in relevant anatomical sites.

As is common in mathematical epidemiology, I conceptualized

infection as a stochastic event that occurs with a given probability.
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More precisely, I described infection as a Bernoulli process. While

the infection probability can be thought of as a trait of an

individual animal, its estimation requires data of more than one

animal. Repeated low-dose challenge data allow us to estimate the

infection probability. They also allow to test if animals are

immunized by non-infecting challenges, as immunization leads to

a smaller and smaller fraction of animals becoming infected in the

course of the challenge experiment. The same is true if there are

differences in susceptibility between animals. As I show below, one

typically finds evidence for both, immunization and susceptibility

differences, and further analysis is needed to disentangle the two

effects. Formally, I used simple stochastic models and maximum

likelihood estimation to estimate the infection probability, and to

study how it varies across challenge repeats and animals.

I found that there is no evidence for immunization in any of the

studies. There is also no evidence for variation in susceptibility,

except for one recent experiment conducted with the strain

SIVsmE660 [13]. In that study, genetic differences in susceptibility

to SIVsmE660 had been previously established. Taken together,

these results show that one of the central assumptions of the

repeated low-dose challenge approach is not violated: there is no

evidence that challenge history affects the probability of infection.

The findings also have implications for our understanding of the

role of repeated exposures in HIV acquisition.

Results

I analyzed repeated low-dose challenge data from seven studies

[5,6,8–10,13,15]. In brief, in these studies monkeys were

challenged with SIV. The dose of the challenge was low, such

that infection did not occur with certainty after a single challenge.

The monkeys were challenged repeatedly in regular intervals of

one or three weeks. The details of each individual dataset are

described in the Materials and Methods section and shown in

Table 1. Figure 1 summarizes the challenge data from the seven

studies I analyzed.

In the most recent study [13], genetic susceptibility differences

were established for the challenge strain SIVsmE660. The gene

implicated was TRIM5. Animals could be divided into ‘‘permis-

sive’’ and ‘‘restricted’’ groups depending on the allele of TRIM5

they carried. (TRIM5a is a molecular factor that can block viral

replication within cells.) The SIVsmE660 challenge data of that

study will serve as a useful control for our methods to detect

susceptibility differences.

Investigating potential immunization
First, I assessed if there is evidence in the repeated low-dose

challenge data for immunization in the sense that challenges,

which do not give rise to infection, reduce suceptibility of the host.

To this end, I first fit a stochastic model (the geometric infection model),

which assumes that each animal has the same susceptibility to

infection, pinf , and that this susceptibility does not change from

challenge to challenge (see see Figure 2A and Materials and

Methods). This model served as a null model against which the

more complex models are compared. The fit of the geometric

infection model is summarized in Table 2, and a plot of the

likelihoods as a function of pinf can be found in Figure 3. The

estimated infection probability, p̂pinf , of each individual study

ranges from 0.16 to 0.25 (see Table 2), except for the SIVmac251

challenge data in Letvin et al 2011, for which the estimate of

p̂pinf~0:5.

In a second step, I fit the immunization model to the data. This

model assumed that the susceptibility to the challenge decreased

with challenge repeats (see Figure 2B). I considered various ways

in which such a decrease could occur. The susceptibility could

drop after the first challenge from a value, p1, to a lower value, p2.

Alternatively, it could drop to this lower level after the lth
challenge, rather than the first. Lastly, the susceptibility may start

at a value p0, and change incrementally by a fixed amount e (see

Materials and Methods). While these models certainly do not

comprise every conceivable immunizing effect they serve as a good

compromise between what is conceivable immunologically and the

mathematical simplicity of their description. Without this simplic-

ity one would lose statistical power.

Irrespective of the way I implemented immunization, the

immune priming model fails to outperform the geometric infection

model statistically, except for the SIVsmE660 challenge data of

Letvin et al 2011 (in which susceptibility difference between the

monkeys have been established), and Wilson et al 2006. Table 3

shows the maximum log-likelihoods, ‘̂‘immune, for the immune

priming model in its various formulations, along with maximum

likelihood estimator for the parameters p̂p1 and p̂p2, or p̂p0 and êe for

the incremental immune priming model variant. The likelihoods

of this model are smooth and have clearly defined global maxima

(see Figure 4). Table 3 also shows the p-value of a likelihood ratio

test against the geometric infection model. In most cases, none of

the immune priming model variants explain the data better than

the geometric infection model.

A notable exception are the data by Wilson et al, J Virol 2006.

[6]. It is important to note, however, that the effect in these data is

the opposite of immunization: the susceptibility increases with

challenges. This result is due to the fact that none of the animals in

the experiments by Wilson et al, J Virol 2006 [6] became infected

at the first or second challenge. Therefore, the susceptibility at first

and second challenge is estimated as p1~0 for the models with

l~1,2, and the incremental variant of the immune priming model

e is estimated to be positive.

I also found a significant improvement of the fit of the immune

priming models over the geometric infection model for the

SIVsmE660 challenge data of Letvin et al 2011. In particular, the

immune priming model with an approximately two-fold drop in

susceptibility after the second or third challenge (l~2 or 3)

improved the fit significantly over the geometric infection model

(p~0:03). However, this can be attributed to the susceptibility

differences between the monkeys in that dataset. Repeating the

analysis on the subgroups carrying permissive and restrictive

Author Summary

Individuals are exposed to Human Immunodeficiency Virus
(HIV) many times before they contract the virus. It is not
known what an instance of exposure, which does not
result in infection, does to the host. Frequent exposures to
the virus are hypothesized to immunize an individual, and
result in resistance to infection with HIV. This hypothesis
may explain the resistance observed in some individuals
despite frequent exposure to the virus. Since it is very
difficult to monitor the HIV exposure and infection status
of humans, this question is easier to address in animal
models. I took data from previously published infection
experiments of monkeys with Simian Immunodeficiency
Virus (SIV) and analyzed them with newly developed
mathematical models. I found that there is no evidence
that challenging monkeys with the virus reduces their
susceptibility to infection. These findings have important
repercussions for the testing of HIV vaccines in monkeys,
and also for our understanding of the role of exposure
history for the acquisition of HIV.

Exposure History and Repeated Low-dose Challenge
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TRIM5 alleles separately, yielded no evidence for immunization

(see Table 3). In summary, there is no evidence for immunization

by viral challenges in these datasets.

Investigating potential differences in animal
susceptibility

To assess if there is any evidence for differences in susceptibility

between animals, I followed the same statistical approach as in the

previous subsection: I compared the fit of the geometric infection

model to that of a model, in which the susceptibilities are allowed

to vary from animal to animal (the heterogeneous susceptibility model).

The heterogeneous susceptibility model is mathematically defined

in the Materials and Methods section and diagrammatically shown

in Figure 2C. This model has two parameters, one for the mean

infection probability, �ppinf , and another measuring the variance in

susceptibilities across animals, vinf .

The likelihoods as a function of the two parameters of this

model are shown in Figure 5 for each of the datasets analyzed.

Table 4 shows the maximum log-likelihood, ‘̂‘frailty, the maximum

likelihood estimators, �̂pp�ppinf and v̂vinf , and the p-values for a

likelihood ratio test against the geometric infection model fit (see

Table 2) for the heterogeneous susceptibility model.

For the dataset for which susceptibility difference have been

established (Letvin11stm.SIVsmE660), I found significant levels of

inter-animal susceptibility differences (p~0:04). This shows that the

statistical approach I adopted works. It further shows that

susceptibility differences can be established without having to know

their molecular or genetic basis. (My analysis did not use

information on the TRIM5 alleles that the animals carried.) For

none of the other datasets does the heterogeneous susceptibility

model fit better than the geometric infection model, and hence there

is no evidence for variability of susceptibilities between animals.

Power of the experiments
The absence of evidence must not be confused with the

evidence of absence. The non-significant results in the previous

Figure 1. Challenge data of the control animals from the studies [5,6,8–10,13,15] considered in this paper. The step functions for each
study terminate at the maximum number of challenges applied in this study, or when all animals are infected.
doi:10.1371/journal.pcbi.1002767.g001

Figure 2. Diagrammatic representation of the infection models. A the geometric infection model, B the immune priming model, and C the
heterogeneous susceptibility model. The circles represent animals, and the darkness corresponds to their susceptibility. Crossed circles signify that an
animal has become infected. The geometric infection model assumes equal susceptibilities across animals and challenge repeats. In the immune
priming model, the susceptibilities decrease with each challenge received, but animals that received the same number of challenges have the same
susceptibility (illustrated by the same level of grey along the animal axis). In the heterogeneous susceptibility model, the susceptibility is assumed to
vary across animals, but not with challenge repeats (illustrated by the same level of grey along the challenge axis).
doi:10.1371/journal.pcbi.1002767.g002

Exposure History and Repeated Low-dose Challenge
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two subsections could simply be due to low sample sizes. To

address this possibility, I conducted a power analysis. I simulated

experiments using the same number of animals and challenges as

in the experimental data, assuming immunization effects or inter-

animal susceptibility differences of various sizes. I then analyzed

these simulated data to test for immunization or heterogeneous

susceptibility (see Materials and Methods for more detail).

For the immunization model, I defined the effect size as the

relative reduction of susceptibility after the first challenge, p1=p2.

Figure 6 shows the result of this analysis. The least powerful

experiment is that by Wilson et al, J Virol 2006 [6] because it

involves only eight control animals and at most eight challenges.

The most powerful experiments are those conducted with

SIVmac251 by [13] and those by [15]. The first experiment

involved 20 animals challenged at most 12 times, the second 28

animals challenged at most 25 times. For these experiments, the

probability not to uncover a significant immunization effect is less

than 5% for an effect size of p1=p2~4:5, i.e. if the susceptibility

was reduced by a factor of approximately 4.5 after the first

unsuccessful challenge. A four-fold reduction still constitutes a

large immunization effect.

How likely is it that I missed a significant effect in all of the

studies simultaneously? A power analysis, in which I simulated

each study repeatedly assuming study-specific model parameters

(see Materials and Methods), yielded that the probability to miss

an immunization effect in all these studies of size p1=p2~2:5 is less

than 5%. This analysis is valid only if an immunization effect is

present and equal across all the early studies.

For the heterogeneous susceptibility model, the effect size was

defined as the variance of the susceptibility distribution. Depend-

ing on the variance, the shape of the susceptibility distribution can

be hump-shaped, monotonously falling (or rising), or U-shaped.

The maximum variance depends on the mean of the distribution.

For example, for a mean infection probability of 0.2 — the most

common estimate obtained by fitting the geometric infection

model to the various datasets — this maximum is 0.16. For

Letvin11stm.SIVmac251, however, the mean infection probability

is 0.5, and the maximum possible variance is 0.25.

Figure 7A shows the result of a power analysis for various levels

of heterogeneity in animal susceptibility. The power to establish

susceptbility differences between animals differs for each individ-

ual study. The dataset by Hansen et al 2011 has the highest power,

and can be used to exclude a level of heterogeneity vinfw0:052.

The shape of this critical susceptibility distribution with

vinf~0:052 is shown in Figure 7B. The critical vinf~0:052
describes a monotonously falling susceptibility distribution with

large differences in heterogeneity between animals. For this

dataset, one can exclude only the largest conceivable heterogene-

ity: a U-shaped susceptibility distribution describing a scenario

according to which approximately one fifth of the animals are

almost completely susceptible and the remaining animals are

alomost completely resistant to infection.

Again, one can ask how probable it is that we missed a

significant effect in all of the studies simultaneously. The

probability not to detect susceptbility differences in any of the

early studies is lower than 5% for susceptibility differences larger

than vinf§0:031. This analysis assumed equal levels of heteroge-

neity across the different studies.

Discussion

Using challenge data that were generated in the context of

preclinical HIV vaccine studies in non-human primates, I investigated

Figure 3. Likelihood of the geometric infection model for the different datasets. The red dashed lines indicates the maximum of the
likelihood.
doi:10.1371/journal.pcbi.1002767.g003

Table 2. Fits of the geometric infection model.

‘̂0 p̂pinf (95% CI)

Ellenberger06v 232.3 0.20 (0.12, 0.31)

Wilson06jv 219.3 0.22 (0.11, 0.37)

Wilson09jv 213.5 0.25 (0.11, 0.44)

GarciaLerma08pm 242.1 0.20 (0.13, 0.3)

Hansen09nm 230.1 0.24 (0.14, 0.36)

Hansen11n 274.9 0.16 (0.11, 0.21)

Letvin11stm.SIVmac251 227.7 0.50 (0.35, 0.65)

Letvin11stm.SIVsmE660 298.0 0.16 (0.12, 0.22)

doi:10.1371/journal.pcbi.1002767.t002

Exposure History and Repeated Low-dose Challenge
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if low-dose challenges immunize the animal hosts. Potential immuni-

zation has been raised as an argument against the repeated low-dose

challenge approach, which could impair its statistical power advantage.

I also studied if there is evidence for susceptibility differences between

animals. Formally, the analysis involved fitting simple stochastic models

to the challenge data. To establish immunization or heterogeneity in

susceptibility, the fits of models that accounted for such effects were

compared statistically to fits of a model that ignored them.

For none of the datasets, I found evidence for immunization.

There is also no evidence for differences in susceptibilities, except

in the SIVsmE660 challenge data presented in [13], in which

susceptibility differences have been previously identified. For

SIVsmE660 it had been established that an animal’s susceptibility

depends on the TRIM5 alleles it carries. TRIM5 encodes for the

restriction factor Trim5a, which is thought to interact with the

capsid of the virus after it has infected a cell. Letvin et al show that

Table 3. Statistical comparison of the immune priming models to the geometric infection model.

immunization ‘̂immune p̂p1 or p̂p0 (95% CI) p̂p2 or ê (95% CI) p-value

Ellenberger06v l~1 232.1 0.14 (0.03, 0.38) 0.22 (0.12, 0.35) 0.51

l~2 230.8 0.31 (0.15, 0.5) 0.13 (0.05, 0.26) 0.09

l~3 231.1 0.28 (0.15, 0.45) 0.12 (0.04, 0.27) 0.12

incremental 231.9 0.25 (0.12, 0.41) 20.01 (20.03, 0.02) 0.36

Wilson06jv l~1 217.1 0.00 (0, 0.21) 0.28 (0.14, 0.45) 0.03 *

l~2 217.1 0.06 (0, 0.25) 0.33 (0.16, 0.55) 0.04 *

l~3 219.0 0.17 (0.06, 0.36) 0.29 (0.1, 0.54) 0.43

incremental 216.5 0.00 (0, 0.21) 0.09 (0.02, 0.14) 0.02 *

Wilson09jv l~1 213.0 0.13 (0, 0.45) 0.31 (0.13, 0.56) 0.30

l~2 213.5 0.27 (0.09, 0.52) 0.22 (0.04, 0.54) 0.81

l~3 213.5 0.26 (0.1, 0.48) 0.20 (0.01, 0.63) 0.77

incremental 213.5 0.25 (0.04, 0.54) 0.00 (20.14, 0.15) 1.00

GarciaLerma08pm l~1 242.1 0.22 (0.07, 0.44) 0.20 (0.12, 0.31) 0.84

l~2 241.2 0.28 (0.15, 0.45) 0.16 (0.07, 0.27) 0.18

l~3 241.1 0.27 (0.15, 0.42) 0.14 (0.06, 0.27) 0.15

incremental 241.8 0.24 (0.13, 0.38) 20.01 (20.03, 0.01) 0.43

Hansen09nm l~1 230.0 0.27 (0.09, 0.52) 0.22 (0.12, 0.37) 0.75

l~2 229.4 0.31 (0.15, 0.5) 0.17 (0.07, 0.33) 0.24

l~3 230.1 0.24 (0.12, 0.4) 0.23 (0.09, 0.43) 0.90

incremental 230.0 0.26 (0.12, 0.45) 20.01 (20.06, 0.04) 0.69

Hansen11n l~1 274.5 0.21 (0.09, 0.39) 0.14 (0.09, 0.21) 0.37

l~2 274.4 0.20 (0.11, 0.32) 0.14 (0.08, 0.21) 0.32

l~3 274.9 0.16 (0.09, 0.26) 0.15 (0.09, 0.23) 0.87

incremental 274.3 0.18 (0.11, 0.26) 20.00 (20.01, 0) 0.27

Letvin11stm.SIVmac251 l~1 226.9 0.60 (0.38, 0.79) 0.40 (0.21, 0.62) 0.20

l~2 227.5 0.54 (0.35, 0.71) 0.42 (0.17, 0.69) 0.49

l~3 227.6 0.48 (0.32, 0.65) 0.57 (0.23, 0.87) 0.68

incremental 227.7 0.52 (0.32, 0.71) 20.01 (20.12, 0.11) 0.81

Letvin11stm.SIVsmE660 l~1 297.9 0.14 (0.06, 0.26) 0.17 (0.12, 0.23) 0.63

l~2 295.6 0.24 (0.15, 0.34) 0.12 (0.07, 0.18) 0.03 *

l~3 295.6 0.22 (0.15, 0.31) 0.11 (0.06, 0.18) 0.03 *

incremental 296.4 0.21 (0.14, 0.29) 20.01 (20.02, 0) 0.07

Letvin11stm.SIVsmE660 l~1 254.5 0.15 (0.05, 0.31) 0.32 (0.22, 0.43) 0.08

(permissive TRIM5 alleles) l~2 256.1 0.28 (0.17, 0.41) 0.26 (0.15, 0.40) 0.83

l~3 256.0 0.29 (0.18. 0.40) 0.24 (0.12,0.40) 0.65

incremental 255.9 0.29 (0.18,0.42) 20.01 (20.03,0.02) 0.55

Letvin11stm.SIVsmE660 l~1 234.5 0.13 (0.02, 0.34) 0.07 (0.03, 0.13) 0.51

(restrictive TRIM5 alleles) l~2 233.1 0.17 (0.06, 0.32) 0.05 (0.02, 0.11) 0.06

l~3 234.1 0.12 (0.05, 0.24) 0.06 (0.02, 0.13) 0.25

incremental 234.7 20.00 (20.01, 0.01) 0.66

CI abbreviates confidence interval. The last column gives the p-values for a likelihood ratio test, and significant tests are marked by *.
doi:10.1371/journal.pcbi.1002767.t003
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monkeys that carry exclusively TRIM5 alleles classified as

‘‘restrictive’’ have a reduced susceptibility to infection as compared

to monkeys that carry ‘‘permissive’’ alleles. Comparing the fit of

the geometric infection model to that of the heterogeneous

susceptibility models, I found significant levels of heterogeneity in

these challenge data.

It is important to emphasize that the evidence for susceptibility

differences in this dataset is not based on information of the

TRIM5 alleles the animals carry. The inference only relies on the

distribution of the number of challenges across animals. Hence,

the method I am presenting allows the identification of heteroge-

neity in susceptibility from the challenge data alone and does not

rely on measuring traits that modulate susceptibility. Such a factor

ignorant method is important tool as considerable uncertainties

about the determinants of susceptibility remain.

The SIVsmE660 challenge data presented in [13] are also

consistent with an immunization effect, although not for every type

of immune priming I considered. This finding, however, is very

likely an artefact of the statistical approach known as one of

‘‘hetergeneity’s ruses’’ [16]. Both effects — immunization and

susceptibility differences — manifest themselves by an over-

dispersion of the challenge data as compared to a geometric

distribution. Immunization decreases the susceptibility to late

challenges due to the immune responses elicited by early

challenges. A similar pattern arises if susceptibilities among the

animals differ, but for a different reason. In this case, early

challenges will more likely lead to infection of animals with higher

susceptibility. This results in more animals with lower susceptibility

late in the challenge schedule as these animals are more likely to

remain uninfected. An immunization effect could therefore be

incorrectly inferred from challenge data that arise from hosts that

vary in their susceptibility.

In general it is difficult to disentangle the two effects. The

difference between immunization and host heterogeneity is too

subtle to be detected with the sample sizes of the challenge data I

analyzed, and depends sensitively on the quantitative details of

immunization effects and heterogeneity. However, as the

SIVsmE660-challenged animals of the study by Letvin et al had

been classified with respect to their susceptibility, I could test for

immunization within these subgroups. As I did not find any

evidence for immunization in each susceptibility class, I concluded

that the immunization effect in the pooled data is misidentified.

The lack of evidence for immunization does, of course, not

prove that there is no such effect. It may simply result from the low

sample sizes in these studies. To go beyond this plain caveat, I

conducted a power analysis that quantifies the probability that an

effect was missed.

The study by Wilson et al (2009) may provide a likely case of too

low power. This study used the same challenge strain

(SIVsmE660) as the data by Letvin et al 2011, in which

susceptibility differences between animals have been established.

The animals involved in study by Wilson et al (2009) were, to my

knowledge, not monitored for their TRIM5 alleles, but it is

conceivable that some animals differed in their susceptibility for

this reason. The power of this study, however, was the lowest

among all the studies. To detect the same level of heterogeneity as

I found in Letvin11stm.SIVsmE660 (vinf~0:022) the power of the

study by Wilson is below 10%.

While sample sizes were clearly an issue in the study by Wilson

et al (2009), especially the later studies [13,15] involved

substantially larger numbers of animals. According to the power

analysis, these studies allow the detection of immunization effect,

albeit only large ones. Additionally, it is important to note that

my power estimates are optimistic as the simulated data for the

power analysis were generated with the same model as was used

for the statistical analysis. The model describing the true

immunization effect is likely to be different from the immune

priming model, and this model misspecification will generally

lead to lower power.

The lack of evidence for immunization by non-infecting

challenges in the majority of the studies constitutes a crucial

validation of the repeated low-dose challenge approach. Only if

challenges do not immunize, one can safely assume that infection

probabilities are independent. According to my analysis, there is

no evidence against the assumption of independence. While we

cannot exclude immunization effects of small size, the analysis

presented in this paper provides evidence against at least very

strong immunization effects. This suggests that the repeated low-

dose challenge approach increases statistical power as we and

others have previously predicted [14,17].

Figure 4. Contour plots of likelihood of the immune priming model (l~1) for the different datasets. The red dots indicate the maximum
of the likelihood.
doi:10.1371/journal.pcbi.1002767.g004
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Independently from the findings I present in this paper, the

statistical power is further corroborated by the increasing number

of studies that have used this approach successfully. For example,

Ellenberger et al, Virol 2006 [5] established an efficacy of 64% of

a DNA/MVA vaccine with 30 animals, and Garcia-Lerma et al,

PLoS Med 2008 [8] could establish a treatment efficacy of 74–

87% of pre-exposure prophylaxis with antivirals with 42 animals

(see Table 1). To harvest the full power of the repeated low-dose

approach it is further necessary to keep the time between

challenges large enough to allow the identification of the challenge

which gave rise to infection. Identification of the infecting

challenge may have been the problem in the study by Wilson et

al, J Virol 2006 [6] in which no animal was infected before the

third challenge.

The power analysis also suggests that the susceptibility

distribution among the experimental animals is, with high

probability, not U-shaped. This is also very relevant to how

vaccine efficacies are estimated statistically, and how many

animals have to be involved in a preclinical study. If the

susceptibility distribution were U-shaped, the animal population

would essentially fall into two classes: almost completely suscep-

tible and almost completely resistant. Any effect of a vaccine would

be confined to the susceptible subpopulation, thus effectively

decreasing the sample size.

But even in the case in which the susceptibility distribution is

not U-shaped, yet susceptibilities still vary from animal to animal,

some of the standard assumptions made when estimating vaccine

efficacies from repeated low-dose challenge experiments are

violated. While some studies consider animal-to-animal variation

in the effect of the vaccine [18], the susceptibility of unvaccinated

animals is most commonly assumed not to differ across animals. In

future repeated low-dose challenge trials, I suggest to first check if

there is evidence for susceptibility differences using the statistical

approach presented in this paper. If this turned out to be the case

frailty approaches should be adopted along the lines of [19] to

estimate vaccine efficacies.

Beyond the context of assessing HIV vaccines or prophylaxis,

repeated low-dose challenge data provide insights into the natural

transmission of HIV. It is extra-ordinarily challenging to assess

how the rate of HIV acquisition depends on the exposure history.

The reason for this difficulty is that, on logistic grounds,

individuals cannot be monitored frequently enough to generate

exposure and acquisition data with the level of detail required to

establish the role of exposure history.

Figure 5. Contour plots of likelihood of the heterogeneous susceptibility model for the different datasets. The red dots indicate the
maximum of the likelihood.
doi:10.1371/journal.pcbi.1002767.g005

Table 4. Statistical comparison of the heterogeneous susceptibility model to the geometric infection model.

‘̂‘frailty p̂inf (95% CI) v̂inf (95% CI) p-value

Ellenberger06v 231.8 0.27 (0.13, 0.48) 0.019 (0, 0.094) 0.32

Wilson06jv 219.3 0.22 (0.11, 0.37) 0.000 (0, 0.031) 1.00

Wilson09jv 213.5 0.25 (0.11, 0.53) 0.000 (0, 0.123) 1.00

GarciaLerma08pm 241.6 0.26 (0.14, 0.46) 0.018 (0, 0.088) 0.32

Hansen09nm 230.0 0.27 (0.14, 0.5) 0.011 (0, 0.106) 0.67

Hansen11n 274.3 0.19 (0.11, 0.31) 0.007 (0, 0.043) 0.27

Letvin11stm.SIVmac251 227.6 0.54 (0.35, 0.76) 0.019 (0, 0.11) 0.70

Letvin11stm.SIVsmE660 296.0 0.23 (0.15, 0.34) 0.022 (3e204, 0.065) 0.04 *

CI abbreviates confidence interval. The last column gives the p-values for a likelihood ratio test, and significant tests are marked by *.
doi:10.1371/journal.pcbi.1002767.t004
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For example, the Rakai cohort [20,21], which provides some of

the best data to estimate HIV transmission rates, involves

approximately 200 HIV discordant couples. Individuals in this

cohort are monitored every 10 months, and report on average 10

sex acts per month. Thus, individuals are tested for infection every

100 exposures on average, which does not allow to estimate

reductions in susceptibility that are likely to be most pronounced

during the first exposures to the virus. For these reasons there is no

quantitative understanding of the dependence of the rate of HIV

acquisition on exposure history to date.

Consequently, most mathematical models that forecast the

epidemiological spread of HIV neglect exposure history and

assume that hosts retain no memory of previous exposures. The

findings in this paper provide limited support for this assumption.

The support is only limited because of issues relating to statistical

power mentioned above, but also because the doses used in

repeated low-dose challenge experiments are still much higher

than those transmitted naturally. To definitively rule out any

impact of exposure history it will be necessary to conduct

experiments in which the challenge dose is further reduced and

the frequency is systematically varied from more often than daily

to less often than weekly. Some immunization effect may not be

detectable if hosts are exposed weekly, as was done in most of the

studies I analyzed in the present paper.

There is a group of HIV exposed individuals — sex workers

from Kenya and Uganda — who remain uninfected despite

frequent exposure to the virus. These highly exposed seronegative

(HESN) individuals are hypothesized to be immunized by frequent

exposures to the virus [22]. It has been realized fifteen years ago

that non-human primate models may provide a way to test for

potential resistance due to exposure to the virus. However, early

studies of this issue remained equivocal [23,24]. These early

studies on the role of exposure history also employed very high

doses to challenge the monkeys. At these high challenge doses the

experiments may not have been sensitive enough to detect

resistance mechanisms that protect against naturally-occurring

low-dose exposure.

The repeated low-dose challenge of monkeys much better

reflects the frequent exposure of the HESN individuals, although

the doses used in repeated low-dose challenge experiments are

still high when compared to the doses to which humans are

exposed. (They are termed ‘‘low’’ to distinguish them from the

very high doses normally used in non-human primate challenge

studies.) Therefore, if frequent exposure by itself were sufficient to

lead to resistance, at least partial immunization should be

observed in the challenge experiments. The fact that I failed to

find any immunization effect suggests that there is more to the

resistance of HESN individuals than high and frequent exposure.

It is conceivable that the exposure frequency or dose is required

to start at a low level and increase over time. The exposure route

may also be relevant: in the studies I analyzed the challenge was

performed rectally, while HESN individuals are exposed vagi-

nally. A last possibility is that the frequency of challenges in the

most of the experiments of one week is too low to kick off the

immunizing mechanism, which render HESN individuals resis-

tant. In any case, the hypotheses about resistance in HESN

individuals will have to be refined by specifying the routes of

infection as well as the ranges of exposure dose and frequency

that can lead to resistance.

An important conclusion from the analysis presented in this

paper is that the challenge data in every study — with the

exception of the one by Letvin et al using SIVsmE660 as a

Figure 7. Power of the experiments to establish susceptibility differences between animals. A Power estimates are shown as a function
of the effect size measured by the variance parameter vinf . The different curves are generated with the same number of animals and maximum
challenge repeats as the datasets indicated in the legend. The dashed line shows the level of susceptibility variance (vinf~0:052), for which an
experiment with the same number of animals and maximum challenge repeats as the one in Hansen et al (2011) has a power larger than 0.95. B
Histogram of a susceptibility distribution with vinf~0:052. A susceptibility distribution more heterogeneous than the one shown can be ruled out
with 95% probability.
doi:10.1371/journal.pcbi.1002767.g007

Figure 6. Power of the experiments to establish an immuniza-
tion effect. Power estimates are shown as a function of the effect size.
The in silico challenge data are generated according to an immune
priming model in which the infection probability drops from an initial
value of p1 to a lower value p2 after the first challenge (l~1). Effect size
is measured as the ratio between p1 and p2. The different curves are
generated with the same number of animals and maximum challenge
repeats as the datasets indicated in the legend.
doi:10.1371/journal.pcbi.1002767.g006
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challenge strain — are consistent with the geometric infection

model. This means there is no evidence that animals differ in their

susceptibilities. As a consequence, there is no justification to divide

the animals in these studies into those that become infected early

versus those become infected late in the challenge schedule.

Neither is there any justification to compare these two groups

immunologically, virologically or genetically. Approaches, such as

the statistical comparison between the fit of geometric infection

model with a fit of the heterogeneous susceptibility model, are

required to establish susceptibility differences and to provide a

solid statistical foundation for comparisons between animals with

low and high susceptibility.

Materials and Methods

Experimental data
I selected repeated low-dose challenge data from seven

previously published studies. These studies are: Ellenberger et al,

Virol 2006; [5], Wilson et al, J Virol 2006; [6], Wilson et al, J Virol

2009; [10], Garcia-Lerma et al, PLoS Med 2008; [8], Hansen et

al, Nat Med 2009; [9], and Hansen et al, Nature 2011; [15], and

Letvin et al, Sci Transl Med 2011 [13]. The criteria for this

selection were a sufficiently high number of monkeys involved,

more than five challenge repeats applied, and the regularity of the

challenge schedule.

Table 1 summarizes the most important aspects of the data. The

monkey hosts were rhesus or pigtailed macaques, and the

challenge virus was either the standard challenge strains

SIVmac239 or SIVmac251 the sooty mangabey virus

SIVsmE660, or SHIV-SF162P3, a chimera between SIV and

HIV featuring a CCR5 tropic envelope protein [25].

The number of animals involved in the studies ranged from 16 to

86. The maximum number of challenges ranges from 8 to 26.

Challenges were given rectally with a frequency of one week. Rectal

challenges are the preferred route in such experiments as they can

be performed on male animals and are relevant for human

transmission. The involvement of female animals in preclinical

studies is rare as they are required to maintain the colonies.

I analyzed only challenge data of the control animals involved in

the studies listed in Table 1. In these animals the susceptibility was

not manipulated, and is thus most relevant to study the effects of

exposure history.

In some studies the challenge dose was increased after a certain

number of challenges. I ignored the data generated with increased

doses. The reason for this is that the challenge with increased doses

pertained to only few animals, and would therefore be only

marginally informative. Moreover, incorporating these data would

have forced me to introduce an additional susceptibility parameter

into my models, which — due to the low sample size — could not

be reliably estimated.

The dataset by Letvin et al (2011) involving challenges with the

viral strain SIVsmE660 will serve as a control for our approach to

establishing susceptibility differences. For this strain, genetic

correlates of susceptibility have been identified (see Results and

Discussion).

The challenge data consist of two pieces of information for each

animal. The first is the number of challenges, cj , the jth animal

received, and the second is the infection status ij of this animal

after the cj challenges. Hereby, ij~0 means that the animal

remained uninfected, and ij~1 means that the animal was

infected after receiving cj challenges. Note that in these

experiments an animal that is found infected is not given any

challenges anymore.

I constructed stochastic models and used them in combination

with the challenge data to infer parameters characterizing the

probability of animals becoming infected upon challenge with the

virus. In the next subsection, I describe these models.

Mathematical models
Geometric infection model. The simplest model I consid-

ered assumes that a challenge results in infection with a probability

constant across animals and challenge repeats (see Figure 2A). This

model predicts that the number of challenges that were required to

infect the animals are geometrically distributed. Therefore I call it

the geometric infection model.

Assume we have conducted a repeated challenge experiment

with n animals. I denote the probability that a single challenge

gives rise to infection in a single animal by pinf . Further, let cj be

the challenges animal j received, and ij the infection status

(0 = uninfected or 1 = infected) of animal j after cj challenges. The

likelihood of this experimental outcome is:

L0(pinf Dc,i)~ P
n

j~1
(1{pinf )

cj{ij p
ij
inf ð1Þ

The probability of infection pinf was estimated by maximizing

the log-likelihood:

‘0(pinf Dc,i)~
Xn

j~1

(cj{ij)ln(1{pinf )zij ln pinf

� �
ð2Þ

Confidence intervals of the estimate of pinf were obtained by

calculating the ‘‘likelihood ratio confidence region’’ [26]:

CIpinf
~ x : 2‘0(p̂pinf Dc,i){2‘0(xDc,i)ƒx2

1,1{a

n o
ð3Þ

Hereby, p̂pinf denotes the value of the infection probability that

maximizes the likelihood, and a~0:05 is the significance

level.

Immune priming model. After a challenge that did not give

rise to infection the host’s susceptibility may be reduced due to its

immunization by the unsuccessful challenge (see Figure 2B). To

accommodate this possibility in the stochastic model of infection, I

introduced the infection probabilities, pinf, k, denoting the infection

probability of the kth challenge. These probabilities are assumed

to be the same for each animal.

For challenge data cj and ij of the jth animal j~1, . . . ,n, I

obtained the following likelihood:

Limmune(pinf, k Dcj ,ij)~p
ij
inf, cj

P
cj{ij

k~1
(1{pinf, k) ð4Þ

The log-likelihood for the data of all animals is then:

‘immune(pinf, kDc,i)~
Xn

j~1

ln L(pinf, k Dcj ,ij)
� �

ð5Þ

While this formulation allows any pattern of change of the

infection probability pinf, k with challenge repeats, I considered

two particular formulations. First, I assumed that the infection

probability drops (or even increases) from p1 to p2 after the lth
challenge:
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pinf, k~
p1 for kƒl

p2 for kwl

�
ð6Þ

In the second formulation that I considered, the infection

probability decreases (or increases) incrementally from challenge

to challenge:

pinf, k~p0ze(k{1) ð7Þ

The 95% confidence interval for the estimate of each model

parameter was calculated as the likelihood ratio confidence region

of the parameter using the profile likelihoods for this parameter

[26]. For the parameter p1, the confidence interval was calculated

as:

CIp1
~ x : 2‘prof

immune(p̂p1){2‘prof
immune(x)ƒx2

1,1{a

n o
ð8Þ

In this expressions, p̂p1 denotes the maximum likelihood estimate of

p1, and the significance level a~0:05. Further, the profile

likelihood ‘prof
immune for p1 is given by:

‘prof
immune(p1)~ sup

p2

‘immune(pinf, k(p1,p2)Dc,i) ð9Þ

Confidence intervals for the other parameters are defined

analogously.

Heterogeneous susceptibility model. In this model, I

assumed that the susceptibilities of each animal in the trial differ

(see Figure 2C). As in the geometric infection model, I assumed

that infection probabilities do not vary across challenge repeats.

Instead of estimating a susceptibility for each animal individually,

which would force us to estimate too many parameters, I adopted

an approach known as frailty modelling from survival analysis, in

which the probabilities of infection are drawn from a Beta

distribution with parameters a and b. The mean infection

probability across animals is given as a=(azb), while the variance

is ab=((azb)2(azbz1)).

To obtain the likelihood for one animal, which has been

challenged cj times and has infection status ij , we have to calculate a

weighted average over the Beta-distributed infection probability x:

Lfrailty(a,bDcj ,ij)~

ð1

0

f (x; a,b)(1{x)cj{ij x
ij dx ð10Þ

~
B(azij ,bzcj{ij)

B(a,b)
ð11Þ

Hereby, f is the probability density distribution of the B-distribution

and B(x,y)~C(x)C(y)=C(xzy) is the Beta function. The log-

likelihood for the data of all animals is then:

‘frailty(a,bDc,i)~{n ln B(a,b)ð Þz
Xn

j~1

ln B(azij ,bzcj{ij)
� �

ð12Þ

It is useful to re-parametrize this function since both param-

eters, a and b, affect the mean and the variance of the

susceptibility distribution. As new parameters I introduced the

mean susceptibility, �ppinf~
a

azb
[½0,1�, and the variance of the

susceptibility, vinf~
ab

(azb)2(azbz1)
[½0,�ppinf (1{�ppinf )�. The re-param-

etrized log-likelihood is:

‘frailty2(�ppinf ,vinf Dc,i)~

{n ln B
{�pp3

inf z�pp2
inf {v�ppinf

v
,
z�pp3

inf {2�pp2
inf z�ppinf{v(1{�ppinf )

v

� �� �

z
Xn

j~1

ln B
{�pp3

inf z�pp2
inf {v�ppinf

v
zij ,

z�pp3
inf{2�pp2

infz�ppinf {v(1{�ppinf )

v
zcj{ij

� �� �ð13Þ

As for the immune priming model, the 95% confidence interval

for the estimate of each model parameter was calculated as the

likelihood ratio confidence region of the parameter using the

profile likelihoods for this parameter [26].

Model comparisons
To test for immunization by repeated challenges or for

differences in the susceptibilities of animals to infection, I first fit

the geometric infection model, and then the immune priming and

heterogeneous susceptibility models. The model fits were then

compared by a likelihood ratio test. I applied a significance level of

0.05.

Power analysis
To determine the statistical power of the model fitting and

comparison, I simulated data that conform to the immune priming

or heterogeneous susceptibility models. In these simulations, I

chose numbers of animals and maximum numbers of challenge

repeats consistent with each experimental study.

In the case of the immune priming model, I set an animal’s

susceptibility at the first challenge is p1~0:4 for all studies except

for Letvin11stm.SIVmac251 for which I set p1~0:6. This

probability was reduced after the first challenge by a factor

ranging from 1 ( = no effect) to 12. In the simulation according to

the heterogeneous susceptibility model, I set the mean probability

of infection of �ppinf~0:2 for all studies except for Letvin11stm.-

SIVmac251 for which I defined �ppinf~0:5. I further set the

variance parameter vinf to values ranging from 0 ( = no effect) to

0.155. The value 0.16 is the maximum variance possible for a Beta

distribution with mean 0.2.

The simulated data were then analyzed and significance was

assessed. Power was determined as the fraction of simulated

experiments, in which a significant immunization effect or

heterogeneous susceptibilities could be established. In accordance

with the comparison of the model fits to the experimental data, I

applied a significance level of 0.05. If a simulated dataset could not

be fitted (due to convergence problems of the fitting routine) it was

excluded from the analysis.

Implementation
The likelihoods, the model fitting and comparison, and the

power analysis were implemented in the R language of statistical

computing [27]. The datasets, implementations of the likelihood

functions, and routines for the power analysis are provided as an R

package in Protocol S1 and documented in Text S1.

Supporting Information

Protocol S1 R-package containing the datasets, likeli-
hood and power analysis functions. Once downloaded, the

file can be installed in R [27] by executing install.packages(‘‘,path

to downloaded .tar.gz file.’’, repos = NULL, type = ‘‘source’’)

(13)
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from the R-prompt. Then load the package by executing

library(‘‘regoes12pcb’’). Get started by calling the main manual

page: ?regoes12pcb.

(GZ)

Text S1 Documentation of the R-package in pdf format.

(PDF)
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