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Abstract: Ammonia from livestock manure reacts with chemical components discharged from various
emission sources to produce airborne particulate matter. This study aimed to investigate a novel
effective microbial agent to suppress ammonia gas emitted from manure. Both isolated L12I and 12III
strains, identified as Pediococcus acidilactici (PA), were selected for their superior activity in assays
performed with the evaluation criteria such as acid production, ammonia decomposition, and urease
inhibition, which are key factors influencing ammonia excretion. The survivability of PA strains was
confirmed by an increase in DNA abundance in the manure. PA strains lowered the pH of manure
and suppressed the growth of hyper-ammonia-producing bacteria (HAB) possessing urease activity.
The L12I and 12III treatment groups showed 23.58% and 38.00% emission reductions, respectively.
Especially, the 12III strain was proven to be the more effective strain for reducing ammonia gas
emission, with the best ability to reduce pH and inhibit HAB. The strains could have an additive
effect in improving the manure quality as a nitrogen fertilizer by preserving the total nitrogen and
urea content. These results suggest that PA strains can be used as unprecedented microbial agents to
improve manure-derived environmental pollution and improve fertilizer quality.

Keywords: ammonia; emission; fine dust; livestock manure; nitrogen; Pediococcus acidilactici

1. Introduction

Recently, it has been reported that the fine dust level in Korea corresponds to
a high concentration risk level among countries that have signed the Convention on
the Organization for Economic Co-operation and Development (OECD) [1]. Fine dust is
a carcinogenic substance that causes various diseases due to oxidative penetration into
human organs, such as parts of the respiratory system and skin [2]. Gaseous chemicals
emitted from various sources, such as livestock, factories, and automobiles, react with
each other and produce fine dust in the atmosphere, and ammonia serves as the main
precursor of fine dust. Ammonia reacts with other volatile components such as oxides
of nitrogen and sulfur and volatile organic compounds in the atmosphere to produce
particulate fine dust, such as ammonium sulfate and ammonium nitrate [3]. In addition,
ammonia itself directly irritates human eyes, the respiratory tract, and skin, and prolonged
exposure can permanently damage human health [4].

According to recent reports by the European Environment Agency (EEA, EU) and the
National Institute for Environmental Research (NIER, Incheon, Korea), the livestock sector
accounts for a large proportion of ammonia emissions worldwide, and the field of livestock
manure administration is reported to be responsible for about 90% of ammonia emission
in the agriculture sector [5,6]. Livestock manure contains various nitrogen compounds
including urea, and ammonia accumulates in the manure because of the enzymatic activity
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(urease and deaminase) of the microflora present in the manure [7–10]. The accumulated
ammonia dissolves in water and increases the pH of the manure owing to the separation of
hydroxide ions. The pH elevation correlates to an exponential increase in conversion of
ammonia to gaseous form, thereby increasing ammonia emission [11,12].

Several methods that reduce the concentration and atmospheric emission of ammo-
nia have been investigated [13]. Among these methods, microbial application has been
shown to result in fewer secondary environmental pollution problems compared to physic-
ochemical methods such as gas barriers, acidifiers, and absorbents [14,15]. However,
many studies on biological inhibitors focus on reducing harmful gases such as ammonia
through nitrogen metabolism, and studies on the cause of ammonia emission from manure
and the interaction between microflora by inhibitors are insufficient [15].

Effective microorganism (EM) products are generally utilized to reduce the odor and
promote fermentation in agricultural fields and comprise actinomycetes, Bacillus subtilis,
lactic acid bacteria (LAB), yeasts, etc. Additionally, extensive research shows that they are
known to be effective in reducing various harmful gases [16,17]. Bacillus subtilis and actino-
mycetes present in EM products are known to be effective in reducing the concentration of
nitrogen present as ammonia [18–21]. Moreover, LAB can facilitate acid production and
exert antimicrobial activity against pathogens via bacteriocin production [22,23]. There-
fore, this study was conducted with the aim of selecting functional microorganisms that
reduce pH, decompose ammonia, and inhibit urea hydrolysis, all of which can contribute
to reducing ammonia emission. Furthermore, novel applications of microbial agents can be
attempted to prevent the spread of contamination derived from agricultural by-products
by verifying their activity in the manure.

2. Materials and Methods
2.1. Isolation, Maintenance, and Identification of Microbial Cultures

EM products were obtained from the Agricultural Technology Center (Sejong, Korea)
and Onsiya (Seoul, Korea), and several bacteria were isolated from them. The EM products
used in this study are commercially available to reduce harmful agricultural gas emissions
and improve livestock diseases and are fermented broths in which LAB, Bacillus subtilis and
yeasts are co-cultured. The products were serially diluted and spread on plate count agar
(PCA, DifcoTM, Detroit, MI, USA), and the plates were incubated at 35 ◦C for 24 h to isolate
the bacteria. They were isolated on the basis of morphological distinction of colonies and
were spread on PCA containing bromocresol purple (BCP-PCA, Eiken Chemical Co., Ltd.,
Tokyo, Japan). The plates were then incubated at 35 ◦C for 24 h to isolate LAB that produce
acids. Until the bacterial selection process, all isolated bacteria were sub-cultured more than
twice in plate count broth (PCB, DifcoTM) at 35 ◦C in a microbial incubator (JSR incubator
JSRI-250T, Gongju, Korea) prior to each experiment. All media were sterilized at 121 ◦C
for 15 min. The screened strains were identified using the API 50 CHL test (BioMérieux,
Lyon, France), which is a biochemical identification kit [24–26]. The selected bacteria
were cultured using the API 50 CHL kit (BioMérieux) at 30 ◦C for 48 h. After incubation,
the APIWEB software (BioMérieux) was used to analyze the results of fermentation of
49 carbohydrates by the strains.

2.2. Changes in the pH during Bacterial Culturing

A pH meter (Orion model A211, Thermo Scientific, Waltham, MA, USA) was used to
measure the acid-producing capacity of the isolated strains. The strains were inoculated at
2% (v/v) in PCB (DifcoTM) and incubated at 35 ◦C. The pH of the cultivated medium was
measured at 0, 6, 12, and 24 h.

2.3. Ammonia Removal from the Liquid Medium

The ammonia degradation by the isolated strains was analyzed by quantifying the
ammonia concentration in the enriched culture medium. Ammonium chloride (Fisher
Scientific International, Inc., Pittsburgh, PA, USA) was added at a concentration of 1%
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(w/v) to the PCB (DifcoTM), and 2% concentration (v/v) of the bacterial subculture was
inoculated into the medium. Bacterial strains were incubated at 35 ◦C and shaken at
130 rpm. After 24 h, the culture was centrifuged at 4 ◦C and 10,000× g to obtain the
supernatant, and the ammonia concentration in the supernatant was quantified using the
indophenol method [27].

2.4. Urease Inhibition Activity of the Isolated Strains

The urease inhibition activity of the isolated strains was evaluated using the phenol
red method to confirm the change in ammonia production due to urease hydrolysis [28–30].
The substrate solution was prepared by dissolving 2% urea (TCI, Tokyo, Japan) and
0.2% phenol red (TCI, Tokyo, Japan) in 0.1 M Tris-HCl buffer (pH 6.8; LPS solution Co.,
Daejeon, Korea). After adding 20 µL urease from Canavalia ensiformis (U1500; Sigma-Aldrich,
St. Louis, MO, USA) and 100 µL single culture of isolated strains to 500 µL substrate so-
lution, 380 µL distilled water was added to the reaction mixture, and after incubating the
mixture for 30 min at 37 ◦C, the absorbance was measured at 560 nm.

2.5. Manure Samples and the Growth Conditions of Microbes

Livestock manure samples obtained from livestock farms (Anseong, Korea) were
used to verify the effectiveness of the selected strains. The samples consisted of 50%, 10%,
10%, and 30% of swine manure, cattle manure, poultry manure, and sawdust, respectively.
The L12I and 12III strains were selected and identified as Pediococcus acidilactici (PA),
were cultured in de Man, Rogosa, and Sharp (MRS, DifcoTM) broth at 35 ◦C for 24 h in
a JSRI-250T incubator (JSR incubator), and this procedure was utilized for all experiments.
Clostridium aminophilum (KCTC 5424) and Proteus mirabilis (KCTC 2510), which are known as
hyper-ammonia-producing bacteria (HAB), were purchased from the Korean Collection for
Type Cultures (KCTC; Daejeon, Korea) and used to quantify the bacterial DNA present in
the manure. C. aminophilum was cultured in reinforced clostridial medium (RCM, DifcoTM)
and was incubated in an AnaeroPack purchased from Mitsubishi Gas Chemical Co. (MGC;
Tokyo, Japan) at 37 ◦C. P. mirabilis was incubated in nutrient broth (NB, DifcoTM) at 37 ◦C
in a JSRI-250T incubator (JSR incubator).

2.6. The Rate of Ammonia Removal in Minimal Salt Medium

To determine whether the selected bacterial strains utilize ammonia as an inorganic ni-
trogen source, an analysis of the concentration of the ammonia–nitrogen in the M9 minimal
medium (MB cell, Seoul, Korea) supplemented with carbon and nitrogen was performed.
Glucose (2%, w/v; Oriental Chemical Industries Co., Ltd., Seoul, Korea) was added as
a carbon source, and 1% (w/v) ammonium chloride (Fisher Scientific International, Inc.)
was added as a nitrogen source. Bacterial culture (2%, v/v) was inoculated into the medium
and incubated at 35 ◦C for 24 h. The microbial cultures were centrifuged at 4 ◦C and
10,000× g, and the supernatant was used for the determination of the concentration of
ammonia–nitrogen using the indophenol method [27].

2.7. DNA Extraction and Real-Time Quantitative Polymerase Chain Reaction (qPCR) Analysis

A Fast-DNA spin kit for soil (MP Biomedicals, Santa Ana, CA, USA) was used to
extract DNA. The concentration of extracted DNA was quantified using a NanoDrop
ND-1000 (Thermo Scientific). Primers required for qPCR analysis are summarized in
Table 1 [31–34]. The method described by Bokulich et al. [35] was modified for qPCR
amplification in this study. Amplification was carried out in a total volume of 20 µL of
the mixture, consisting of 10 µL of 2 × GoTaq® qPCR master mix (Promega, Wisconsin,
WI, USA), 1 µL of each forward and reverse primer (10 pmol), and 8 µL of DNA template
(2.5 ng/µL) using a 7500 real-time PCR system (Applied Biosystems, Waltham, MA, USA).
The reaction was run for 45 cycles: pre-denaturation at 95 ◦C for 10 min, denaturation at
95 ◦C for 15 s, and annealing and extension at 60 ◦C for 1 min. The melting curve analysis
was conducted at 95 ◦C for 15 s, 60 ◦C for 1 min, and 95 ◦C for 30 s. The DNA extracted from
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the single microbial cultures was serially diluted, and standard curves for quantification
were generated by plotting the cycle threshold (Ct) values for diluted DNA concentrations
obtained from the qPCR analysis (Figure 1).

Microorganisms 2022, 10, 77 4 of 14 
 

 

of each forward and reverse primer (10 pmol), and 8 µL of DNA template (2.5 ng/µL) 
using a 7500 real-time PCR system (Applied Biosystems, Waltham, MA, USA). The reac-
tion was run for 45 cycles: pre-denaturation at 95 °C for 10 min, denaturation at 95 °C for 
15 s, and annealing and extension at 60 °C for 1 min. The melting curve analysis was con-
ducted at 95 °C for 15 s, 60 °C for 1 min, and 95 °C for 30 s. The DNA extracted from the 
single microbial cultures was serially diluted, and standard curves for quantification were 
generated by plotting the cycle threshold (Ct) values for diluted DNA concentrations ob-
tained from the qPCR analysis (Figure 1). 

Table 1. List of PCR primer pairs used for qPCR analysis. 

Target Strain Primer 
Name Sequence (5′–3′) Product 

Size (bp) Reference 

Total bacteria 
UB-F CGGCAACGAGCGCAACCC 

161 [31] 
UB-R CCATTGTAGCACGTGTGTAGCC 

Pediococcus 
acidilactici 

IdhDF GGACTTGATAACGTACCCGC 
449 [32] 

IdhDR  GTTCCGTCTTGCATTTGACC 
Clostridium 
aminophilum 

57F ACGGAAATTACAGAAGGAAG 
560 [33] 

616R GTTTCCAAAGCAATTCCAC 

Proteus mirabilis 
ureF GGTGAGATTTGTATTAATGG 

225 [34] 
ureR ATAATCTGGAAGATGACGAG 

 

  
(A) (B) 

  
(C) (D) 

Figure 1. Linear correlation between the log of DNA concentration of microbial single cultures and 
Ct values from qPCR analysis. Each reaction was performed in triplicate. UB, universal bacteria; PA, 
Pediococcus acidilactici; CA, Clostridium aminophilum; PM, Proteus mirabilis. (A) L12I, (B) 12III, (C) Clos-
tridium aminophilum KCTC 5424, (D) Proteus mirabilis KCTC 2510. 

  

Figure 1. Linear correlation between the log of DNA concentration of microbial single cultures and
Ct values from qPCR analysis. Each reaction was performed in triplicate. UB, universal bacteria;
PA, Pediococcus acidilactici; CA, Clostridium aminophilum; PM, Proteus mirabilis. (A) L12I, (B) 12III,
(C) Clostridium aminophilum KCTC 5424, (D) Proteus mirabilis KCTC 2510.

Table 1. List of PCR primer pairs used for qPCR analysis.

Target Strain Primer Name Sequence (5′–3′) Product Size (bp) Reference

Total bacteria
UB-F CGGCAACGAGCGCAACCC

161 [31]UB-R CCATTGTAGCACGTGTGTAGCC
Pediococcus
acidilactici

IdhDF GGACTTGATAACGTACCCGC
449 [32]IdhDR GTTCCGTCTTGCATTTGACC

Clostridium
aminophilum

57F ACGGAAATTACAGAAGGAAG
560 [33]616R GTTTCCAAAGCAATTCCAC

Proteus mirabilis
ureF GGTGAGATTTGTATTAATGG

225 [34]ureR ATAATCTGGAAGATGACGAG

2.8. Abundance of the Selected Strains in Manure under Different Culture Conditions

Genomic analysis of the selected bacterial strains in manure was performed to
confirm the abundance of the selected strains in manure. To homogenize the sample,
1 g of the manure sample was mixed with 5 mL of distilled water. A total of 160 µL
of single culture of the selected strain was inoculated at a low-level concentration of
7.98 log colony forming units (CFU) and a high-level concentration of 8.58 log CFU. The
changes in the DNA proportion were analyzed after 24 h of incubation. Aerobic culture
conditions were provided by incubating the culture at 35 ◦C in a shaking incubator at
130 rpm, and anaerobic conditions were provided by using the MGC AnaeroPack and
incubating the culture at 35 ◦C.

2.9. Determination of pH Change and Growth of HAB in Manure

For the analysis of pH change and HAB growth due to microbial treatment, 100 µL
of single culture was inoculated into a solution containing 50 mL distilled water and 10 g
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livestock manure. After incubating the culture at 35 ◦C for 24 h under aerobic and anaerobic
conditions, the pH of the manure was measured, and the DNA concentrations of P. mirabilis
and C. aminophilum were measured by qPCR analysis.

2.10. Monitoring Ammonia Gas Emission and the Chemical Properties of Manure

Ammonia emissions from manure were analyzed using an air trapping system modi-
fied from the method described by Park et al. [36]. For the analysis of ammonia emission
from manure after microbial treatment, 1 mL of single microbial culture was inoculated
with 100 g of manure placed in the chamber of the device. Ammonia emitted in the cham-
ber was directed into a gas-bubble-collecting flask containing 50 mL 0.05 N H2SO4 (95%;
Dae Jung Chemicals, Gyeonggi, Korea) via air inflow using an air pump and a gas flow
meter, and the ammonia was trapped at the same time. Air inflow and outflow rates were
maintained at 1 L/min to analyze daily ammonia emission. The collected ammonia was
quantified using the indophenol method [27].

The changes in environmental parameters of the samples on days 0 and 35 were
analyzed by chemical characterization: pH, organic matter (OM), total nitrogen (T-N),
and urea concentration. The pH, OM, and T-N were analyzed by referring to the method
described in detail by the Rural Development Administration (RDA, Jeonju, Korea) [37,38],
and in detail, OM was analyzed by the direct ash method and T-N by the Kjeldahl method.
Urea concentration was quantified using the diacetyl-monoxime method described by
Rahmatullah et al. [39].

2.11. Statistical Analysis

Each experimental result was expressed as the mean ± standard error of the mean
of triplicate experiments, and statistical analysis was performed using the SAS v.9.4 pro-
gram (SAS Institute Inc., Cary, NC, USA). Differences between the groups were con-
firmed by Student’s t-test and one-way ANOVA, followed by Duncan’s post hoc test with
a significance level of p < 0.05.

3. Results and Discussion
3.1. Screening and Identification of Potential Effective Bacterial Strains for Reducing
Ammonia Emission

Sixty-seven bacterial strains were isolated from commercial EM, among which 12 acid-
producing bacteria were selected based on colony color change to yellow in BCP-PCA.
Further, the pH changes during incubation of these strain cultures for 24 h were monitored
(Figure 2). As a result, eight strains were confirmed to produce acid by decreasing the pH
level by 2 or more. Among the strains tested, 12III showed the best acid-producing ability.
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The potential strains, capable of removing ammonia–nitrogen, were screened based
on analysis of the ammonia removal rate during incubation. Ammonia removal ability was
tested using 67 isolated bacteria (Figure 3).
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Consequently, all eight selected strains could remove more than 10% of the total am-
monia, and L12I removed approximately 20% of the total ammonia. Moreover, a urease
activity inhibition assay was conducted to select effective bacterial strains that inhibit
urease activity, a major factor of ammonia release (Figure 4). Approximately 20 bacte-
rial strains inhibited urease activity by more than 50%, among which 14 strains showed
100% inhibition.
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3.2. Identification of Selected Strains by Using API 50 CHL Test

L12I and 12III bacterial strains that exhibited all the required properties such as pH
reduction, ammonia degradation, and urease inhibition were finally selected as potentially
effective microbes that could reduce ammonia emissions from manure. The selected
L12I and 12III strains were both identified as Pediococcus acidilactici (PA) with a similarity
of 99.9% (Table 2). PA is a probiotic microorganism that is resistant to a wide range of
temperatures and pH [40], and it is known to have excellent antibacterial effects due to
the production of bacteriocin [40]. The selected strains are expected to be effective in
inhibiting ammonia emission from manure on the basis of the screening processes and
previously reported activities.
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Table 2. Characteristics of carbohydrate fermentation patterns of selected bacteria.

Carbohydrates L12 I 12 III Carbohydrates L12 I 12 III

Control − − Esculin − +
Glycerol − − Salicin + +

Erythritol − − D-Cellobiose + +
D-Arabinose − − D-Maltose − −
L-Arabinose + + Lactose − −

D-Ribose + + D-Melibiose − −
D-Xylose + + Sucrose − −
L-Xylose − − Trehalose + +

D-Adonitol − − Inulin − −
Methyl-β D-xylopyranoside − − D-Melezitose − −

D-Galactose + + Raffinose − −
D-Glucose + + Starch − −
D-Fructose + + Glycogen − −
D-Mannose + + Xylitol − −
L-Sorbose − − Gentiobiose − +

L-Rhamnose + + D-Turanose − −
Dulcitol − − D-Lyxose − −
Inositol − − D-Tagatose + +

Mannitol − − D-Fucose − −
Sorbitol − − L-Fucose − −

Methyl-α D-Mannopyranoside − − D-Arabitol − −
Methyl-α D-Glucopyranoside − − L-Arabitol − −

N-Acetylglucosamine + + Potassium gluconate − −
Amygdalin − − Potassium 2-ketogluconate − −

Arbutin + − Potassium 5-ketogluconate − −
Symbols denote positive (+) and negative (−) in sugar utilization patterns of API 50 CHL test.

3.3. Ammonia Removal Capacity of the Isolated Bacteria in the Minimal Salt Medium

Bacterial nitrogen metabolism has been modulated to reduce the emission of ammonia
by nitrification, denitrification, or nitrogen fixation [18,21,41]. The ability of selected
bacterial strains to utilize the nitrogen stored as ammonia was tested in the M9 minimal
medium to limit possible metabolic disturbances due to medium components (Figure 5).
As a result, PA strains showed the capacity to remove approximately 10% of the nitrogen
stored as ammonia; however, the difference in ammonia removal rate between the strains
was not significant (p > 0.05). Additionally, the ammonia emitted from the medium was not
detected. PA can also produce amino acids from inorganic nitrogen sources [42,43]. In this
respect, this result suggests that reduced amount of ammonia–nitrogen was not volatilized
but instead utilized by PA strains.
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3.4. DNA Abundance of Selected Strains in Manure

The changes in the PA strains’ DNA abundance in manure under different culture
conditions was determined to confirm that the selected bacteria are the predominant type
among all the bacteria in the manure (Figure 6). Since the livestock manure composting
operations are performed by agitation or sedimentation [44], the survivability of the selected
strains depended on the presence of oxygen. The survivability of the PA strains in manure
was confirmed. Furthermore, the DNA of PA was not detected in the manure sample
not treated with PA strains. The DNA abundance ratio after incubation compared to the
initial of PA strains increased depending on the inoculation concentration and showed
a significant increase under all culture conditions (Figure 6B). PA strains are thought to
be active under both aerobic and anaerobic conditions [45,46], and have the potential to
predominate among the microflora in the manure.
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Figure 6. Quantitative real-time PCR analysis to determinate DNA proportion of selected bac-
terial strains in manure. (A) Low-level inoculation (7.98 log CFU), (B) high-level inoculation
(8.58 log CFU). Values represent the mean ± S.E. (n = 3). * p < 0.05 (0 vs. 24 h of L12I under the same
culture conditions), and # p < 0.05 (0 vs. 24 h of 12III under the same culture conditions) indicates
statistical significance.

3.5. Changes in pH and Growth Inhibition of HAB in Manure by the Selected Strains

Ammonia accumulation in the manure dissociates hydroxide ions, resulting in
an increase in the pH of the manure. The pH level is closely related to the conversion of
ammonia to the gaseous phase, and an increase in pH promotes the release of gaseous
ammonia [11,47]. As such, changes in pH and ammonia concentration are essential factors
affecting ammonia gas emission. According to recent research reports, iron chloride, sulfu-
ric acid, and other acidic chemicals have been applied to reduce ammonia emissions by
modulating the ammonia concentration and gaseous phase conversion [8,48,49]. In this
study, it was confirmed that the selected strains (L12I, 12III) were effective in reducing the
pH and inhibiting urease activity through a screening process [40,50].

A liquid manure medium was used for a more accurate observation of the pH level
changes, and the selected bacterial strains were treated under aerobic and anaerobic
conditions (Table 3).

As a result, the pH level of the untreated control was significantly elevated when
observed at 0 h compared to the sample under aerobic conditions. In contrast, the pH level
of the groups treated with selected strains showed a tendency to decrease. In the case of
anaerobic culture conditions, in contrast to aerobic conditions, the pH of all groups tended
to reduce after 24 h of incubation. Among them, the groups treated with PA strains showed
a significant decrease in pH compared to the control (p < 0.05). The reversal pattern between
the aerobic and anaerobic control groups could be a phenomenon due to the metabolism of
aerobic ammonia producing bacteria in the manure.
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Table 3. Change of pH in manure by using selected bacterial strains in aerobic and anaerobic
conditions. (L) Low-level inoculation (7.98 log CFU), (H) high-level inoculation (8.58 log CFU).

Time (h) 0 24

Conditions Group Average SE Average SE

Aerobic

Control 7.22 0.03 7.34 * 0.04

L12I
(L) 7.28 0.02 7.25 0.02
(H) 7.26 0.06 7.31 0.01

12III
(L) 7.25 0.03 7.27 0.03
(H) 7.23 0.04 7.21 0.05

Anaerobic

Control 7.24 0.09 6.94 a,* 0.03

L12I
(L) 7.28 0.05 6.56 b,* 0.01
(H) 7.22 0.03 6.53 b,* 0.02

12III
(L) 7.20 0.01 6.55 b,* 0.01
(H) 7.22 0.03 6.52 b,* 0.01

Values represent the mean ± S.E. (n = 3). * p < 0.05 vs. 0 h indicates statistical significance. The different letters
(a, b) indicate statistically significant difference between different groups at the same time and same conditions
(significance level at p < 0.05).

Ammonia producing bacteria via urea hydrolysis are present in livestock manure [9,10,51].
Furthermore, the DNA of C. aminophilum and P. mirabilis, representative HAB strains with
urease activity [9,10], was present in the manure used in this study. The DNA content of
C. aminophilum, an obligate anaerobe, increased by more than twofold under all culture
conditions (Figure 7A), and the DNA of P. mirabilis, an obligate aerobe, increased only
under aerobic conditions by approximately threefold (Figure 7B). Overall, all PA strains
significantly decreased the change in DNA fold change of C. aminophilum compared to the
controls under all culture conditions (p < 0.05). Likewise, PA strains tended to inhibit the
DNA increase of P. mirabilis compared to the untreated control under aerobic conditions,
and especially, the 12III strain showed a significant inhibition against growth of P. mirabilis
even in the low inoculation concentration group (p < 0.05 vs. control under the aerobic
conditions in Figure 7B by using t-test).
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Figure 7. Inhibitory effects of selected bacterial strains against Clostridium aminophilum (A) and
Proteus mirabilis (B). (L) Low-level inoculation (7.98 log CFU), (H) high-level inoculation (8.58 log
CFU). Values represent the mean ± S.E. (n = 3). The different capital letters (A, B) indicate statistically
significant difference between different groups under the aerobic conditions (significance level at
p < 0.05). The different minuscule letters (a, b) indicate statistically significant difference between
different groups under the anaerobic conditions (significance level at p < 0.05).

In our study, it was suggested that the inhibitory effects against HAB affected pH
(Table 3), which was reduced by PA treatment and was similar to the inhibition against
HAB (Figure 7). PA is well known for its antimicrobial-peptide-producing capacity [22,40]
and has been verified to have positive effects on acid production and urease inhibition
(Figures 2 and 4). Therefore, it was expected that PA strains could have a positive effect
on the inhibition of ammonia emission due to their inhibitory effect on HAB prolifera-
tion through pH control and urease inhibition. Furthermore, the results suggested that
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decrease in ammonia emission is not only a result of the chemical reaction that occurs
but is also due to the major influence of various metabolisms of the microorganisms on
ammonia emission.

3.6. Ammonia Emission from Manure and Changes in the Chemical Properties of the Manure

The emission pattern of ammonia from manure due to the treatment with selected
strains was tested using a gas trapping device and an ammonia quantification method.
Overall, the emission pattern was observed over 35 days in the experimental groups,
and the pattern increased rapidly and then gradually decreased, similar to that reported for
urea-derived ammonia emission from soils [36,52] (Figure 8A). Total accumulated ammonia
emissions for the 35 days were 841.43 ± 38.36, 643.02 ± 31.05, and 521.71 ± 47.27 mg/kg in
the control, L12I, and 12III groups, respectively (Figure 8B). The groups treated with L12I
and 12III showed significant emission reduction effects of 23.58% and 38.00%, respectively,
compared to the control group (p < 0.05).
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Figure 8. Changes of daily NH3 gas emission (A) and accumulated NH3 gas (B) in the livestock
manure by treating selected bacterial strains. Values represent the mean ± S.E. (n = 3). The different
letters (a, b) indicate statistically significant difference between groups (significance level at p < 0.05).

Additionally, the chemical properties of the manure were investigated to determine
how the environmental parameters of the manure changed due to the treatment with the
selected strains during the discharge analyses (Table 4). Among the chemical indicators,
OM and pH did not show any significant differences among all groups (p > 0.05), and the
T-N of the control group decreased by 22.16% compared to the initial content of emission
(at day 0). In contrast, L12I and 12III strains, which had an emission reducing effect, showed
14.93% and 10.27% T-N reduction rates, respectively; in particular, the 12III treatment group,
which had the best ammonia emission reduction effect at 38.00%, also had the best nitrogen
conservation capacity. In the case of urea reduction rate, the control, L12I, and 12III treated
groups showed 62.18%, 45.57%, and 45.00% reduction, respectively. Consequently, it was
confirmed that the change in urea content between groups showed similar patterns to the
change in T-N content and ammonia emission between groups, suggesting that urea and
T-N content were major factors affecting the emissions.

Table 4. Changes in chemical characteristics of manure samples treated with selected bacterial strains.

Group Control L12 I 12 III

Time (Day) 0 35 0 35 0 35

OM (%) 41.66 ± 0.86 43.03 ± 1.06 42.69 ± 0.99 40.61 ± 0.54 42.21 ± 0.55 40.38 ± 1.16
T-N (%) 1.94 ± 0.05 1.51 ± 0.02 b 2.01 ± 0.13 1.71 ± 0.16 b 2.24 ± 0.10 2.01 ± 0.09 a

OM/T-N ratio 21.51 ± 0.44 a 28.47 ± 0.70 a,* 21.26 ± 0.49 a 23.70 ± 0.31 b,* 18.88 ± 0.25 b 20.12 ± 0.58 c

Urea (mg/100g) 14.78 ± 1.04 5.59 ± 0.23 b,* 15.29 ± 0.50 7.71 ± 0.12 a,* 13.42 ± 0.24 7.38 ± 0.41 a,*
pH 7.49 ± 0.02 8.46 ± 0.04 * 7.46 ± 0.02 8.49 ± 0.02 * 7.48 ± 0.02 8.48 ± 0.01 *

Values represent the mean ± S.E. (n = 3). *: statistical significance compared with 0 and 35 days of each group
(p < 0.05) by using t-test. (a, b, c) letters: statistically significant difference between groups at the same day within
a line (p < 0.05) by using one-way ANOVA. OM, organic matter; T-N, total nitrogen.
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Livestock manure, as the main raw material for organic compost, is an important
nitrogen source [11]. Ammonia emissions from manure not only cause nitrogen deple-
tion [11] but also adversely affect manure quality. The PA strains selected in this study were
proven to be beneficial bacterial strains that reduced ammonia emission by preserving the
nitrogen content in manure and ultimately improving the manure quality as a fertilizer.
It is difficult to maintain uniformity in manure environment because the distribution of
intestinal microorganisms can steadily change according to the diet and activity of the
host [53,54]. For this reason, the determination of the environmental changes, identified in
this study as decisive factors for ammonia emission, was difficult. However, in this study,
it was possible to verify that their ability had an effect on nitrogen fixation of manure and
reduction in ammonia emission by treating L12I and 12III, which are selected strains with
growth inhibition of the HAB strain and acidification ability in manure.

4. Conclusions

This study was conducted to investigate the cause of ammonia, a major factor of air
pollution, emitted from livestock manure and to verify the efficacy of a novel microbial
agent to reduce ammonia gas. L12I and 12III (P. acidilactici) were selected as effective strains
to reduce pH, ammonia concentration, and urease activity, which act as emission factors.
Based on the results of this study, it was verified that L12I and 12III are strains capable of
acidifying manure and inhibiting the growth of HAB strains. Furthermore, it was confirmed
that the selected strains with verified activity are unprecedented microbial agents with
superior effects in reducing ammonia gas emitted from manure and fixing nitrogen for use
as a fertilizer. Therefore, this study can be utilized as a basis for applying various control
methods to reduce the emission of ammonia gas and contribute to the mitigation of air
pollution derived from manure by utilizing the discovered microbial agents.
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