
Psychological Medicine

cambridge.org/psm

Invited Review

Cite this article: Deak JD, Johnson EC (2021).
Genetics of substance use disorders: a review.
Psychological Medicine 51, 2189–2200. https://
doi.org/10.1017/S0033291721000969

Received: 2 October 2020
Revised: 22 February 2021
Accepted: 4 March 2021
First published online: 21 April 2021

Key words:
substance use disorders; genetics; genome
wide association study; twin and family
studies; heritability; genetic epidemiology

Author for correspondence:
Emma C. Johnson,
E-mail: emma.c.johnson@wustl.edu

© The Author(s), 2021. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0),
which permits unrestricted re-use, distribution
and reproduction, provided the original article
is properly cited.

Genetics of substance use disorders: a review

Joseph D. Deak1,2 and Emma C. Johnson3

1Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; 2Department of Psychiatry, Veterans
Affairs Connecticut Healthcare Center, West Haven, CT, USA and 3Department of Psychiatry, Washington University
School of Medicine, St. Louis, MO, USA

Abstract

Substance use disorders (SUDs) are prevalent and result in an array of negative consequences.
They are influenced by genetic factors (h2 =∼50%). Recent years have brought substantial pro-
gress in our understanding of the genetic etiology of SUDs and related traits. The present
review covers the current state of the field for SUD genetics, including the epidemiology
and genetic epidemiology of SUDs, findings from the first-generation of SUD genome-wide
association studies (GWAS), cautions about translating GWAS findings to clinical settings,
and suggested prioritizations for the next wave of SUD genetics efforts. Recent advances in
SUD genetics have been facilitated by the assembly of large GWAS samples, and the develop-
ment of state-of-the-art methods modeling the aggregate effect of genome-wide variation.
These advances have confirmed that SUDs are highly polygenic with many variants across
the genome conferring risk, the vast majority of which are of small effect. Downstream ana-
lyses have enabled finer resolution of the genetic architecture of SUDs and revealed insights
into their genetic relationship with other psychiatric disorders. Recent efforts have also prior-
itized a closer examination of GWAS findings that have suggested non-uniform genetic influ-
ences across measures of substance use (e.g. consumption) and problematic use (e.g. SUD).
Additional highlights from recent SUD GWAS include the robust confirmation of loci in alco-
hol metabolizing genes (e.g. ADH1B and ALDH2) affecting alcohol-related traits, and loci
within the CHRNA5-CHRNA3-CHRNB4 gene cluster influencing nicotine-related traits.
Similar successes are expected for cannabis, opioid, and cocaine use disorders as sample
sizes approach those assembled for alcohol and nicotine.

Introduction

Substance use disorders (SUDs) are heritable psychiatric disorders [Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-5); American Psychiatric Association, 2013]
that are influenced by both environmental and genetic factors. Given the public health burden
of SUDs, a better understanding of SUD etiology is of wide-reaching importance. Genetic
studies have begun to elucidate the molecular mechanisms underlying SUDs and related traits,
including other psychiatric conditions with which SUDs frequently co-occur (Grant et al.,
2016; Kessler, 2004). While there are challenges inherent in studying complex, polygenic traits
such as SUDs, it is hoped that better understanding the genetic basis of risk for developing
SUDs will eventually help inform SUD prevention and treatment. In this review, we cover
SUD epidemiology, conclusions from twin and family studies of SUDs, and findings from
more recent molecular genetic studies1; finally, we summarize the current state of the field
and suggest future directions.

Definition of SUD

SUDs are defined by the DSM-5 (American Psychiatric Association, 2013) as the presence of at
least two of 11 criteria in a 12-month period, with disorder severity indexed by the number of
criteria endorsed (2–3 = mild; 4–5 = moderate; ⩾6 = severe). Broadly speaking, DSM-5 SUD
criteria correspond to the presence of substance-related problems, such as increased use,
unsuccessful attempts to stop or cut down, continued use despite negative physical, psycho-
logical, and social consequences, persistent craving, development of tolerance, and symptoms
of withdrawal. These criteria can be assessed in relation to multiple substances (e.g. alcohol,
nicotine, cannabis, opioid, cocaine).

Prior to DSM-5, DSM-IV distinguished substance abuse from dependence. Substance abuse
required the endorsement of at least one of four abuse criteria, while substance dependence
required at least three of seven dependence criteria. Research favored a unidimensional diag-
nosis over the separation of abuse and dependence (Hasin et al., 2013). With the revised
DSM-5 SUD criteria, the substance abuse ‘legal problems’ criterion was removed and a craving
criterion was added. Compton, Dawson, Goldstein, and Grant (2013) found that a threshold of
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⩾4 DSM-5 criteria (i.e. moderate severity) demonstrated optimal
correspondence with DSM-IV dependence for alcohol, cocaine,
and opioid use disorders.

The present review will focus on five SUDs that have demon-
strated substantial progress in molecular genetics in recent years:
alcohol use disorder (AUD), nicotine use disorder (NicUD), can-
nabis use disorder (CanUD), opioid use disorder (OUD), and
cocaine use disorder (CocUD). Many studies reviewed utilized
DSM-IV defined substance abuse and dependence.

Epidemiology

SUDs are highly prevalent behaviors associated with an array of
negative outcomes. Epidemiological estimates suggest that up to
29.1% and 27.9% of individuals will meet the criteria for AUD
and NicUD, respectively, in their lifetime, with lower lifetime
prevalence rates for CanUD (6.3%), OUD (2.1%), and CocUD
(2.4%) (Grant et al., 2016). All SUDs contribute to increased rates
of injuries, elevated risk of other disorders, and pose a large economic
cost worldwide (Degenhardt & Hall, 2012). For example, AUD and
NicUD, respectively, contribute to 3 million (5.3%) and 7 million
(12.3%) worldwide deaths annually, making both among the leading
causes of global mortality (Global Status Report on Alcohol and
Health, 2018; WHO Report on the Global Tobacco Epidemic,
2017). SUDs that occur at lower rates (e.g. OUD) also have severe
impact; the USA is currently combating an opioid use public health
crisis, with an estimated 47 600 individuals dying from opioid over-
doses in 2018 (Hedegaard, Miniño, & Warner, 2020).

As reviewed by Koob and Le Moal (2001), the cycle of addic-
tions (including SUDs) can be thought of as having three main
components: preoccupation-anticipation, binge-intoxication, and
withdrawal-negative affect. This model aligns with DSM criteria,
while allowing for the influence of genetic vulnerabilities and
environmental risk and protective factors at different stages.
New research also suggests this stage-based model is supported
by genomic data (Hatoum et al., 2021). Family history of SUDs,
peer substance use, lower socioeconomic status (SES), and psychi-
atric comorbidities are all associated with increased risk of devel-
oping a SUD (Stone, Becker, Huber, & Catalano, 2012). Some of
these are potential consequences of SUDs as well as risk factors
(e.g. socioeconomic hardship, poorer mental health prognosis),
and contribute to the negative outcomes associated with SUDs
(Kendler, Ohlsson, Karriker-Jaffe, Sundquist, & Sundquist, 2017).

Genetic epidemiology

Twin and family studies have demonstrated strong familial inher-
itance patterns for SUDs (Prom-Wormley, Ebejer, Dick, &
Bowers, 2017). Heritability (h2) estimates across SUDs vary, but
broadly suggest that genetic influences account for approximately
50% of the risk. Quantitative genetic studies have also suggested
that, in addition to the presence of substance-specific influences
for SUDs – with nicotine and opiates showing the most evidence
of substance-specific genetic factors (Kendler, Myers, & Prescott,
2007; Tsuang et al., 1998) – there are heritable factors that con-
tribute to SUDs more broadly (Kendler et al., 2007; Kendler,
Prescott, Myers, & Neale, 2003).

Alcohol use disorder

Heritability estimates for AUD range from ∼0.50 to 0.64 (Heath
et al., 1997; Kendler, 2001), with a recent meta-analysis reporting

h2 of ∼0.50 (Verhulst, Neale, & Kendler, 2015). Heritability esti-
mates for AUD diagnosis tend to be slightly higher than for other
alcohol-related traits, such as alcohol use initiation (h2 = 0.30–
0.40; Koopmans, Slutske, Van Baal, & Boomsma, 1999) and alco-
hol use frequency (h2 = 0.37–0.47; Viken, Kaprio, Koskenvuo, &
Rose, 1999), which is consistent with prior twin studies suggesting
that environmental influences may have a more pronounced
impact on initiation, while genetic factors are more influential
in progression to heavier use and substance-related problems
(Kendler, Karkowski, Neale, & Prescott, 2000).

Nicotine use disorder

Heritable factors contribute across the stages of cigarette smoking
and NicUD, with a range of heritability estimates for nicotine
dependence (ND) between ∼0.30 and 0.70 (Agrawal et al., 2012;
Sullivan & Kendler, 1999). Variability in reported h2 results for
NicUD could, at least in part, be due to the different ways in
which NicUD-related problems have been assessed [e.g.
Fagerström Tolerance Questionnaire (FTQ), Fagerström Test for
Nicotine Dependence (FTND)] in comparison to NicUD as
determined by DSM diagnostic criteria (Cohen, Myers, & Kelly,
2002; Payne, Smith, McCracken, McSherry, & Antony, 1994).

Cannabis use disorder

Heritability estimates from twin studies of CanUD range from
∼0.51 to 0.59, slightly higher than the estimates for cannabis
use/initiation (∼0.40–0.48; Agrawal & Lynskey, 2006; Verweij
et al., 2010). Twin and family studies have found shared genetic
and environmental influences across the stages of cannabis use
and abuse (Agrawal, Neale, Jacobson, Prescott, & Kendler, 2005;
Van den Bree, Johnson, Neale, & Pickens, 1998). Gillespie,
Neale, and Kendler (2009) explored this further, finding that
availability of cannabis explained nearly all of the shared environ-
mental variance in cannabis initiation and abuse, initiation
mediated the influence of availability on abuse, and a large pro-
portion of the genetic variance in abuse (62%) was shared with
initiation.

Opioid use disorder

Twin and family studies have estimated that ∼50% of the liability
to opioid dependence is due to additive genetic factors (Berrettini,
2017; Kendler, Jacobson, Prescott, & Neale, 2003; Tsuang, Bar,
Harley, & Lyons, 2001). Tsuang et al. (1998) estimated that 38%
of the variation in opioid addiction was due to genetic factors spe-
cific to opioids (i.e. not shared with other substances).

Cocaine use disorder

Estimates of the heritability of CocUD range from ∼0.40 to 0.80,
with evidence of a common genetic vulnerability with other
SUDs, especially cannabis, and little evidence of cocaine-specific
genetic influences (Kendler et al., 2007).

Genetic correlations amongst SUDs

Twin studies have also been used to assess the genetic correlations
(rg) amongst substance use and SUDs. Population-based twin esti-
mates of rg may be less prone to biases inherent in modern
genome-wide studies that rely on large biobanks with
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unrepresentative sample characteristics (e.g. the relatively healthy
and high SES makeup of the UK Biobank). Briefly, findings from
twin and family studies suggest common genetic factors shared
amongst substance use (rg = 0.14–0.31 for alcohol, tobacco, and
cannabis), with stronger estimates of shared genetic overlap
amongst measures of problem use (rg = 0.56–0.62; Young, Rhee,
Stallings, Corley, & Hewitt, 2006).

Genetics of SUDs

Genome-wide association studies (GWAS) of SUDs have rapidly
increased in both sample size and locus identification during
the past 5 years (reviewed in Hancock, Markunas, Bierut, &
Johnson, 2018; Johnson, Chang, & Agrawal, 2020a). Still, the
sample sizes for SUD GWAS have lagged behind those of lifetime
ever-use or consumption [e.g. drinks per week (DPW)], largely
due to the additional burden associated with administering and
undergoing a comprehensive SUD assessment in comparison to
more readily administered survey and screener questionnaires.
In addition, there are a variety of considerations in the recruit-
ment of individuals with SUDs (Fisher & Jaber, 2019), including
that these individuals may be more difficult to reach and/or less
willing to participate in research studies. Sample diversity has
also been limited; the majority of SUD GWAS to date are primar-
ily composed of individuals of European ancestry and
findings may not generalize to those of other ancestries.

One overarching question that has emerged from the first-
generation of well-powered SUD GWAS is whether measures of
non-problematic substance use have divergent genetic underpin-
nings from SUDs, and if so, to what extent. Another area of inter-
est has been dissecting the genetic relationships between SUDs,
other psychiatric disorders, and relevant complex traits; by lever-
aging large GWAS and advanced statistical genetics methods [e.g.
cross-trait genetic correlations, genomicSEM (Grotzinger et al.,
2019)], interesting patterns of pleiotropy have emerged
(Abdellaoui, Smit, Van Den Brink, Denys, & Verweij, 2021;
Hatoum et al., 2021; Jang et al., 2020). Notable SUD GWAS
loci are summarized in Table 1.

Alcohol use disorder

Up until the past 5 years, there was limited progress in the iden-
tification of replicable genetic loci associated with AUD, excepting
the well-established influence of genes encoding alcohol metabol-
ism enzymes [e.g. alcohol dehydrogenase 1B (ADH1B), aldehyde
dehydrogenase 2 (ALDH2); reviewed in Edenberg & Mcclintick,
2018]. Recent studies have demonstrated that, similar to other
complex traits, larger sample sizes have aided the successful detec-
tion of loci influencing AUD and alcohol-related outcomes
(reviewed in Deak, Miller, & Gizer, 2019; Sanchez-Roige,
Palmer, & Clarke, 2020). These have replicated genome-wide sig-
nificant (GWS) associations for loci in the ADH1B gene (e.g.
rs1229984 and rs2066702) with AUD (Gelernter et al., 2014a;
Kranzler et al., 2019; Walters et al., 2018; Zhou et al., 2020a, b)
and with various measures of alcohol use and consumption
(Clarke et al., 2017; Gelernter et al., 2019; Kranzler et al., 2019;
Liu et al., 2019; Sanchez-Roige et al., 2019a, b; Xu et al., 2015).
Similar success has been found for loci mapped to ALDH2 (i.e.
rs671) with robust associations found with alcohol dependence
and alcohol-related traits (i.e. maximum drinks, flushing
response) in East-Asian and Thai populations (Gelernter et al.,
2018; Li, Zhao, & Gelernter, 2012; Quillen et al., 2014), and for

alcohol drinking status in East-Asian populations (Jorgenson
et al., 2017).

Associations with other loci have begun to be consistently
identified as well. Recent GWAS have robustly identified associa-
tions between genetic variation in DRD2 (Dopaminergic Receptor
D2) and AUD (rs4936277, rs61902812; Kranzler et al., 2019) and
problematic alcohol use (PAU; rs138084129, rs6589386; Zhou
et al. 2020a, b), as well as gene-based associations with alcohol
problems, as indexed by Alcohol Use Disorders Identification
Test (AUDIT) scores (Sanchez-Roige et al., 2019a, b). Other
loci, including the GCKR gene (Glucokinase Regulator; lead
SNP: rs1260326), are associated with AUD and alcohol use pro-
blems (Kranzler et al., 2019; Sanchez-Roige et al., 2019a, b;
Zhou et al., 2020a, b), as well as consumption (Clarke et al.,
2017; Kranzler et al., 2019; Liu et al., 2019; Sanchez-Roige et al.,
2019a, b). A KLB (Klotho Beta) variant was also found to be asso-
ciated with PAU (rs13129401; Zhou et al., 2020a, b), and with
AUDIT measures of alcohol problems (AUDIT-P; Sanchez-
Roige et al., 2019a, b) and consumption (AUDIT-C; Kranzler
et al., 2019; Sanchez-Roige et al., 2019a, b). There also have
been associations between variants in the SLC39A8 gene and
AUD (rs13107325; Kranzler et al., 2019), AUDIT-P (rs13135092;
Sanchez-Roige et al., 2019a, b) and AUDIT-C [rs13107325
(Kranzler et al., 2019); rs13135092 (Sanchez-Roige et al., 2019a, b)].

Methodological advancements (e.g. LD score regression,
Bulik-Sullivan et al., 2015) modeling aggregate genetic risk across
the genome have furthered our understanding of the genetic
architecture of AUD. LD score regression approaches have gener-
ated SNP-heritability (h2SNP) estimates of ∼0.07–0.10 for measures
of PAU (Zhou et al., 2020a, b), and demonstrated positive genetic
correlations between PAU and smoking cigarettes regularly, life-
time cannabis use, major depression, and risk-taking (Table 1;
Zhou et al., 2020a, b). Additionally, varying patterns of genetic
correlations suggest only a partial genetic overlap between AUD
and alcohol consumption (Sanchez-Roige et al., 2020), likely
due at least in part to differences in levels of drinking and over-
arching pathology across samples. A recent study reported a
stronger correlation between DPW and PAU (rg = 0.77; Zhou
et al., 2020a, b), highlighting that high consumption is a necessary
component of AUD; however, similar to other measures of alco-
hol consumption (e.g. AUDIT-C), DPW has demonstrated
negligible genetic correlations (rg =−0.02 to 0.08) with other psy-
chiatric disorders [attention-deficit hyperactivity disorder
(ADHD), bipolar disorder, major depression, schizophrenia;
Jang et al., 2020], while PAU has shown stronger genetic overlap
with these disorders (rg = 0.32–0.39; Zhou et al., 2020a, b). These
most recent results from Jang et al. (2020) and Zhou et al. (2020a, b),
respectively, suggest that while DPW is a component of problem-
atic use, PAU seems to capture shared genetic risk with other
psychiatric disorders, while DPW does not.

Despite divergent patterns of genetic overlap suggesting non-
uniform genetic influences, it should be noted that genes in-
fluencing alcohol-metabolizing enzymes (e.g. ADH1B, ALDH2)
directly affect alcohol consumption, and in turn, play a role in
the risk of AUD development. The coding variants in these
genes provide a protective effect for AUD by producing aversive
effects when drinking alcohol, often resulting in lower levels of
consumption and AUD risk (Edenberg & Mcclintick, 2018).
However, it is likely that thousands of additional genetic loci
play a role beyond the genes encoding alcohol metabolizing
enzymes. Additional studies have examined subdomains of alco-
hol consumption, suggesting potential etiological differences
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Table 1. Summary of epidemiology, genetic epidemiology, and molecular genetic findings for substance use disorders

Alcohol use disorder (AUD) Nicotine use disorder (NicUD) Cannabis use disorder (CanUD) Opioid use disorder (OUD) Cocaine use disorder (CocUD)a

SUD epidemiology and
recent developments

◦ Lifetime prevalence
rate = 29.1%41

◦ Alcohol use and intoxication
contributes to three million
worldwide deaths annually122

◦ Lifetime prevalence
rate = 27.9%41

◦ Nicotine use and
related-disease contributes
to seven million worldwide
deaths annually123

◦ Lifetime prevalence
rate = 6.3%41

◦ Recent legalization in Western
countries is correlated with
increased use, including
among pregnant women; it
remains to be seen whether
this influences prevalence
rates of CUD15

◦ Lifetime prevalence
rate = 2.1%41

◦ Despite lower prevalence
relative to other SUDs,
OUD poses large disease
burden due to overdose
deaths53

◦ Lifetime prevalence rate = 2.4%41

◦ From 2012 to 2018, the rate of
overdose deaths related to cocaine
use increased from 1.4% to 4.5%53

SUD genetic epidemiology ◦ AUD heritability
(h2) = 0.50–0.6451,61,117

◦ SNP-heritability
(h2SNP) =∼0.07–0.10128

◦ NicUD heritability
(h2) =∼0.30–0.704,111

◦ SNP-heritability
(h2SNP) =∼0.0998

◦ CanUD heritability
(h2) = 0.40–0.80118

◦ SNP-heritability
(h2SNP) =∼0.07–0.1261

◦ OUD heritability
(h2) =∼0.508,67,114

◦ SNP-heritability
(h2SNP) =∼0.11127

◦ CocUD heritability (h2) = 0.40–0.8069

◦ SNP-heritability (h2SNP) =∼0.27–
0.3014,55

Notable GWAS risk-loci
to date
BOLD = loci have achieved
p≤ 5.0x10–9 with respective
SUD in at least one study

◦ ADH1Bb,c (rs1229984)
17,32,36,78,84,105,121,124,128

◦ ALDH2b,c (rs671)37,62,81,99

◦ DRD2b (e.g. rs4936277)78,105,128

◦ KLBb,c (e.g. rs13129401) 78,105,128

◦ GCKRb,c (rs1260326)17,78,84,105,128

◦ SLC39A8b,c (rs13107325)78,84,105

◦ CHRNA5b,c (rs16969968)
31,45,46,84,98

◦ CHRNA5-A3-B4b,c (multiple
loci)31,45,46,84,98

◦ CHRNA4b,c (rs151176846)
45,46,84,98

◦ DNMT3Bb (rs910083)46

◦ DBHb,c (rs13284520)84,98

◦ FOXP2b (rs7783012)61

◦ CHRNA2b (rs4732724)23,61

◦ EPHX2b (rs4732724)61

◦ CSMD1b (rs77378271)107

◦ PDE4Bb (gene-wise)61

◦ OPRM1b (rs1799971)127

◦ CNIH3b (rs10799590)92

◦ KCNG2b (rs62103177)33

◦ RGMAb (rs12442183)16

◦ BEND4c (gene-wise)96

◦ FAM53Bb (rs2629540)34

◦ HIST1H2BDb (gene-wise)14

◦ C1QL2b (gene-wise)55

◦ STK38b (gene-wise)55

◦ KCTD20b (gene-wise)55

Notable genetic
correlations (rg) with
psychiatric/substance
use traits

◦ Drinks per week
(rg = +0.77)

128

◦ Ever smoked regularly
(rg = +0.55)

128

◦ Lifetime cannabis use
(rg = +0.39)

128

◦ Major depression
(rg = +0.39)

128

◦ Risk-taking
(rg = +0.30)

128

◦ Alcohol dependence
(rg = +0.56)

98

◦ Cigarettes per day
(rg = +0.95)

98

◦ Major depression
(rg = +0.38)

98

◦ Schizophrenia
(rg = +0.16)

98

◦ Smoking initiation
(rg = +0.40)

98

◦ Alcohol use disorder
(rg = +0.55)

61

◦ Educational attainment
(rg =−0.39)61

◦ Lifetime cannabis use
(rg = +0.50)

61

◦ Schizophrenia
(rg = +0.31)

61

◦ Smoking initiation
(rg = +0.66)

61

◦ ADHD (rg = +0.36)
127

◦ Alcohol dependence
(rg = +0.73)

127

◦ Drinks per week
(rg = +0.38)

127

◦ Ever smoked regularly
(rg = +0.51)

127

◦ Major depression
(rg = +0.35)

127

◦ ADHD (rg = +0.50)
14

◦ Ever smoked regularly
(rg = +0.34)

14

◦ Major depression
(rg = +0.40)

14

◦ Risk-taking
(rg = +0.35)

14

◦ Schizophrenia
(rg = +0.20)

14

Notable CNV and exome/
genome sequencing efforts

◦ Genome-wide meta-analysis of CNV
associations in AUD cases112:

◦ identified nine CNV regions
suggestively associated with AUD
(e.g. 5q21.3 deletion)

◦ Exome-chip meta-analysis
fine mapped rare coding
variants for nicotine use
outcomes10:

◦ identified 124 significant
associations.

◦ 1.0–2.2% of phenotypic
variance explained by rare
variation

◦ Low-coverage WGS found two
gene regions significantly
associated with CanUD39:

◦ C1orf110 gene
(protein-coding region)

◦ MEF2B gene (regulatory
region)

◦ Three significantly
associated CNVs82:

◦ a 18q12.3 deletion
◦ a Xq28 deletion
◦ a 18q12.3 deletion

◦ Several targeted sequencing44 and
CNV studies (e.g. NSF gene)13 have
been conducted, although no strong
evidence has emerged. CocUD
whole-genome, whole-exome, and
CNV studies are needed

Notable efforts
incorporating
non-European populations

◦ Kranzler et al. (2019)78:
AUD cases: EUR = 34 658;
AFR = 17 267; LAT = 3449;
EAA = 164; SAA = 44

◦ Walters et al. (2018)121:
AUD cases: EUR = 11 569;
AFR = 3335

◦ Quach et al. (2020)98:
N = 46 213 EUR smokers;
N = 11 787 AFR smokers

◦ Hancock et al. (2018a)46:
N = 28 677 EUR smokers;
N = 9925 AFR smokers

◦ Johnson et al. (2020b)61:
CanUD cases: EUR = 17 068;
AFR = 3848

◦ Sherva et al. (2016)107: CanUD
cases: EUR = 2884;
AFR = 1572

◦ Zhou et al. (2020a, b)127:
OUD: EUR cases = 8259,
EUR opioid-exposed
controls = 71 200; AFR
cases = 4032, AFR
opioid-exposed
controls = 26 029

◦ Huggett and Stallings (2020a, b)55:
CocUD: EUR cases = 3370;
AFR cases = 2349

◦ Gelernter et al. (2014a)34: provided
CocUD case–control data for
Huggett and Stallings (2020a, b)
analyses

Abbreviations for notable samples incorporating non-European populations: European Ancestry (EUR), African Ancestry (AFR), Latino or Hispanic Ancestry (LAT); East Asian American (EAA); South Asian American (SAA).
Note: numeric superscripts correspond to numbered in-text citations (See Supplementary Material).
aAt the time of review, CocUD sample sizes remain substantially smaller than other SUDs; thus, current CocUD findings and downstream analyses (e.g. h2SNP, rg) should be interpreted with caution and require replication in well-powered samples.
Efforts to extend CocUD sample sizes are underway.
bDenotes findings with SUD or problematic use.
cDenotes findings with substance consumption measure.
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between alcohol consumption frequency and alcohol consump-
tion quantity (Mallard et al., 2020; Marees et al., 2020b).
Specifically, alcohol consumption quantity was found to be
more genetically similar to AUD and psychopathology, while fre-
quency demonstrated negative relationships with AUD and other
psychiatric outcomes, and was found to be influenced by mea-
sures of SES (Mallard et al., 2020; Marees et al., 2020b). Thus, evi-
dence of genetic dissimilarity between consumption and AUD
may be being driven by frequency of drinking, which in turn, is
being influenced by indices of SES. Further studies probing this
relationship will be needed to fully disentangle the nuance of
the shared and unique genetic etiology across the spectrum of
alcohol consumption levels (e.g. normative consumption, binge
drinking) and AUD.

The largest genome-wide meta-analysis of copy number vari-
ation (CNV) and AUD to date found nine CNV regions (six dele-
tions and three duplications) that were suggestively associated
with AUD status in a sample of 3243 cases (Sulovari, Liu, Zhu,
& Li, 2018). The most significant association (albeit modest: p
= 3.8 × 10−4) was a deletion located on 5q21.3, a region that has
previously been reported to be associated in a linkage study exam-
ining alcohol craving in a Native American population (Ehlers &
Wilhelmsen, 2005).

Nicotine use disorder

Large-scale GWAS of ND have consistently reported GWS asso-
ciations with cholinergic nicotinic receptor genes. For example,
one GWAS reported GWS associations between ND, as assessed
by FTND scores, and the well-replicated signal found for genetic
variation within the CHRNA5-CHRNA3-CHRNB4 locus on
chromosome 15 (Table 1; Hancock et al., 2018b). Hancock
et al. (2018b) also reported a novel association with an intronic
variant (rs910083) in the DNA methyltransferase gene
(DNMT3B) located on chromosome 20 that was further found
to be associated with heavy smoking in the UK Biobank and
implicated in the development of lung cancer. A more recently
expanded GWAS of ND from the Nicotine Dependence
GenOmics Consortium (iNDiGO; Quach et al., 2020) provided
further evidence for a top variant association in CHRNA5 on
chromosome 15 (rs16969968), and a significantly associated vari-
ant (rs151176846) in CHRNA4 on chromosome 20 (CHRNA4)
that was associated with ND in an earlier GWAS (Hancock
et al., 2015). The iNDiGO Consortium estimated an h2SNP of
∼0.09 for ND (Quach et al., 2020).

There have also been large-scale efforts examining genetic contri-
butions for other nicotine-related phenotypes (Furberg et al., 2010;
Liu et al., 2019). For example, GSCAN (GWAS & Sequencing
Consortium of Alcohol and Nicotine use; Liu et al., 2019) reported
467GWS associations across a variety of smoking-related phenotypes
[initiation of regular smoking, quantity of cigarettes per day (CPD),
smoking cessation, and age of regular smoking initiation]. In
GSCAN, the top single variant association reported for smoking out-
comes was between the CPD phenotype and rs16969968 located
within CHRNA5 (Liu et al., 2019), similar to findings reported in
other GWAS of smoking behaviors (Furberg et al., 2010) and ND
(Hancock et al., 2015, 2018a; Quach et al., 2020).

Varying patterns of genetic relationships between NicUD and
other smoking phenotypes have been observed. For example,
smoking initiation was found to be modestly genetically corre-
lated with ND (rg = 0.40), while CPD and ND were highly genet-
ically correlated (rg = 0.95); this suggests that smoking initiation is

less genetically similar to problematic nicotine use relative to CPD
(Quach et al., 2020; Table 1). Genetic overlap between CPD (Liu
et al., 2019) and ND (Quach et al., 2020) may be being driven, in
part, by the fact that iNDiGO ND was assessed using FTND
scores, a measure generally accepted as a reasonable assessment
for ND but that also includes assessment for the number of cigar-
ettes smoked per day.

There have been efforts examining rare variant associations
with nicotine use. A recent exome-chip meta-analysis of 16 stud-
ies fine-mapped 124 GWS rare coding variant associations across
nicotine use outcomes [i.e. CPD, pack-years (i.e. quantity of cig-
arette packs smoked in lifetime), smoking initiation, age of smok-
ing initiation; Brazel et al., 2019]. Rare variation accounted for
1.0–2.2% of phenotypic variance across these traits (Brazel
et al., 2019).

Cannabis use disorder

There have been fewer replicable genome-wide discoveries for
CanUD, due to small sample sizes. To date, the largest GWAS
of CanUD (Ncases = 20 916), which combined data from
iPSYCH, deCODE Genetics, and the PGC (see Box 1), estimated
the SNP-heritability (h2SNP) to be ∼0.12 (using an estimated
prevalence of 8.5%) and identified two GWS loci: one located
on chromosome 7, near the FOXP2 gene (lead SNP:
rs7783012), and the second located on chromosome 8, with
brain eQTLs for CHRNA2 and EPHX2 (lead SNP: rs4732724;
Table 1; Johnson et al., 2020b). FOXP2 plays a role in synaptic
plasticity and has been implicated in speech and language devel-
opment, and the lead risk variant at this locus, rs7783012, has
been previously associated with externalizing behaviors. The
CHRNA2 gene, which encodes the α-2 subunit of the neuronal
nicotinic acetylcholine receptor, has been previously implicated
in GWAS of CanUD (Demontis et al., 2019) as well as tobacco
smoking and schizophrenia, both of which are phenotypically
and genetically correlated with CanUD (Table 1). The EPHX2
gene may be involved in the metabolism of cannabinoids, making
this an attractive candidate gene for CanUD, but it is currently
unclear whether EPHX2 or CHRNA2 may be mechanistically
responsible for driving the association between this locus and
CanUD. Another notable finding is a GWS variant
(rs77378271) in the CSMD1 gene, which has previously been
linked to schizophrenia; Sherva et al. identified this variant in
their European-ancestries GWAS of DSM-IV cannabis depend-
ence (N = 8754) as well as the trans-ancestral meta-analysis
(N = 14 754) that included individuals of both European- and
African-ancestries (Sherva et al., 2016). However, this gene (as
is the case for most CanUD risk variants proposed so far) has
not been replicated in other GWAS of CanUD.

Mirroring findings from twin and family studies, GWAS of
CanUD have identified significant genetic overlap between
CanUD and other SUDs and measures of substance use.
CanUD showed significant positive genetic correlations with
smoking initiation, ND, CPD, DPW, and AUD (rg ranging
from 0.31 to 0.66; Table 1; Johnson et al., 2020b).

Similar to findings for alcohol, recent GWAS of CanUD have
found divergence between cannabis use and CanUD, both at the
level of individual risk loci as well as genetic relationships with
other traits and disorders. Despite a significant correlation of
0.50 between CanUD and lifetime cannabis use, 12 of 22 traits
tested had significantly different genetic correlations with
CanUD v. cannabis use (Johnson et al., 2020b). For example,
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lifetime cannabis ever-use shows positive genetic correlations with
education and age at first birth, and a negative correlation with
BMI (+, +, −; Pasman et al., 2018), while CanUD shows genetic
correlations in the opposite direction of effect for these three traits
(−, −, +; Johnson et al., 2020b). This suggests that, while neces-
sary for the development of CanUD, cannabis initiation is at
least partly genetically distinct from CanUD.

One recent study used low-pass whole-genome sequencing
(WGS) to study CanUD in two samples, one Native American tri-
bal community and one family-based sample of primarily
European ancestry (Gizer, Bizon, Gilder, Ehlers, & Wilhelmsen,
2018). Two significant regions were identified in a meta-analysis
of the two samples: one protein-coding region, C1orf110, and
one regulatory region in the MEF2B gene.

Opioid use disorder

To date, GWAS of OUD have identified significant loci near the
KCNG2, KCNC1, APBB2, CNIH3, RGMA, and OPRM1 genes

(Table 1; Cheng et al., 2018; Gelernter et al., 2014b; Nelson
et al., 2016; Polimanti et al., 2020). The largest OUD GWAS to
date, conducted in a total of 114 759 individuals (15 756 cases),
observed a significant functional coding variant (rs1799971) in
the OPRM1 gene (Zhou et al., 2020a, b). Other substance use
traits (e.g. ever-smoked, alcohol dependence) and psychiatric dis-
orders (e.g. ADHD, schizophrenia) were positively correlated with
OUD (Table 1). Zhou et al. (2020a, b) estimated the h2SNP of OUD
to be 0.11 (S.E. = 0.02).

While there has been less work examining potential differences
between the genetic etiology of OUD compared to lifetime ever-
use of opioids or non-dependent opioid use, a study from the
PGC observed some genetic differences when comparing opioid-
dependent individuals, opioid-exposed controls, and opioid-unex-
posed controls (Polimanti et al., 2020). There were significant
relationships between a risk-taking polygenic score (PGS) and
the contrast of opioid dependence and unexposed controls, as
well as opioid-exposed controls v. unexposed controls. A PGS
for neuroticism was associated with opioid dependence

Box 1.

Glossary of relevant terms:

• Copy number variation (CNV): A type of structural genetic variation impacting a region of DNA, resulting in the deletion or duplication of genetic
information.

• Endophenotypes: Any measurable component between genotype and a trait of interest. Useful for examining subfacets and/or transdiagnostic features
of SUDs.

• Epigenome-wide Association Study (EWAS): Study examining associations between a phenotype and epigenetic markers (e.g. levels of DNA
methylation).

• Expression quantitative trait loci (eQTL): Genetic loci influencing expression levels of mRNA (messenger RNA) in disease-relevant tissues (e.g. brain
eQTLs).

• Genome-wide Association Study (GWAS): A genetic study testing associations between a phenotype and genetic variants (measured or imputed) across
the genome.

• Genotype-Tissue Expression (GTEx): Publicly-available database allowing for the query of a specific genetic variant’s involvement in tissue-specific gene
expression.

• Heritability (h2): The proportion of variation in a phenotype due to genetic factors; traditionally measured using pedigree information (i.e. twin- or
family-based studies), but can be assessed using molecular genetic approaches. This is a population-level measure that can vary across time and
environments.

• LD-score regression: Method that requires only GWAS summary statistics to estimate SNP-based heritability and genetic correlations between traits of
interest.

• Linkage disequilibrium (LD): The phenomenon wherein nearby genetic variants are inherited non-independently of each other; if two variants are in
linkage equilibrium, they are inherited independently of each other (i.e. not correlated or linked).

• Multi-omics (‘omics): The study of multiple levels of biological information (e.g. epigenome, transcriptome) in a systems-based approach.
• Pharmacogenomics: Studies examining how an individual’s genetic variation impacts their pharmacological response to medications.
• Polygenic score (PGS): An aggregate score of an individual’s genetic predisposition for a certain trait, calculated using a ‘discovery’ GWAS of that
phenotype.

• Rare variation: Genetic variation occurring at lower frequencies in a population, generally defined as having a minor allele frequency (MAF) <1%.
• Single nucleotide polymorphism (SNP): A single base-pair change in the DNA that is relatively common (MAF >1–5%) in the population.
• SNP-based heritability (h2SNP): The proportion of variation in a phenotype (i.e. heritability) that is accounted for by measured molecular genetic
information (i.e. GWAS data). Estimate of the additive genetic variance that can be explained by common SNPs.

Glossary of relevant large-scale genetic efforts for substance use and SUDs:

• deCODE: A large, population-based series of studies based out of Reykjavik, Iceland examining genetic influences on complex traits (e.g. SUDs).
• FinnGen: A national research initiative leveraging genetic and digital information from Finland national registries to inform biomedicine and personalized
healthcare.

• GSCAN (GWAS & Sequencing Consortium of Alcohol and Nicotine use): An international genetic consortium aimed toward conducting large-scale
meta-analyses of GWAS, low-frequency non-synonymous variation, and whole-genome sequencing studies for alcohol and nicotine use traits.

• iNDiGO (Nicotine Dependence GenOmics Consortium): A large-scale genomic consortium examining genetic influences of nicotine dependence and
nicotine-related traits across diverse ancestry groups.

• iPSYCH (Initiative for Integrative Psychiatric Research): A large national project founded in Denmark in 2012 funded by the Lundbeck Foundation
examining genetic and environmental influences for mental health disorders (e.g. SUDs) in over 130 000 Danish individuals.

• MVP (Million Veteran Program): One of the world’s largest biobanks including genetic, environmental, and medical information from United States
Military Veterans.

• PGC (Psychiatric Genomics Consortium): A large collaborative effort spanning 800+ investigators, 36 countries, and >400 000 subjects aimed toward
elucidating the genetic contributions across psychiatric disorders. The PGC consists of 14 working groups, including the Substance Use Disorders
(PGC-SUD) Working Group.

• UK Biobank: A large-scale biomedical database and research resource consisting of genetic and health information from greater than 500 000 UK
participants.
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(contrasted with both unexposed and exposed controls), but not
with the unexposed v. exposed controls contrast, consistent with
the authors’ hypothesis that neuroticism is associated with nega-
tive affect being related to dependence but not simply exposure
(Polimanti et al., 2020). These results suggest that the definition
of controls in SUD GWAS needs to be carefully considered.

The largest CNV study of OUD to date identified three com-
mon CNVs (two deletions and one duplication) significantly
associated with OUD, and several rare CNVs with large effect
sizes that reached suggestive levels of evidence (Li et al., 2015).
Interestingly, the three significant CNVs (a 18q12.3 deletion, a
Xq28 deletion, and a 1q21.3 duplication) were associated with
OUD in both the African-ancestries sample (Ncases = 547) and a
combined, trans-ancestral meta-analysis with the European-
ancestries samples (Ntotal−cases = 1601).

Cocaine use disorder

CocUD GWAS sample sizes have lagged behind those of licit sub-
stances. Thus far, there has been one GWS variant identified:
rs2629540, located in the FAM53B gene (Gelernter et al.,
2014a). Huggett and Stallings (2020a, b) applied a gene-wise
test to these data and identified four significant genes: C1QL2,
STK38, and KCTD20 in European Americans (N = 3176), and
NDUFB9 in African Americans (N = 3370). A meta-analysis of
CocUD (all European-ancestry; Ncases = 2085, Ncontrols = 4293)
identified an association with HIST1H2BD in a gene-based test
(Cabana-Domínguez, Shivalikanjli, Fernàndez-Castillo, &
Cormand, 2019). They also found positive genetic correlations
with schizophrenia, ADHD, major depression, and risk-taking,
in line with phenotypic correlations (despite the number of
cases being less than recommended for LD score regression;
Table 1). Another recent study used cluster analyses to identify
CocUD subtypes with reduced phenotypic heterogeneity, one
potential barrier to identifying significant genetic variants for psy-
chiatric disorders (Sun, Kranzler, Gelernter, & Bi, 2020). Still, few
genetic findings have replicated amongst GWAS of CocUD; we
expect the number of robust, replicable findings to increase with
larger sample sizes (similar to other SUDs).

The estimated h2SNP of CocUD is larger than for other SUDs;
Huggett and Stallings (2020a) estimated h2SNP = 0.28 (S.E. = 0.14)
in their genome-wide analysis of CocUD, while Cabana-Dominguez
estimated h2SNP = 0.27–0.30 (S.E. = 0.03–0.06), depending on the esti-
mation method (LDSC v. GCTA-GREML; Cabana-Domínguez
et al., 2019). In contrast, the h2SNP for the other SUDs discussed
here range from 0.07 to 0.12, depending on the phenotype and
prevalence (Table 1). The estimations for CocUD heritability
may be inaccurate due to under-powered sample sizes – it will
be interesting to see if this pattern of larger h2SNP is borne out
in future large-scale GWAS of CocUD.

Clinical and therapeutic implications

Recent efforts have been made to bring molecular genetic findings
from large-scale GWAS of SUDs to translational relevance, espe-
cially in terms of genetic prediction of SUDs. However, the com-
plexity of SUDs makes genetic prediction efforts difficult and
potentially fraught – they are polygenic, heterogeneous, and
multifactorial disorders heavily influenced by environmental fac-
tors (including access).

PGS have shown promise for the stratification of individuals at
risk by their polygenic ‘load’ for some health conditions; for

example, one successful non-SUD application of PGS was
reported for coronary disease, where individuals in the highest
quintile of genetic risk had an approximately 90% increase in rela-
tive risk of experiencing an adverse coronary event compared to
individuals in the lowest quintile of genetic risk (Khera et al.,
2016). Current SUD PGS explain a relatively small proportion
of variance (generally 1–5%) in SUD-related outcomes, especially
relative to other known risk factors (SES, SUD family history,
comorbid psychiatric disorders; Barr et al., 2020). This limits
their current clinical utility. Furthermore, the best-powered
GWAS of SUDs to date have been conducted primarily in samples
of European ancestries, limiting their predictive utility to
individuals who are also of European ancestry (Martin, Daly,
Robinson, Hyman, & Neale, 2019). Finally, PGS can be difficult
to interpret in layperson’s terms (i.e. being in the 95th percentile
of polygenic risk for alcohol dependence does not mean you have
a 95% chance of developing the disorder). Further research is
needed to fully understand the potential benefits, and possible
harms, of incorporating genetic information (e.g. PGS) into
SUD treatment planning (Driver, Kuo, & Dick, 2020; Lebowitz,
2019; Lebowitz & Ahn, 2018).

Other efforts to utilize molecular genetics for precision medi-
cine purposes have included pharmacogenetic studies, i.e. identi-
fying genetic variability in pharmaceutical treatment response and
efficacy. Some GWAS have, post-hoc, identified gene targets for
treatment. For example, several genes identified in GWAS of
smoking behaviors, including CHRNA7, CHRNA5, CHRNA4,
and CHRNB2, have been found to moderate the effect of
Varenicline, a smoking cessation treatment that operates as a par-
tial agonist at the nicotine acetylcholine a2b4 receptor (King et al.,
2012). However, case-only GWAS comparing treatment respon-
ders to non-responders are more likely to uncover pharmacoge-
netic variability than GWAS of the disorder itself. To date,
many pharmacogenomic studies of SUDs have been candidate
gene-focused (e.g. dopaminergic pathway genes, Patriquin,
Bauer, Soares, Graham, & Nielsen, 2015) and have had limited
success. However, a recent opioid dosing GWAS identified a vari-
ant close to the OPRM1 locus affecting methadone dosing
requirements in African-ancestry individuals (Smith et al.,
2017). Another recent GWAS of AUD treatment outcomes iden-
tified multiple loci associated with medication-specific outcomes
and provided evidence of polygenic contributions to AUD treat-
ment response (Biernacka et al., 2021). The increasing availability
of large, longitudinal datasets with access to electronic health
records and genotype data may enable more systematic, unbiased
investigations into the interactions between genetic variation and
medication efficacy (Hartwell & Kranzler, 2019).

Drug repurposing, or identifying a new indication for an exist-
ing therapeutic, has emerged as another promising way to bring
GWAS findings to therapeutic relevance (So et al., 2017).
Bupropion is a classic example of a drug repurposed to some suc-
cess: while it was originally used as a treatment for depression,
clinicians discovered that it aided in smoking cessation (Fava,
2018). In a proof of principle study, So et al. (2017) suggested sev-
eral repositioning candidates for psychiatric disorders by connect-
ing imputed transcriptomic profiles from GWAS data to
drug-induced gene expression profiles, but this has not yet been
done for SUDs. While there have not been any success stories
to date for repurposed drugs for SUDs discovered using GWAS
data, this is an intriguing path forward, particularly for SUDs,
where there are still typically few effective pharmaceutical treat-
ments available.
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At this time, expectations for the use of complex genetics in
clinical and therapeutic settings should be tempered; genome-
wide data of SUDs are not informative enough to improve
upon factors already assessed in the clinic for diagnostic and
risk prediction purposes, but there remains the potential for phar-
macogenomic and drug repositioning efforts to make an impact
on the treatment of SUDs in the future.

Conclusions and future priorities

Molecular genetic studies of SUDs have undergone massive
advances during the past 5 years. Increased GWAS sample sizes
and the incorporation of additional ‘omics data’ have contributed
to a better understanding of the molecular mechanisms and bio-
logical pathways underlying SUDs (Kapoor et al., 2019). In our
conclusions, we highlight possible next steps and suggested prior-
ities for the field of SUD genetics:

Increased diversity of SUD GWAS

The majority of GWAS of SUDs to date are composed primarily
of individuals of European-ancestry, and thus, the generalizability
of these findings to other ancestry groups is uncertain. This gap
has the potential to further exacerbate health disparities for indi-
viduals of diverse ancestry. This raises the need for efforts to study
SUDs in transancestral populations, such as the All of Us
Research Program. As shown in Table 1, GWAS of SUDs have
included relatively more diverse samples compared to other psy-
chiatric disorders, but the numbers of non-European samples are
still well below the European-ancestry sample sizes.

Linkage-disequilibrium patterns differ across populations,
which is one reason that discovery GWAS of European ancestry
may not lead to maximally-predictive PGS in non-European
ancestry target samples (Martin et al., 2019). It is thus imperative,
in the interest of scientific discovery and ensuring that everyone
benefits equally from those discoveries, that future SUD GWAS
focus on increasing the number of samples of non-European
ancestry.

Integration of functional genomic data and cross-species
translational models

Recent studies have begun to leverage multi-omics data to identify
genes and biological processes associated with SUDs. For
example, Kapoor et al. (2019) performed differential gene expres-
sion analysis on prefrontal cortex tissue from 65 AUD cases and
73 controls, identifying relevant genes and molecular pathways
including upregulation of pathways related to immune responses.
Markunas et al. (2020) conducted the first epigenome-wide asso-
ciation study (EWAS) of smoking in human post-mortem brain
tissue (specifically the nucleus accumbens); they identified seven
DNA methylation (DNAm) biomarkers, three of which were
located near genes previously implicated as blood-based DNAm
biomarkers of smoking and four of which were novel (ABLIM3,
APCDD1L, MTMR6, and CTCF). Another recent study (Marees
et al., 2020a) used GTEx (Genotype-Tissue Expression; Ardlie
et al., 2015) data to assess the role of eQTLs in six substance
use traits; using this approach, they identified novel loci not iden-
tified in the original GWAS for five of the traits. Despite demon-
strating progress, these studies also highlight current limitations
for SUDs, especially the lack of SUD-specific and cell-type-
specific multi-omics data sources. For example, while GTEx

(Ardlie et al., 2015) is a valuable resource for general tissue-
specific gene expression patterns, the data provide no information
about substance-induced transcriptomic changes. There is a need
for more SUD-specific tissue samples. Evidence from Kapoor
et al. (2019) and the Markunas et al. (2020) EWAS further high-
light the importance of examining both brain and other tissues
(e.g. blood, liver) in substance-specific studies: drugs can have
peripheral effects, but brain-specific biomarkers may provide greater
insight into the neurobiological effects of substance exposure.

Another potential direction is the integration of human genetic
data with findings from animal models of addiction endopheno-
types (Reynolds et al., 2020). The substance use genetics literature
is rich with rodent models of addictive behaviors (e.g. positive
reinforcement via self-administration paradigms, withdrawal
avoidance and drug-seeking). Despite the challenges that must
be overcome to integrate human and animal genetic data (e.g.
handling non-orthologous genes), rodent endophenotypes may
provide insight into the neurobiological mechanisms linking
genes to SUD risk. Another issue is that there is no certain way
to cross-map animal and human phenotypes, limiting the oppor-
tunities for translation. However, as a recent proof of principle,
one study (Huggett, Bubier, Chesler, & Palmer, 2020c) found
modest but significant overlap in differentially expressed genes
and gene networks when comparing human CocUD case–control
data with mice in a cocaine v. saline solution self-administration
paradigm, suggesting commonalities in the reward circuitry of
human CocUD and self-administration paradigms in rodents.

Refinement of phenotypes and ascertainment strategies

A key priority for future genetics studies of SUDs is further exam-
ining the implications of broad v. deep phenotyping approaches
and different sample-ascertainment strategies. Prior studies
(reviewed in Sanchez-Roige et al., 2020; Sanchez-Roige &
Palmer, 2020) suggest that consumption measures (e.g. alcohol
intake frequency, cannabis initiation) have divergent patterns of
genetic correlation relative to their respective SUDs. However,
contrasts of substance use and use disorder are complicated by
several issues, including the recall period: while most measures
of SUDs are lifetime diagnoses, measures of substance use are
often assessed within a recent timeframe (e.g. past year).
Additionally, large, unrepresentative samples (e.g. the UK
Biobank is skewed toward older individuals with high SES, the
Million Veteran Program is skewed heavily toward males) can
lead to collider bias (Munafò, Tilling, Taylor, Evans, & Davey
Smith, 2018), biases can arise from misreporting and longitudinal
changes (Xue et al., 2021), and there is a complicated interplay
between genetic and sociological factors in the context of sub-
stance use and the development of SUDs (see larger discussion
in previous AUD genetics section; Marees et al., 2020b). These
issues complicate efforts to examine distinctions between the gen-
etics of substance use and SUDs. As mentioned earlier for alcohol,
there are instances in which the genetics of ‘use’ are intimately
linked with the genetics of use disorder (e.g. ADH1B and
ALDH2 variants exerting their effects via decreased likelihood
of alcohol consumption). Furthermore, there is evidence that
both substance use (e.g. lifetime cannabis use, ever smoked cigar-
ettes regularly) and SUDs (e.g. CanUD) are strongly related to
general externalizing behaviors (Linnér et al., 2020). Still, a recent
preprint identified a common genetic factor that underlies SUDs
but is not shared with measures of substance use, nor other psychi-
atric disorders (Hatoum et al., 2021), suggesting that SUDs are not
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simply the combination of substance exposure and psychopath-
ology. Collectively, these findings suggest the importance of asses-
sing a variety of measures of substance use and SUDs (via clinical
diagnoses or shorter questionnaires) from multiple types of samples
to further elucidate the genetic architecture of consumption mea-
sures compared to problematic use across SUDs.

Another promising direction forward in terms of ascertain-
ment strategy is the development of population-based biobanks
with embedded family designs (e.g. FinnGen; https://www.
finngen.fi/en). Even in the absence of molecular genetic data,
national registries have previously been used in innovative ways
to examine the influence of genes and family environment on
SUD outcomes in offspring (e.g. the triparental design explored
in Kendler, Ohlsson, Sundquist, & Sundquist, 2015). One benefit
of genotyped population-based datasets with embedded families
is that researchers can apply new genetic methods that leverage
relatedness patterns to better understand the ways in which
parents may influence children’s substance use trajectories both
‘directly’ (passing on SUD risk alleles) and ‘indirectly’ (through
family environment) (Kong et al., 2018).

Finally, there are multiple substance classes not covered in this
review, including hallucinogens, ‘club drugs’, and inhalants. These
substance classes have been included in a handful of twin and family
studies examining drug use, but no well-powered GWAS exist. Future
GWAS efforts will be informative for how the genetics of these add-
itional SUDs overlap with or diverge from well-studied SUDs.

Conclusion

Recent years have brought substantial progress in advancing our
understanding of the genetic architecture of SUDs and other sub-
stance use behaviors (e.g. consumption quantity), and relating
these findings to etiologically-relevant processes for the develop-
ment of SUDs. The field will continue to see significant advances
in genetic discovery as larger sample sizes of individuals of diverse
ancestry begin to become realized. It is the hope that these con-
tinued advancements will have clinically meaningful implications
for SUD prevention and treatment in the future.

Note
1 Please see Box 1 for glossary of key terms used in the present review.
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be found at https://doi.org/10.1017/S0033291721000969.
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