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Abstract
BDNF and its specialized receptor TrkB are expressed in the developing lateral line system

of zebrafish, but their role in this organ is unknown. To tackle this problem in vivo, we used

transgenic animals expressing fluorescent markers in different cell types of the lateral line

and combined a BDNF gain-of-function approach by BDNFmRNA overexpression and by

soaking embryos in a solution of BDNF, with a loss-of-function approach by injecting the

antisence ntrk2b-morpholino and treating embryos with the specific Trk inhibitor K252a.

Subsequent analysis demonstrated that the BDNF-TrkB axis regulates migration of the lat-

eral line primordium. In particular, BDNF-TrkB influences the expression level of compo-

nents of chemokine signaling including Cxcr4b, and the generation of progenitors of

mechanoreceptors, at the level of expression of Atoh1a-Atp2b1a.

Introduction
Neurotrophins are involved in regulating the development of the nervous system. Two neuro-
trophins, brain-derived neurotrophic factor (BDNF) and NT-3, and their high-affinity tyro-
sine-kinase receptors (TrkB and TrkC), have been implicated in development of the auditory
system in mammals [1–5]. In zebrafish this system includes, in addition to the inner ear,
the mechanosensory lateral line. Currently, there are no data regarding expression of NT-3
(ntf3)—TrkC (ntrk3a and ntrk3b) during development of the auditory system in zebrafish. In
contrast, the available evidence indicates that BDNF and its specialized receptor TrkB play a
role during development of the lateral line system [6–8]. However, this needs to be shown
experimentally.

In the zebrafish, BDNF is initially present as a maternal transcript and later on expressed
more specifically, including in the developing lateral line system, where the transcripts are lo-
calized initially to the primordium and later on to the neuromast [6,9]. Being involved in many
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developmental processes, BDNF acts through several receptors, including its main receptor
TrkB [10–12]. The expression of BDNF and TrkB overlaps in the neuromast [8]. BDNF loss-
of-function (LOF) in developing zebrafish embryos leads to pathology in many organs and tis-
sues [7], which makes it difficult to isolate its role in the developing lateral line. Besides, BDNF
is synthesized and often secreted in the form of a precursor that may have alternative activities
(reviewed in [13–14]). Hence, to clarify the role of BDNF in lateral line development, its two
forms, mature BDNF and its precursor (Pro-BDNF) should be analyzed.

The lateral line is formed by several cycles of collective migration of specialized groups of
progenitors of the otic placode. The posterior part of the otic placode forms the posterior lateral
line primordium (PLLP) that moves from an area adjacent to the otic vesicle towards the tail.
The anterior part of the otic placode contributes progenitors to the anterior lateral line primor-
dia that will bring in mechanoreceptor progenitors to the anterior lateral line forming in the
head. As the PLLP migrates it deposits up to seven clusters of cells (proneuromasts) that devel-
op into specialized organs—neuromasts—in stereotypical positions, with the last three neuro-
masts forming in the tail area (reviewed in [15–16]). The migration of the PLLP depends upon
Sdf1 chemokine signaling mediated by a pair of receptors, Cxcr4b-Cxcr7. Sdf1 is expressed at
the horizontal myoseptum, whereas Cxcr4b and Cxcr7 are expressed in the primordium, and a
deficiency of these genes affects the direction of PLLP migration and deposition of proneuro-
masts [17–19]. The PLLP maintains contact with the lateral line dendrites (afferents) derived
from the sensory ganglia in the vicinity of the otic vesicle [20]. Each neuromast consists of sev-
eral cell lineages: support cells (i.e. progenitors), mechanoreceptors, and mantle cells. The for-
mation of mechanoreceptors requires the activity of genes in a subset of progenitors: atoh1a
encodes a basic helix-loop-helix (bHLH) domain-containing transcription factor, which acts to
generate committed progenitors of mechanoreceptors [21]. Atoh1a acts upstream of Atp2b1a,
a calcium-transporting ATPase, which activity is required for a transient progenitor to divide,
giving rise to a pair of mechanoreceptors [22–23]. Recent large-scale transgenic screens have
generated a number of enhancer-trap transgenic zebrafish lines that express fluorescent pro-
teins in specific cell types of the lateral line. Taken together, these transgenes label all cell line-
ages of this organ [23–26].

To address the developmental role of the BDNF-TrkB axis in the lateral line in vivo, we
combined a BDNF gain-of-function approach (GOF) at the level of mRNA and protein with a
LOF approach targeting one of the BDNF receptors, TrkB, in transgenics expressing fluores-
cent markers in different cell types of the lateral line. Both approaches led to developmental de-
fects of the lateral line. LOF caused defective primordium migration and GOF affected
differentiation of sensory cells. Both approaches caused changes in expression of several key
genes involved in the development of mechanoreceptors (cxcr4b, sdf1a, atoh1a and atp2b1a).
Our analysis demonstrated that the BDNF-TrkB axis regulates migration of the lateral line pri-
mordium at the level of expression of components of chemokine signaling, such as Cxcr4b,
and the generation of mechanoreceptors from committed progenitors at the level of Atoh1a-
Atp2b1a.

Materials and Methods

Zebrafish care and maintenance
Wild type (AB) and several transgenic (SqET4, SqET20 [23], SqET33-mi23A, SqET33-mi60,
SqKR21 [23, 26]) zebrafish lines were maintained in the IMCB zebrafish facility according to
the IACUC rules (Biopolis IACUC application #050096) and established protocols [27]. All ex-
periments involving zebrafish embryos/larvae were carried out in accordance with the IACUC
rules. Embryos were staged as described [15] in hours post fertilization (hpf). Embryos older
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than 30 hpf were first treated with 1-phenyl-2-thiourea (PTU) at 18 hpf to prevent
melanin formation.

Antisense ntrk2bmorpholino (nTrk2b-MO): CCATTCCACGAACCCCTGCGGTCAT and
control 5mm-nTk2b-MO: CCAaTgCACcAACCCgTcCGGTCAT, Gene Tools, USA) and
BDNF mRNAs were injected into 1–4 cell stage zebrafish embryos. An inactive control mor-
pholino (5mm-nTk2b-MO) was designed with a 5-nucleotide replacement, compared to the
antisense ntrk2bmorpholino, and represents its inactive analogue (S1 Fig.) [28].

For visualization of the lateral line hair cells, DASPEI (Sigma-Aldrich) staining (0.8 μg/ml
in embryo medium, 15 min) was used. For live imaging, embryos were treated with 0.2% tri-
caine (Sigma-Aldrich) and mounted into 1.5% low melting agarose (Bio-Rad) in
embryo medium.

For treatment with human BDNF (ProSpec, Israel) and K252a (Sigma-Aldrich) 22 hpf em-
bryos were dechorionized and grown up to 72 hpf in the presence of BDNF (200 ng/ml) or
K252a (20 mg/ml) in embryo medium.

An inverted LSM700 laser scanning microscope (Carl Zeiss, Germany) at 28°C, or an Olym-
pus AX70 fluorescent microscope (Olympus, Japan), were used to image the transgenic zebra-
fish embryos. Brightness and contrast, resizing and Z-stack projection of images were
processed using ImageJ (NIH, USA) and Adobe Photoshop (Adobe Systems, USA).

Immunoblotting
Embryos were collected at different stages (12, 24 and 48 hpf) and Western blotting of total ly-
sates was performed as described previously [27]. 20 embryos per gel lane for 12 hpf and 10 per
lane for 24 and 48 hpf embryos were analyzed by 10% PAGE. The 2–212 kDa protein marker
(P7702S, NEB, USA) was used. Anti-TrkB (ANT-019, Alomone Labs, Israel) and goat anti-rab-
bit HRP-conjugated antibodies (170–6515, Bio-Rad) were used at 1:100 and 1:5000 dilution,
respectively. HRP Substrate Kit (172–1064, Bio-Rad) was used to stain the blot.

Constructs of BDNF mRNA
Human BDNF cDNA was generated previously from total mRNA isolated from cerebellum
[29], used as a template for RT-PCR along with primers: BDNF-1 (TGGGGGATTCTT-
GACTCG) and BDNF-2 (ACTGTTTCCCTTCTGGTCAT). The BDNF cDNA corresponding
to BDNF isoform c (GenBank NP_733930.1) was cloned into pUC19 [30] and used as a tem-
plate for PCR during further design of different BDNF constructs. Primer BDNF-NhI (CAC-
CAGGCTAGCAGAGTGATGACCATCCTTTTCCTTACTATGG) and primer BDNF-ERI
(AACATAGAATTCCTATCTTCCCCTTTTAATGG) were used to obtain the full-length
mRNA encoding the precursor of BDNF (ProBDNF).

Overlap extension PCR was used to mutate the processing site of BDNF to generate
ProBDNF-mut. During the first step, two products were generated using primer pairs
BDNF-NhI / BDNF-AGA-Rev (GGTCAGAGTGGGCTCCGACCGCCATGGACATGTTTG-
CAGC) and BDNF-ERI / BDNF-AGA-Dir (GTCCATGGCGGTCGGAGCCCACTCT-
GACCCTGCCCGC). During the second step overlapping products were extracted from an
agarose gel, mixed and subjected to 20 cycles of PCR. The resulting product was amplified in a
third round of PCR with primers BDNF-NhI and BDNF-ERI.

To generate mature BDNF with a BDNF signal peptide (mature BDNF), the first primer
pairs were BDNF-NhI / BDNF-sig (GGGTCAGAGTGAGCCTTCATGCAACC) and
BDNF-ERI / BDNF-mat (GGTTGCATGAAGGCTCACTCTGACCCTGCC). The resulting
product was amplified by PCR using the BDNF-NhI / BDNF-ERI primer pair. All BDNF cod-
ing PCR products were cloned into pCI vector (Promega, USA) using NheI and EcoRI
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restriction sites. Zebrafish bdnf (GenBank CA475489.1) coding vector (pCMV-SPORT6.1 /
zbdnf) was from GenomeCube (Source BioScience, United Kingdom). pCMV-SPORT6.1 /
zbdnf and BDNF-coding vectors based on pCI were used as a template for in vitro transcription
using mMessage mMachine Kit (Ambion, USA).

Real Time RT-PCR
Real time RT-PCR was performed using KAPA SYBR FAST one-step qRT-PCR Kit (KAPA
Biosystems, USA) in accordance with the manufacturer’s instructions using the DNA Engine
Opticon System (MJ Research, USA).Total DNA-free RNA was extracted from 50–100 zebra-
fish embryos at 36 hpf with a RNA purification kit and used as the template. The position of
the lateral line primordium was analyzed in 50–100 48 hpf SqKR21 embryos, chilled for 5 min
(4°C) and their tails including the lateral line primordium were cut off using insulin syringe
needles. Tails were collected in Eppendorf tubes, placed in 50 μl PBS (pH 7.0) and treated wit
Proteinase K (P4850, Sigma-Aldrich) for 5 min at 4°C (5–10 units/ml). The mixture was heated
for 5 min to 65°C and frozen in liquid nitrogen. 5 μl of mixture were DNase (D4263, Sigma-
Aldrich) treated and used in PCR as the template.

Gene-specific primers were designed for actin (actb1): forward,
ATGATGCCCCTCGTGCTGTTTTC, and reverse, TCTCTGTTGGCTTTGGGATTCA; for
atoh1a: CCGTCCCTGTATCCATAGCCAC and GGACTCTTGCTGCTCTTCC; for atp2b1a:
ACGATCCCCACAAGCC and TCCGAGTCCTCTATCCGG; for cxcr4b: ATGGAATTTTAC-
GATAGCATC and ATCCCCCAAAATGCCAC; for sdf1a: ATGGATCTCAAAGTGATCGT
and TTAGACCTGCTGCTGTTGGGC; for ntrk2a: GTACATGATGCACGGCG and
GAGATTTTCTCCGACTAGGC and for ntrk2b: CCAGAGATGTGTACAGCACC and
CATTGTTTGAGAGCTGATACC, the last two pairs of primers were designed to detect the
full-length transcript encoding catalytically active TrkB.

The threshold cycle of each target gene in control, morphant and BDNF-overexpressing
variant was determined by using a housekeeping gene, actin, as a control for normalization.
Fold change was calculated with delta-delta-C(t) method and Microsoft Excel Student’s two
tailed t-test with respect to the mismatch control. Melting curve analysis and agarose gel elec-
trophoresis were performed as product specificity controls. All samples used in this work as
matrixes for RT-PCR were independently prepared three or four times and each was PCR-ana-
lyzed six times.

Results

TrkB loss-of-function caused a defect in the posterior lateral line
The lateral line of zebrafish presents a model to study in vivomigration, proliferation and dif-
ferentiation of sensory cells. All these processes take place immediately under the skin, which
significantly improves conditions for bioimaging [6, 19, 23, 31]. Amongst at least five Trk
genes in zebrafish, two genes—ntrk2a and ntrk2b represent TrkB [32]. It was reported that
ntrk2b is expressed in the developing lateral line [8]. We decided to verify these results by ana-
lyzing by quantitative RT-PCR expression of two ntrk genes at the tip of the tail, which con-
tains the PLLP, prior to its segregation into three terminal neuromasts at 48 hpf. Using primers
specific for the full-length catalytically active TrkB mRNA, we detected 12.7-fold higher ex-
pression of ntrk2b compared to ntrk2a (p = 0.0007), which was close to background level.
Hence, ntrk2bmost probably encodes the TrkB in zebrafish responsible for mediating BDNF
activity in the developing lateral line. To demonstrate a role of ntrk2b in development of the
lateral line, the antisense ntrk2bmorpholino (MO) was injected into composite transgenic em-
bryos (SqET33-mi23/SqET33-mi60) expressing GFP in the sensory lateral line neurons, their
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processes (SqET33-mi23) and support cells (SqET33-mi60) [23], or SqKR21/SqET33-mi23
with GFP-labeled sensory cells and processes and Killer Red (SqKR21) in the PLLP [26]). Two
concentrations of nTrk2b-MO were used for microinjection into 1–2 cell stage embryos—0.1
and 0.3 pmol per embryo. Based upon the degree of severity of defects in the lateral line, we dis-
tinguished two different morphant phenotypes—weak and strong (for details, see Table 1, and
below). Upon injection of anti-ntrk2bMO, the proportion of morphants with the strong phe-
notype increased in a dose-dependent manner (Fig. 1, Table 1). Suppression of TrkB expres-
sion was detected in morphants injected with 0.3 pmol of nTrk2b-MO (S2 Fig.). The
mismatched (5mm) MO had no effect on the formation of the lateral line (not shown).

Lateral line primordium migration and the outgrowth of lateral line sensory processes were
analyzed in both types of nTrk2b-morphants to characterize the weak and strong phenotypes.
All morphants showed fewer neuromasts in the posterior lateral line. The numbers of mecha-
noreceptors per neuromast were also reduced (Fig. 1). The morphants with the weak pheno-
type exhibited a shift of neuromasts towards the tail (Fig. 2A–F). In some cases a large
“neuromast” complex was detected at the tail or caudal fin as an indication that the three termi-
nal neuromasts failed to form (Fig. 1B; Fig. 2F). The outgrowth of the lateral line nerve was rel-
atively normal, suggesting that the nerve elongated in conjunction with
primordium migration.

In contrast, in morphants with the strong phenotype, primordiummigration stalled at the
level of somite 17±4, where two or three closely spaced neuromasts could be found. The size of
the primordium was reduced and its shape changed from elongated to globular (Fig. 2G-H).
The lateral line afferents were short (Fig. 1C), they abandoned their normal trajectory along the
horizontal myoseptum and/or the branch (defasciculate) posterior to the primordium (Fig. 2I).

To cross-check these results, we used the Trk inhibitor, K252a (20 mg/ml). Its effect on de-
velopment of the lateral line was similar to that seen in morphants with the weak phenotype
(Table 1). Therefore, two different LOF techniques independently demonstrated a requirement
for Trk during development of the lateral line.

Table 1. Lateral line analysis of 48 hpf zebrafish embryos injected with nTrk2b antisence morpholino, or mRNA coding different forms of BDNF,
or treated with K252a or BDNF.

Neuromast quantity* Hair cells quantity* Primordium position (somite) Embryo percentage*

5-mm-nTrk2b-MO (0.3 pmol) / Control 13 ±2 20 ±5 32 ±1 100

nTrk2b-MO 4 ± 2 7 ±2 32 ± 2 57 ± 17 / 10 ± 6 (p = 0.02)***

(0.1 pmol)** (p < 0.001)

nTrk2b-MO 2 ± 1 2 ±2 17 ±4 64 ±15 / 28 ±11

(0.3 pmol)** (p < 0.001) (p = 0.02)***

K252a (20 mg/ml) 7 ±4 (p < 0.001) 8 ±6 32 ±1 100

zBDNF mRNA**** (100 pg) 12 ±3 13 ±6 (p < 0.001) 32 ±1 63 ±18

ProBDNF mRNA**** (100 pg) 12 ±3 13 ±7 (p < 0.001) 32 ±1 66 ±17

Mature BDNF mRNA (100 pg) 12 ±3 7 ±6 (p < 0.001) 32 ±1 73 ±15

ProBDNF-mut mRNA (100 pg) 13 ±2 20 ±5 (p = 0.89) 32 ±1 100

BDNF (200 ng/ml) 13 ±2 14 ±8 (p = 0.004) 32 ±1 100

*—Three groups of 50 embryos were used for each experiment. Data were compared to the control by Student two-tailed t-test, p-value was calculated.

**—For both concentrations two phenotypes, weak and strong (separated by a slash), were observed but in different ratios.

***—p-value was calculated to compare data for two doses of nTrk2b-MO.

****—ProBDNF mRNA was expressed in two variants: using pCI / pBDNF or pCMV-SPORT6.1 / zBDNF, encoding human and zebrafish BDNF,

respectively. The other mRNAs encoding BDNF mutants were achieved using human BDNF gene as a template.

doi:10.1371/journal.pone.0119711.t001
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BDNFmodulates a number of mechanoreceptors
To check the effect of BDNF GOF, we overexpressed mRNA encoding the full-length human
and zebrafish BDNF (ProBDNF) or incubated embryos with BDNF protein (Table 1). Overex-
pression of both forms of mRNA led to a significant decrease in mechanoreceptors in neuro-
masts (Fig. 3F). Hence, we tested two additional forms of human BDNF. The active form
encoded the mature BDNF linked to its secretory leader without a propeptide. Its overexpres-
sion led to an effect similar to, but more intense than, that of ProBDNF (Table 1). In view of
this, we concluded that it is unlikely that the propeptide plays any functional role during devel-
opment of the lateral line. The inactive form encoded the BDNF precursor with a mutated pro-
cessing site—ProBDNF-mut (S2 Fig.). Its overexpression showed no effects on the lateral line
(Table 1). BDNF overexpression did not affect any other parameters—the outgrowth of lateral
line nerves, or the positions, numbers, or structure of the neuromasts or precursors of mecha-
noreceptors (Fig. 3A–G). To validate these results with an independent technique, the embryos
were treated with BDNF (200 ng/ml). This also resulted in a decrease in mechanoreceptor
numbers similar to that caused by overexpression of BDNFmRNA. These data indicated that
BDNF may act as a negative regulator of mechanoreceptor number.

Gene expression analysis at the tip of the tail
cxcr4b and sdf1a act to guide the migration of the lateral line primordium, whereas atoh1a and
atp2b1a regulate the determination of progenitors of mechanoreceptors, and their division re-
sulting in formation of mechanoreceptors [17–18, 20–21, 23]. Trk LOF could affect expression

Fig 1. Trk2b plays a role in migration of the zebrafish lateral line primordium (PLLP) and axons. Lateral line of 72 hpf nTrk2b morphants on the
background of SqET33-mi23/SqET33-mi60 cross expressing GFP in the lateral line axons and support cells of neuromasts. A—5-mm-nTrk2b-MO (0.3
pmol); B—nTrk2b-morphant (weak phenotype); C—nTrk2b-morphant (strong phenotype). Neuromasts are indicated by the white arrows and the termini of
the lateral line nerves by blue arrows.

doi:10.1371/journal.pone.0119711.g001
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of these genes. Hence, we used real-time PCR (RT-PCR) to measure the transcription levels of
these four genes. At 36 hpf, total mRNA of ntrk2bmorphants (0.1 pmol) or embryos injected
with the mature BDNFmRNA (100 pg) was analyzed. At 48 hpf only mRNA extracted from
the tip of the tail, including the lateral line primordium, was analyzed. Embryos soaked in
BDNF (200 ng/ml) were analyzed in the same way to detect lateral line specific effects. 5mm-
nTk2b-morphants were used as controls for nTrk2b-MO LOF, and water-injected embryos
were used as controls for BDNF GOF.

At 36 hpf in panembryonic ntrk2bmorphants, expression of atoh1a, atp2b1a and sdf1a in-
creased 2.5 fold, 7.8 fold and 3.2 fold, respectively. In contrast, cxcr4b expression decreased
33.3 fold (Fig. 4A). At the same stage, overexpression of mature BDNF mRNA caused an in-
crease in expression of atoh1a and cxcr4b by 2.1 fold and 3.75 fold, respectively. The levels of
atp2b1a and sdf1a decreased 3.2 and 4.0 fold, respectively (Fig. 4B). Hence, an increase in activ-
ity of the BDNF-TrkB axis consistently activated expression of cxcr4b, whereas an inhibition of
components of the BDNF-TrkB signaling resulted in decreased expression of cxcr4b. It seems

Fig 2. Trk2b is required for coordinatedmigration of the primordium and lateral line axons.Compound transgenic SqET33-mi23/SqKR21 embryos
expressing GFP in the lateral line axons and KillerRed in the lateral line primordium and neuromasts. A–C—5-mm-nTrk2b-MO (0.3 pmol): A—30 hpf, B—36
hpf, C—primordium at 36 hpf; D–F—nTrk2b-morphant with the weak phenotype: D—30 hpf, E—36 hpf, F—primordium at 36 hpf; G–I—nTrk2b-morphant
with the strong phenotype: G—36 hpf, H—primordium at 36 hpf, I—lateral line axons at 48 hpf. The primordium leading edges are indicated by white arrows
and the termini of the lateral line nerves by blue arrows.

doi:10.1371/journal.pone.0119711.g002
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that this change of expression in cxcr4b alone may account for all the developmental abnormal-
ities in the lateral line of embryos upon manipulation of activity of the BDNF-TrkB axis.

To analyze gene expression more specifically in the lateral line, we capitalized upon the defi-
cient migration / deposition of terminal neuromasts at the tip of the tail of embryos after Trk
LOF. This region of morphants and control embryos was cut off, and RT-PCR was performed
only on this tissue. In nTrk2b-morphants the expression of atoh1a, atp2b1a and cxcr4b de-
creased by 8.3, 3.2 and 2.8 fold, respectively, when compared to controls. sdf1a expression did
not change significantly (Fig. 4C). These results demonstrated that expression of genes express-
ed in the PLLP that regulate its migration and development of mechanoreceptors (atoh1a,
atp2b1a cxcr4b,) was reduced. In contrast, expression of sdf1a that is expressed in the horizon-
tal myoseptum did not changed, which confirmed that Trk acted specifically on PLLP, but not
on external tissue.

In embryos injected with mRNA encoding mature BDNF, the expression of cxcr4b in-
creased 1.3 fold and that of atp2b1a decreased 3.7 fold, whereas expression of atoh1a and sdf1a
did not change significantly (Fig. 4D). In embryos treated with mature BDNF protein (200 ng-
/ml) the expression has change similarly, but more significantly: cxcr4b increased 3.41 fold and
atp2b1a decreased 5.9 fold. There was no significant change in atoh1a and sdf1a expression lev-
els (Fig. 4E). Thus, in all treatments changes in cxcr4b expression directly correlate with activity
of BDNF-TrkB axis.

It was noteworthy that there was a difference in expression of atoh1a and atp2b1a caused by
changes in BDNF activity. Whereas expression of atoh1a seems to be un-affected by BDNF
treatment, expression of atp2b1a decreased. Given the role of this gene in the division of termi-
nally committed progenitors of mechanoreceptors, it appeared that BDNF might act as a mod-
ulator of this process.

Fig 3. BDNF plays a role in differentiation of the zebrafish lateral line mechanoreceptors. Lateral line
development of 48 hpf zebrafish embryos injected with mRNA encoding different forms of BDNF. A–B—
SqET20 transgenic embryo expressing GFP in the mantle cells of neuromasts, mechanoreceptors are
stained with DASPEI: A—control, B—mature BDNFmRNA (100 pg); C–D—compound SqET33-
mi23/SqET33-mi60 transgenic embryos, expressing GFP in the lateral line nerve and support cells of
neuromasts, mechanmoreceptors are stained with DASPEI: C—control, D—mature BDNFmRNA (100 pg);
E–G—SqET4 line, expressing GFP in mechanoreceptors of neuromasts: E—control, F—BDNF precursor
mRNA (100 pg), G—mature BDNFmRNA (100 pg).

doi:10.1371/journal.pone.0119711.g003
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Discussion
Neurotrophins belong to the main factors directing development of the nervous system. Brain-
derived neurotrophic factor (BDNF) is one of the key members of this growth factors family
known for its pivotal role in this process [1–2], including development of the auditory system
[3–5]. Evidence also suggests that BDNF may play a role during development of the lateral line
sensory system in fish, the analogue of the mammalian inner ear, where expression of bdnf and
its receptor, trkB, have been detected [6–8]. However, the specific developmental role of the
BDNF-TrkB axis in the lateral line remains unknown.

We have used a combination of the LOF and GOF approaches to show the requirement for
BDNF mediated by TrkB in several processes. Our first piece of evidence is that ntrk2b sup-
pression affected migration of the lateral line primordium, detected as an abnormal posterior
shift of neuromasts. This could be the reason for failure of primordium segregation into three
terminal neuromasts. The primordium may have run out of space to migrate, or a deficiency in
cell proliferation may have resulted in a decrease of the primordium beyond the critical size re-
quired to form three neuromasts (Figs. 1–2, Table 1). This latter possibility is supported by

Fig 4. RT-PCR gene expression analysis of whole 36 hpf embryos (A-B) and the tail of 48 hpf embryos (C-E). A, C—expression of genes in embryos
injected with nTrk2b antisense morpholino (0.1 pmol), 5mm-nTk2b-MO-injected embryos (0.3 pmol) were used as a control; B, D—expression of genes in
embryos injected with mRNA of mature BDNF (100 pg), water-injected embryos were used as a control; E—expression of genes in embryos treated with
mature BDNF (200 ng/ml), untreated embryos were used as a control. Logarithmic scale, the value of the control was set to one, standard errors are indicated
on the tops of the bars. Data were compared with control by Student two-tailed t-test, p-value was calculated.

doi:10.1371/journal.pone.0119711.g004
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observations in morphants with a more severe phenotype, where the primordium is signifi-
cantly reduced in size, ceases migration and loses polarity. These results are consistent with a
role for BDNF in cell proliferation in the lateral line primordium and neuromasts. A similar
phenotype was observed upon treatment of embryos with the tyrosine-kinase (Trk)—specific
inhibitor K252a, which at low concentration mimicked a weak morphant phenotype (Table 1).
Importantly, the BDNF GOF caused a failure of the mechanoreceptors to mature (Table 1).
Taken together with the results of the LOF experiments, these observations suggest that the
BDNF-TrkB axis acts to maintain a pool of progenitors of mechanoreceptors.

The key role of the chemokine Sdf1 and its receptor Cxcr4 in the primordium migration has
been shown previously [19–21]: in brief, Sdf1 is expressed along the route of primordium mi-
gration, and an interaction between Sdf1 and its specific receptor, Cxcr4, on the membrane of
primordium cells with subsequent internalization of the ligand-receptor complex, guides the
migration of the primordium. The failure of any of the chemokine signaling components
causes deficient migration of primordium. In vitro data have already illustrated an effect of
BDNF on Cxcr4-mediated cell migration [33]. In agreement with this we found that the GOF
of BDNF strongly stimulates cxcr4b expression, whereas the LOF of ntrk2b causes the opposite
effect. Changes in sdf1a expression are reversed, which could be due to negative feedback regu-
lation (Fig. 4). Based on this analysis we conclude that BDNF signaling regulates Cxcr4b,
which is required for migration of the lateral line primordium. As chemokine-stimulated cell
migration is a rather common phenomenon [34–36], BDNF could be involved in regulating
cell migration in a broader context than thought previously [11, 37–39].

Our analysis of neuromast development showed the failure of sensory hair cells to differen-
tiate in TrkB LOF and BDNF GOF (Figs. 1, 3, Table 1). In parallel, our gene expression analysis
demonstrated changes in expression of two markers of hair cell proliferation and differentia-
tion: atoh1a and atp2b1a [23]. At 36 hpf TrkB LOF led to a panembryonic increase in atoh1a
and atp2b1a expression. This could be the result of compensatory feedback regulation, includ-
ing regions of the embryo other than the horizontal myoseptum. Such thinking is supported by
two pieces of evidence. First, an analysis of expression of these genes at 48 hpf in a tip of the tail
containing the primordium demonstrated that by 48 hpf expression of these genes is down-reg-
ulated in line with morphological changes in the primordium / neuromasts. Second, in the ab-
sence of migration of the primordium the lateral line nerve afferents migrate along ectopic
routes in the trunk region, which does not exclude the possibility of ectopic up-regulation of
chemokine signaling (Fig. 2).

Unlike the nTrk2b-MOmediated LOF, the BDNF GOF inhibited atp2b1a, whereas expres-
sion of atoh1a was either slightly increased or remained unchanged. Based on these results and
morphological observations, it appears that the excess of BDNF blocks generation of mechano-
receptors. As a hypothesis we can propose a negative-regulatory loop between BDNF and Trk
acting during proliferation of mechanoreceptors. Such a negative-feedback loop involving
Sprouty that acts to down-regulate BDNF signaling has been shown by in vitro studies [40],
and the expression of spry 1 and 4 has been shown in the developing lateral line [41–42].
Hence, it seems that formation and maturation of mechanoreceptors requires strict control of
BDNF levels. This mode of BDNF action must be taken into account in view of attempts to
treat deafness by BDNF, which are not always successful [43–47].

We have detected an inhibition of proliferation of sensory cells by BDNF in vivo for the first
time, but the processed and unprocessed neurotrophins may act differently. It is well known
that unprocessed neurotrophins often have effects opposite to those of mature factors [13–14,
48]. Two mRNAs were analyzed to separate the effects of BDNF precursor and mature factor:
i) one encoding the BDNF precursor with mutations preventing effective processing
(ProBDNF-mut), and, ii) another one encoding BDNF without the propeptide that encoded
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the mature protein directly linked to the secretory signal peptide (mature BDNF) (S2 Fig.).
Whereas ProBDNF-mut was not active, the mRNA of mature BDNF was more active com-
pared to ProBDNF (Table 1). Summarizing the differences in pro-BDNF, pro-BDNF-mut and
mature factor action we conclude that all the effects we detected are due to the activity of ma-
ture BDNF.

Many studies have been directed to reveal the role of neurotrophin propeptides in neutro-
phin function [13–14, 48] and maturation [49–50]. It is well known that the propeptides of
many proteins assist folding [51–52], and some data demonstrating incorrect neurotrophin
maturation without the propeptide have been collected in vitro [49–50, 53]. In this connection,
our observation that the effect of mRNA encoding mature BDNF without propeptide was even
more pronounced than that of pro-BDNF, may suggest the BDNF propeptide is not needed for
BDNF folding and maturation in vivo.

We have shown the involvement of BDNF in the outgrowth of lateral line nerve afferents.
During normal development, an outgrowth of afferent processes of sensory lateral line gangli-
on neurons, albeit relatively independent, is nevertheless coupled with primordium migration,
and dendrites never project beyond the primordium (Fig. 2). It has been proposed that the mi-
grating primordium provides additional short-range directional cues for lateral line afferents
[19]. High doses of nTrk2b-MO blocked primordium migration, but the dendrites continued
to grow despite loosing directionality and fasciculation (Fig. 2G–H). This illustrates that it is
not only the directed collective cell migration of primordium that depends upon a functional
BDNF-TrkB axis; the outgrowth of neuron processes could also be directed by this signaling.
At the same time the misguided extension and abnormal branching of these afferents (Fig. 2I)
suggests a role for chemokine signaling acting downstream of the BDNF-TrkB axis to provide
guidance for lateral line nerves, whereas the BDNF-TrkB signaling may be required to fine
tune this process.

Conclusions
BDNF is a key factor of lateral line development. It stimulates primordium migration by regu-
lating the expression of the chemokine receptor Cxcr4, which in turn guides the lateral line ax-
onal outgrowth. BDNF regulates the critical step of formation of mechanoreceptors from
transient progenitors by positive regulation of atoh1a and blocks proliferation of mechanore-
ceptors by negative regulation of atp2b1a.

Supporting Information
S1 Fig. TrkB2-morpholino efficiently knocks down TrkB2. A—TrkB2-MO design: nTrk2b-
MO—antisense MO, 5mm-nTrkB2-MO—control MO containing 5 mismatched nucleotides;
B—anti-TrkB western blot illustrates the loss of TrkB upon injection of nTrk2bMO (0.3 pmol).
(TIF)

S2 Fig. BDNF forms encoded by injected mRNA.
(TIF)
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