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Benford’s Distribution in Complex 
Networks
Mikołaj Morzy1,2, Tomasz Kajdanowicz2 & Bolesław K. Szymański2,3

Many collections of numbers do not have a uniform distribution of the leading digit, but conform to a 
very particular pattern known as Benford’s distribution. This distribution has been found in numerous 
areas such as accounting data, voting registers, census data, and even in natural phenomena. Recently 
it has been reported that Benford’s law applies to online social networks. Here we introduce a set of 
rigorous tests for adherence to Benford’s law and apply it to verification of this claim, extending the 
scope of the experiment to various complex networks and to artificial networks created by several 
popular generative models. Our findings are that neither for real nor for artificial networks there is 
sufficient evidence for common conformity of network structural properties with Benford’s distribution. 
We find very weak evidence suggesting that three measures, degree centrality, betweenness centrality 
and local clustering coefficient, could adhere to Benford’s law for scalefree networks but only for very 
narrow range of their parameters.

Benford’s law is a well-documented phenomenon describing the distribution of the most significant digit in many 
different datasets. Originally noticed by Newcomb1 and Benford2, it states that the probability of the most signif-
icant digit of a random element of a real-world numerical dataset being d is given by
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At first, Benford’s law seems very counter-intuitive. Why wouldn’t the leading digits be uniformly distributed 
in real-world datasets? Yet, this phenomenological law holds for an extraordinary diversity of datasets. Benford’s 
distribution has been observed in geophysical data3, such as distributions of lengths of rivers, areas of lakes, etc., 
in the distribution of auction prices on eBay4, or in the effects of introducing Euro currency in EU member states5. 
Recently, Benford’s law has been used in fraud detection6–8, to indicate vote counting manipulation during elec-
tions in the US9, Ukraine and Russia10 (although some researchers claim that Benford’s law is not the right tool to 
assess the veracity of elections11), and to disclose inconsistencies in census surveys12. The same distribution has 
been found in engineering where failure rates and mean-time-to-failure (MTTF) values of information systems 
closely follow the logarithmic pattern13. It has also been reported that several properties of complex networks 
(such as centrality indexes) obey Benford’s law as well14. Even more surprisingly, Benford’s law applies also if 
the numbers are multiplied by a constant, or expressed in a numeral system other than decimal. In other words, 
Benford’s law is both scale-invariant and base-invariant.

Benford’s law has intrigued both scientists and general population for over a century. There were many who 
claimed that it is an inherent property of the universe, an esoteric law of nature which applies to some datasets. It 
has not been helpful that the original discoverer of this logarithmic rule, American astronomer Simon Newcomb, 
following the infamous example of Pierre de Fermat, described his discovery as “evident”, without any explana-
tion. His statement was simply that “The law of probability of the occurrence of numbers is such that all mantis-
sae of their logarithms are equally likely”1. 60 year later, when Frank Benford, a physicist working at Corporate 
Research and Development Center of General Electric, assembled the collection of over 20 000 numbers from 
many different sources (atomic weights, population sizes, physical constants, street addresses, Readers’ Digest 
articles) and re-discovered the logarithmic distribution of the leading digit, he claimed that the phenomenon only 
applied to “anomalous” and “outlaw” numbers.

This does not mean that no serious attempts have been made to come up with a plausible explanation of the 
origins of Benford’s law. Raimi15 presents a thorough summary of previous works on the derivation of Benford’s 
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law. He claims that the first robust statistical explanation of Benford’s law has been proposed by Pinkham16. The 
argument of Pinkham relied heavily on the scale-invariance property of Benford’s distribution. Today, it is widely 
accepted that another explanation, given by Hill17,18 and based on random sampling from a mixture of random 
distributions, is more correct. An analytical explanation based on the multiplicative nature of fluctuations has 
been proposed by Pietronero et al.19.

In this paper we examine whether structural properties of complex networks agree with Benford’s distribu-
tion. In order to present our findings, we introduce basic notions and definitions pertaining to network structural 
properties, and in particular, to centrality measures. Let G =  〈 V, E〉  be a network with the set of vertices V =  {v1, 
v2, … , vn} and the set of edges E =  {(vi, vj):vi, vj ∈  V}. Let d(vi) denote the degree of the vertex vi, i.e. the number of 
vertices adjacent to vi. Let δ(vi, vj) be the set of shortest paths between vertices vi and vj in the network G, and let 
δk(vi, vj) be the set of shortest paths between vertices vi and vj which pass through the vertex vk. Finally, let Δ (vi, vj) 
denote the length of the shortest path between vertices vi and vj. A centrality measure is a function  →V:  
which assigns to each vertex a value representing the “importance” of the vertex in the network G. Of course, 
there are many different ways in which the importance of a vertex can be defined.

•	 degree centrality CD(vi) =  d(vi) simply measures the number of vertices adjacent to the vertex vi. The assump-
tion here is that a vertex is important if it is directly connected to many vertices in the network.

•	 betweenness centrality δ= ∑ | |≠C v v v( ) ( , )B i j k i i j k,  measures the number of shortest paths between any pair of 
vertices which pass through the vertex vi. This interpretation of importance highlights the influence of a ver-
tex on communication pathways through the network.

•	 closeness centrality = ∑ ∆C v v v( ) ( , )C i V j i j
1  measures the average distance from the vertex vi to all other 

vertices in the network. According to this definition, a vertex is important if it can quickly communicate with 
all remaining vertices in the network.

Apart from these three centrality measures20, vertices in complex networks are commonly described using the 
local clustering coefficient. This feature describes the local neighborhood of a vertex, also known as the egocentric 
network of vi, which consists of the vertex vi, all its adjacent vertices, and all edges between these vertices. For a 
given vertex vi, its local clustering coefficient is defined as the number of edges existing in its egocentric network 
divided by the maximum number of edges which could exist in this egocentric network (i.e. the number of edges 
that would exist in a clique of equal size). Local clustering coefficient is a convenient measurement of the com-
pleteness of the local neighborhood of a vertex. Figure 1 illustrates centrality measures for vertices. This network 
has been introduced by Ulrik Brandes and it is the smallest network in which four different vertices attain the 
maximum value of degree, betweenness, closeness, and local clustering coefficient, respectively. For each of the 
discussed centrality measures the size and the intensity of color of each vertex correspond to the value of the 
centrality measure.

In this paper we search for Benford’s distribution in various characteristics of complex networks. We inves-
tigate both real world networks and artificial networks, generated from popular network models: Erdös-Rényi 
random network model, Watts-Strogatz small world network model, Albert-Barabási preferential attachment 
model, and the forest fire model. We compute the distributions of centrality measures and perform multiple tests 
of agreement of these distributions with Benford’s distribution. Quite surprisingly, we find that despite power law 
distributions of centrality measures, they do not conform to Benford’s distribution, with a notable exception of 
betweenness centrality, which, for many of the examined networks, exhibits signs of conformity with Benford’s 
distribution.

Results
Real world datasets.  In our experiments we have used datasets from the Stanford Large Network Dataset 
Collection21, as well as the datasets used by Golbeck14 and by Zhong et al.22. Table 1 summarizes main characteris-
tics of these datasets. Since there is no agreed-upon procedure of testing for the presence of Benford’s distribution 
in a dataset, for each of the considered networks we have performed 11 independent tests described in Section 
Methods. Each of these tests tries to establish the goodness of fit with Benford’s distribution based on a different 
criterion. We have observed that none of approximately 8000 distributions of structural properties of artificial and 

Figure 1. Centrality measures (a) degree (b) betweenness (c) closeness (d) clustering coefficient.
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real word networks was able to pass more than 2 goodness of fit tests, with the notable exception of betweenness. 
Thus, for the purpose of the evaluation of results within the paper we have decided to use, as a local criterion of 
agreement with Benford’s distribution, the threshold of 2 passed goodness of fit tests.

Table 2 presents our findings, the last column contains the number of goodness of fit tests with positive results. 
Out of 15 real world networks only 5 networks have a structural property which passes the local criterion of 
agreement with Benford’s distribution, and this property is almost exclusively betweenness. Our local criterion is 
very lenient, should we have used a slightly more strict threshold, only two relatively small datasets (facebook and 
twitter) would have fulfilled the local criterion.

Artificial datasets.  Real world datasets are often incomplete, dirty, or biased by the harvesting method. The 
obvious lack of Benford’s distribution in structural properties of real world networks could be caused by the noise 
in real world data that distorted the outcomes of our analysis. To eliminate this possibility, we perform the anal-
ysis on artificial networks generated from a few popular generative network models. We have used the following 
artificial network models:

•	 Erdös-Rényi random model23 creates a network consisting of n vertices, and for each pair of vertices (vi, vj) an 
edge is created between them with the probability p (where n and p are the parameters of the model).

•	 Watts-Strogatz small world model24 creates a network of n vertices organized in a ring topology, where each 
vertex is connected to its k closest neighbors. After creating the initial ring each edge is randomly rewired 
with a very small probability p. Vertices in the resulting network tend to have similar degrees and their local 
clustering coefficients are an order of magnitude greater than in a random network. The rewiring process 
drastically changes the betweenness of a small number of nodes, which serve as bridges to remote parts of 
the network.

•	 Albert-Barabási preferential attachment model25 creates a network from an initial complete graph Kn0
 consist-

ing of n0 vertices. Subsequent vertices are added sequentially, and each new vertex creates k edges. The prob-
ability of choosing a vertex vi as the target vertex for a new edge is proportional to its current degree d(vi). The 
resulting network has a power law distribution of vertex degrees and vertex betweennesses.

•	 forest fire model26 also adds vertices sequentially. Upon arrival each vertex creates edges to k uniformly 
selected vertices, called ambassadors, and then adds more edges to neighbors of ambassadors with the forward 
burning probability p. The process continues recursively for each vertex to which an edge has been added.

Name Description Vertices Edges

amazon product co-purchase network 262 111 1 234 877

citations paper citation network 27 770 352 807

dblp scientific collaboration network 317 080 1 049 866

enron email communication network 36 692 367 662

facebook† friend counts 18 298 88 234

google+† social circles network 107 614 30 494 866

gnutella peer-to-peer network 36 682 88 323

livejournal† friendship network 2 793 657 6 898 682

pinterest† followers counts 67 648 287 67 648 287

physics scientific collaboration network 12 008 237 010

slashdot friendship network 82 168 948 464

stanford website hyperlink network 281 903 2 312 497

twitter† social circles network 81 306 2 420 766

wikipedia adminship voting network 7115 103 689

youtube friendship network 1 134 890 2 987 624

Table 1.  Real world datasets (the sets used by Golbeck14 are marked with an † after their name).

Dataset Measure No. of passed tests

citations degree 2

citations betweenness 3

enron betweenness 2

facebook betweenness 7

physics betweenness 2

twitter betweenness 11

Table 2. Real world network properties which pass at least 2 goodness of fit tests.
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We have generated 50 instances of networks for each artificial network model and each value of the model 
parameter, and for each model we have tested 10 different values of the main model parameter. Each network had 
a constant size of n =  1000 vertices and for each network we have computed four distributions: degree, between-
ness, closeness, and local clustering coefficient. Altogether we have tested 4*10*50*4 =  8000 possible distributions 
for the agreement with Benford’s distribution. Model parameters have been uniformly selected from the following 
ranges:

•	 Erdös-Rényi random model: random edge probability ep ∈  [0.001, 0.01]
•	 Watts-Strogatz small world model: random edge rewiring probability rp ∈  [0.01, 0.05]
•	 Albert-Barabási preferential attachment model: power law exponent ac ∈  [1, 3]
•	 forest fire model: forward burning probability fb ∈  [0.01, 0.25]

Table 3 presents the results of our experiments on artificially generated networks. Most of tests failed to dis-
cover Benford’s distribution in any of complex networks’ structural properties, and only 5 tests produced any 
positive results. The number of positive results for each test is presented in Table 4. Despite very weak evidence 
for the presence of Benford’s distribution in artificial networks, both Mantissa Arc test and the χ2 test signal the 
conformity with Benford’s distribution in networks generated using the preferential attachment process. These 
networks are known to have a power law distribution of betweenness27 and local clustering coefficient28. As has 
been shown before29, a distribution is more likely to adhere to Benford’s distribution if it resembles a survival 
distribution, i.e. it puts most of its mass on small values of the random variable, and power law distribution fulfills 
this condition. The Albert-Barabási preferential attachment model generates networks with power law distribu-
tions of vertex degrees as well. Yet, on the first glance surprisingly, this structural feature is never found to con-
form to Benford’s distribution. However, the analysis of network properties with the nodes distributed according 
to the power law provides an explanation.

For a series of elements with power law distribution, the probability of series element having the given value 
is a decreasing function of such value with the maximum probability at the minimum value in the series. An 
immediate conclusion is that only the series with the minimum value having the leading digit of 1 has a chance 
to conform to Benford’s law. There is also a restriction on the power law exponent, which cannot be too large. 
As we have empirically checked, it must be no larger than 1.25 when the series has the minimum and maximum 

Model Parameter Measure
No. of 

passed tests

preferential.attachment 1.00 clustering 2

preferential.attachment 1.22 clustering 2

preferential.attachment 1.44 clustering 2

preferential.attachment 1.67 clustering 2

preferential.attachment 1.89 clustering 2

preferential.attachment 2.11 clustering 2

preferential.attachment 2.33 betweenness 2

preferential.attachment 2.33 clustering 2

preferential.attachment 2.56 betweenness 2

preferential.attachment 2.56 clustering 2

preferential.attachment 2.78 betweenness 2

preferential.attachment 2.78 clustering 2

preferential.attachment 3.00 betweenness 2

preferential.attachment 3.00 clustering 2

random.graph 0.001 clustering 2

random.graph 0.001 clustering 2

random.graph 0.001 clustering 2

small.world 0.001 betweenness 2

Table 3. Artificial network properties which pass at least 2 goodness of fit tests.

Mantissa Arc test 21

χ2 test 17

Judge-Schechter Mean Deviation test 11

Joenssen’s JP
2 test 8

Distortion Factor 1

Table 4. Number of accepted goodness of fit tests from 60 real-world and 320 artificial network centrality 
measures distributions.
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values of 1 and 10 respectively. This range is even smaller for larger ranges of the minimum and maximum values. 
In summary, only series with the minimum value in the range [10k, 10k+1), k =  1, … , the maximum value around 
10k+m, m =  1, …  and with the power law exponent in the range [1, 1.25] may have distribution of its element val-
ues resembling Benford’s distribution.

This analysis directly applies to the degree centrality measure for networks with power law distribution of 
node degrees. Thus, only a network with minimum degree in the range [10k, 10k+1), k =  0, 1, … , the natural cut 
off around 10k+m, m =  1, …  and with the power law exponent in the range [1, 1.25] may have degree centrality 
measure distributed according to Benford’s law. Betweenness centrality for networks with power law distributed 
node degrees is also power law distributed27. The minimum number of shortest paths between any two nodes 
passing through the given node is n − 1. Hence, only a network with the number of nodes in the range [10k +  1, 
10k+1], k =  0, 1, … , the natural cut off around 10k+m, m =  1, …  and with the power law exponent of betweenness 
centrality between 1 and 1.25 may have betweenness centrality measure distributed according to Benford’s law. 
Also local clustering coefficient of networks with power law distribution of node degree has the power law distri-
bution28. Here, only when the minimum non-zero local clustering coefficient has its first significant digit being 1 
and the power law exponent of the distribution of local clustering coefficients is in the range [1, 1.25] this measure 
may obey Benford’s law.

Finally, a similar analysis of node degree distribution for the Erdös-Rényi random network model may start 
with an observation that the node degree with the highest probability of appearing in the network is the integer 
closest to p(n −  1) (where p is the probability of having an edge between any pair of nodes) and it must have the 
leading digit of 1. On the other hand, the width of the distribution is narrow, about the square root of the average 
degree, so it is too narrow to reach on the right of the average degree to the degrees with digits larger than 2. Thus, 
the frequencies for such larger digits have to come from the range left of the average degree. Hence the frequencies 
will be increasing for digits growing from 3 to 9, while in Benford’s distribution those frequencies are decreasing. 
The conclusion is that an Erdös-Rényi network may have the node degree distribution resembling Benford’s dis-
tribution only if its average degree is close to 1, in agreement with our results.

Discussion
Our analysis shows that previously reported presence of Benford’s distribution in complex networks14 is not 
supported by the rigorous set of tests that we conducted. A thorough examination using several different statis-
tical tools does not indicate the presence of Benford’s distribution in complex networks. These results allow us 
to conclude that Benford’s distribution is not commonly present in the structural properties of either empirical 
or artificial complex networks. We also present here theoretical analysis of networks with power law distribution 
of node degrees and measures of degree centrality, betweenness centrality, and local clustering coefficient. The 
analysis demonstrates that for only narrow ranges of the parameters of the power law distribution, specifically the 
minimum degree, the natural cut off and the power law exponent, the distributions of the considered measures 
may resemble Benford’s distribution.

The main practical conclusion that can be drawn from our results is that Benford’s Law cannot be used to 
check the correctness of structural properties of complex networks. However, for the networks with power law 
distributed node degrees, we show that the distribution of leading digits of these three measures is well defined by 
the parameters of power law distribution. So these easy to establish distributions can be used instead of Benford’s 
distribution to discover fraud, incompleteness or manipulation of network structure and such applications will 
be the subject of our future work.

Methods
The literature provides several methods of testing the conformity of a given distribution with Benford’s distribu-
tion. These methods are highly dependent on the area of application; different protocols are used when analyzing 
financial results, voting registers, or network intrusion records. For instance, Nigrini and Miller30 advocate the 
use of second order tests for financial data diagnostics (testing frequencies of leading digits of differences between 
ranked values instead of values themselves) claiming that this method is superior when rounding of data occurs. 
Other tests include the Distortion Factor Model31 and the Bayesian approach proposed by Ley32. In order to per-
form a thorough verification of the presence of Benford’s distribution in complex networks structural features we 
employ 11 different tests, summarized below. We have used two R packages, BenfordTests33 and benford.
analysis34. For each of the performed tests we reject the null hypothesis for p-value ≤  0.05.

•	 χ2 test: Pearson’s chi-square goodness of fit test with the statistic defined as χ = ∑
=
−

−
−n

i

f f

f
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10 1

( )
k

k i
o

i
e

i
e1
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, where fi
o 

is the observed frequency of the digit i, and fi
e is the expected frequency of the digit i. The null hypothesis is 

that there is no difference between observed and expected frequencies.
•	 Mean Absolute Deviation (MAD): the average deviation of the actual digit distribution from the expected 

Benford’s distribution, this statistic is defined as = ∑ −= f fMAD
k i

k
i
o

i
e1

1 . We follow the suggestion of 
Nigrini35 and define MAD ≤  0.0012 as close conformity, MAD ∈  [0.0012, 0.0018] as acceptable conformity, 
MAD ∈  [0.0018, 0.0022] as marginally acceptable conformity, and MAD ≥  0.0022 as non-conformity to Ben-
ford’s distribution.

•	 Mantissa Arc Test (MAT): the test computes the center of mass of a set of mantissae distributed on a unit circle. 
For a number x its coordinates on a circle are defined as follows: π= ⋅ xabscissa cos (2 log ( )mod 1)10 , 

π= ⋅ xordinate sin(2 log ( )mod1)10 . If the mantissae of a set of numbers {x1, x2, … , xn} are uniformly distrib-
uted on the circle, the center of the mass, also known as the mean vector, is at (0, 0), in other cases it will be at 
the distance of L2 from the center of the circle. The MAT test defines the following test statistics: = −p e1 nL2
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and this statistic is checked for significance against the χ2 distribution with 2 degrees of freedom. The MAT 
test has been first proposed by Alexander36.

•	 Distortion Factor: proposed by Nigrini35, this test compares the actual mean of the set of numbers with the 
mean expected for a Benford’s set of the same size using the standard Z-statistic.

•	 Pearson’s r: traditional Pearson’s product-moment correlation coefficient measuring the linear correlation 
between the observed frequency of digits and the frequency of digits expected in Benford’s distribution.

•	 Kolmogorov-Smirnov test: traditional test of the distance between cumulative distributions, with the test sta-
tistic defined as = |∑ − | ⋅

= … −
=

−
D f f nsup ( )

i
j
i

j
o

j
e

10 , ,10 1
1

k k1
. The result of the test is determined by the p-value 

of the D statistic.
•	 Freedman-Watson Test: a test to compare discrete distributions, its statistic is defined as
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The result of the test is determined by the p-value of the U2 statistic.

•	 Chebyshev Distance Test: a simple maximum norm statistic defined as = − ⋅
= … −−

m f f nmax
i i

o
i
e

10 , ,10 1k k1
. The 

result of the test is determined by the p-value of the m statistic.
•	 Euclidean Distance Test: performs a goodness of fit test based on the Euclidean distance between the observed 

and the expected digit distributions, test statistic is = ⋅ ∑ −
=
−
−d n f f( )

i i
o

i
e

10
10 1 2

k
k

1
. The result of the test is 

determined by the p-value of the d statistic.
•	 Judge-Schechter Mean Deviation Test: a goodness of fit test based on the deviation of mean digits, with the test 

statistic defined as =
µ µ

µ

−

⋅ −−
⁎a

(9 10 )
k
o

k
e

k
k
e1
, where µk

o is the observed mean of the chosen k number of digits, and 

µk
e is the expected mean should the sample conform to Benford’s distribution. The test statistic a* under the 

null hypothesis has a truncated normal distribution, a* ~ NT(μ =  0, σ =  σB, a =  0, b =  ∞ ).
•	 Joenssens JP

2 Test: a sign-preserving squared correlation test between the observed distribution and Benford’s 
distribution, with the test statistic defined as = ⋅J sgn cor f f cor f f( ( , )) ( , )P

o e o e2 2. The result of the test is 
determined by the p-value of the JP

2 statistic.

Figure 2. Average p-values of tests for different levels of Benford’s distribution purity. 

Distribution Min. 1st Qu. Median Mean 3rd Qu. Max.

Normal 0.001028 2.676 3.981 4.031 5.335 11.69

Benford 1 1.804 3.202 3.927 5.645 9.996

Table 5.  Summary of distributions used in tests comparing goodness of fit.
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•	 Hotelling T2 Test: a generalization of the Student’s t statistic to a multivariate case, this test uses the following 
statistic: = ⋅ ∑ − ⋅=

−T f f S10 ( ( ))i i
o

i
e2

0
9 2 1, where S is the pooled covariance matrix. Under the null hypoth-

esis the T2 statistic follows the F-distribution and the result of the test is determined by the p-value of the T2 
statistic.

Having used so many statistical tests to verify the goodness of fit with Benford’s distribution, we need to estab-
lish the sensitivity of tests and their mutual correlation. A simple way to do this is to run a suite of tests on data 
with varying degree of conformity with Benford’s distribution and to compute the p-values of these tests. In this 
experiment we use the following protocol. For each data point we create 50 random samples of 10 000 numbers, 
and we run all of the above tests on each sample. Then, we compute the average p-value for each test over these 50 
samples. There are 100 data points, each representing a different mixture of Benford’s and normal distributions. 
Summary of these two distributions are presented in Table 5. Initially, all 10 000 numbers were drawn from the 
normal distribution, and in each step 1% of the sample is replaced by the numbers drawn from Benford’s dis-
tribution. Figure 2 shows the average p-values (ordinate) depending on the pureness of Benford’s distribution 
(abscissa). Most of the tests behave very similarly and reject the null hypothesis of the presence of Benford’s 
distribution until the distribution is 95% pure, while Freedman-Watson U-squared test and the Mantissa Arc test 
are slightly more conservative. The only exception is the Judge-Schechter Mean Deviation test, which signals the 
presence of Benford’s distribution already at the 82% pureness threshold.

In each test the null hypothesis states that the given set of numbers follows Benford’s distribution. Assuming 
the standard rejection threshold of the null hypothesis at p-value ≤  0.05 level, Table 6 presents the average purity 
of Benford’s distribution accepted by each test. As can be seen, all tests (except for the Distortion Factor and the 
Judge-Schechter Mean Deviation tests) behave in a very coherent way, requiring a strong goodness of fit before 
accepting the null hypothesis. These results allow us to conclude that Benford’s distribution is not present in 
the structural properties of either empirical, or artificial complex networks. We also present here the analysis of 
networks with power law distribution of node degrees and measures of degree centrality, betweenness centrality, 
and local clustering coefficient. The analysis demonstrates that for only narrow ranges of the parameters of the 
power law distribution, specifically the minimum degree, the natural cut off, and the power law exponent, the 
distributions of the considered measures may resemble Benford’s distribution.
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