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Glucagon, a hormone secreted by pancreatic alpha cells, contributes to the maintenance of normal blood glucose concentration by
inducing hepatic glucose production in response to declining blood glucose. However, glucagon hypersecretion contributes to the
pathogenesis of type 2 diabetes. Moreover, diabetes is associated with relative glucagon undersecretion at low blood glucose and
oversecretion at normal and high blood glucose. The mechanisms of such alpha cell dysfunctions are not well understood. This
article reviews the genesis of alpha cell dysfunctions during the pathogenesis of type 2 diabetes and after the onset of type 1 and
type 2 diabetes. It unravels a signaling pathway that contributes to glucose- or hydrogen peroxide-induced glucagon secretion,
whose overstimulation contributes to glucagon dysregulation, partly through oxidative stress and reduced ATP synthesis. The
signaling pathway involves phosphatidylinositol-3-kinase, protein kinase B, protein kinase C delta, non-receptor tyrosine kinase
Src, and phospholipase C gamma-1. This knowledge will be useful in the design of new antidiabetic agents or regimens.

1. Introduction

The hormone glucagon, produced by pancreatic alpha cells,
contributes to the regulation of blood glucose by promoting
hepatic glucose production in response to declining blood
glucose. However, its excessive secretion contributes to the
development of type 2 diabetes [1, 2]. Moreover, in both type
1 and type 2 diabetes, its secretion is dysregulated; with
hypersecretion at moderate and high glucose, aggravating
hyperglycemia; and failure of secretion at low glucose, leading
to life-threatening hypoglycemia [2, 3]. The mechanisms of
such alpha cell dysregulations are not well understood. This
article discusses the related literature to present an up-to-
date understanding of these processes, beginning with an out-
line of the pathways of glucagon secretion. The mechanism of
induction of hyperglucagonemia in otherwise healthy individ-
uals and how this contributes to type 2 diabetes is discussed. A
synthesis of the literature unveils a signaling pathway that
contributes to glucose- and/or hydrogen peroxide-induced
glucagon secretion. Excessive activation of this pathway in

diabetes dysregulates glucagon secretion through alpha cell
oxidative stress and reduced ATP synthesis. The relevance of
such a pathway to the antihyperglycemic and antihypoglyce-
mic effects of some antidiabetic agents is discussed.

2. Glucagon Secretion Pathways

Glucagon synthesis involves transcription of the preproglu-
cagon (Gcg) gene to produce proglucagon mRNA, which is
translated to proglucagon, whose cleavage by prohormone
convertase 2 produces glucagon [4]. The synthesized gluca-
gon molecules are packaged into secretory vesicles (SVs),
which need to be translocated to the plasma membrane
(PM) where they get docked through protein-protein inter-
actions [5, 6]. Before secretion, the vesicles get primed for
exocytosis through protein interactions that promote their
rapid calcium-dependent fusion with the PM [5].

As illustrated in Figure 1, one of the hypothesized path-
ways leading to primed glucagon granule exocytosis begins
with potassium efflux through ATP-dependent K+ channels
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(K-ATP channels) [7, 8]. According to this hypothesis, gluca-
gon secretion requires the closure of most of these channels,
allowing limited K+ efflux to alter the membrane potential to
a range that permits the opening of voltage-dependent Na+

channels; the resulting Na+ influx causes subsequent opening
of P/Q type voltage-gated calcium channels (VDCCs); calcium
influx through these VDCCs is coupled to fusion of glucagon
vesicles with the plasma membrane, resulting in glucagon
secretion; and too low or too high ATP levels induce excessive
opening or closure of the K-ATP channels, respectively, leading
to the inhibition of this pathway [7–9]. K+ channels activated
by intracellular calcium (calcium activated K+ channels) were
recently found to contribute to glucagon secretion and were
suggested to be useful in limiting voltage-dependent inhibition
of P/Q type VDCCs during prolonged periods of low glucose
[10]. Nevertheless, this K-ATP channel hypothesis is not fully
accepted [7, 11]. For example, at low glucose, reduction in
alpha cell ATP by inhibition of fatty acid oxidation was found
not to affect K-ATP channel conductance, and no membrane
hyperpolarization due to K+ efflux was observed; instead, there
was membrane depolarization due to Na+/K+ ATPase
inhibition [11]. Likewise, as reviewed by Gylfe [7], it has been
reported in some studies that glucose, which increases ATP,
promotes membrane hyperpolarization rather than the
expected depolarization due to K-ATP channel closure.

Other glucagon secretion pathways depend on the reduc-
tion of ER calcium content (Figure 1). For example, at low glu-
cose, the ER calcium pump SERCA is relatively inhibited, and
the low ER calcium levels cause the ER transmembrane pro-
tein, stromal-interacting molecule 1 (STIM 1), to oligomerize
and move to interact with the plasma membrane calcium
channel orai1, thus activating this ‘store-operated channel’
and inducing store operated calcium entry (SOCE) [7, 12].
SOCE depolarizes the membrane, thus inducing calcium entry

through L-type VDCCs which promote exocytosis [7, 12].
High glucose inhibits SOCE by reverse translocation of STIM
1 to the ER, and this effect is maximal by 3mM glucose [7, 12].

ER calcium release and glucagon secretion can be
induced even at high glucose subsequent to the intracellular
increase in cyclic adenosine monophosphate (cAMP) or
inositol triphosphate (IP3) [6, 13, 14]. For example, fatty acids
promote glucagon secretion at both low and high glucose by
binding to the FFAR1 receptor, which is coupled to phospho-
lipase C activation and generation of IP3, which induces the
release of calcium from the ER, thus raising the cytosolic
calcium, which is amplified by SOCE and L-type VDCCs to
promote glucagon exocytosis [11, 14–16]. Besides, fatty acids
are also metabolized to produce ATP, which is required for a
variety of processes, including glucagon synthesis, glucagon
vesicle trafficking, docking and priming, maintaining Na+/K-
ATPase activity for membrane repolarization, and preventing
excessive opening of K-ATP channels [8, 11, 14, 17].

3. Isolated Alpha Cells Exhibit a V-Shaped
Glucagon Secretion Curve in Response to
Increasing Glucose: The Influence of ATP and
a Signaling Pathway Leading to
Phospholipase C Gamma-1 Activation and
ER Calcium Release

Isolated alpha cells have a V-shaped glucagon secretion curve
in response to increasing glucose concentrations from 0mM,
with maximal suppression at moderate glucose concentra-
tions of 5-7mM [6, 18]. At low glucose concentrations,
ATP plays a signaling role in glucagon secretion through
cAMP elevation, which is important for accelerating the
mobilization of glucagon granules to the readily releasable
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Figure 1: Pathways of glucagon secretion. VDCC: voltage-dependent calcium channel; ER: endoplasmic reticulum; SOCE: store-operated
calcium entry.
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pool [13, 19]. Suppression of glucagon secretion in response
to glucose has been attributed to increasing ATP concentra-
tions and resultant closure of K-ATP channels, membrane
hyperpolarization through increased Na+/K+ ATPase activ-
ity, inhibition of ER calcium release, and reduction of cAMP
concentrations [6–8, 13]. cAMP level reduction may be
explained by ATP-induced ER filling and reverse transloca-
tion of STIM to the ER, since, at the plasma membrane,
STIM 1 activates adenylyl cyclase [12, 13]. The increasing
ATP also coincides with decreasing activation of adenosine
monophosphate kinase (AMPK), a promoter of glucagon
secretion by an unknown mechanism [20, 21].

The reason for increasing glucagon secretion above the 5-
7mM glucose range is less well understood. However, as
suggested hereafter, a signaling pathway beginning with
sodium-glucose cotransporter 1 (SGLT-1) and involving the
generation of reactive oxygen species (ROS) can explain this
phenomenon (Figure 2). This is partly because ROS released
from beta cells at 16.7mM glucose were found to increase
alpha cell glucagon content and secretion and alpha cell
proliferation [22]. Similarly, hyperglycemia induces alpha
cell hydrogen peroxide production, PI3K-Akt signaling, cell
proliferation, and glucagon secretion [23]. This is in contrast
to the hyperglycemia- and hydrogen peroxide-induced inhi-
bition of PI3K-Akt in beta cells [23]. In the Goto-Kakizaki
diabetes-prone rat model, the elevation in pancreatic islet
PI3K-Akt is associated with increased activation of the
nonreceptor tyrosine kinase Src and related ROS production,
which can be inhibited by Src inhibitors [24, 25]. Src
activation has similarly been found in pancreatic islets of
db/db mice [26]. Inhibitors of the epidermal growth factor
receptor (EGFR) were found to reduce ROS in islets from
Goto-Kakizaki rats, and it was postulated that Src may
transactivate this receptor [25]. In addition, an increase in
glucagon secretion in hyperglycemia is associated with an
increased activity of protein kinase C delta (PKC-δ) [27].
Thus, PI3K-Akt, PKC-δ, Src, and EGFR should be important
components of the suggested signaling pathway (Figure 2).

According to Figure 2, transport of glucose and sodium
(Na+) through SGLT-1 is responsible for initiating signaling,
through PI3K activation that leads, via PKC-δ and Src, to
NADPH oxidase (Nox) and the production of hydrogen
peroxide (H2O2). This is based on the analogy that in cardio-
myocytes exposed to high glucose, glucose transport through
SGLT-1 induces Nox2 activation in a process dependent on
sodium and glucose transport but not metabolism, and which
is associated with PKC activation [28]. SGLT1 was reported to
contribute to glucagon secretion when islets were incubated
for 2hrs with both 5mM and 20mM glucose, by a mechanism
dependent on transport rather than glucose metabolism [29].
Membrane depolarization, as can be induced by Na+ entry
through SGLT-1, can trigger activation of PI3K and Akt,
upstream of Nox2 [30]. Akt promotes alpha cell proliferation
via mammalian target of rapamycin (MTOR) [31] and also
activates CREB [32], which promotes glucagon synthesis [4].

Human alpha cells express themelatonin 1 receptor (MT1)
[33]. Melatonin signaling through this receptor induces PI3K-
Akt signaling [34] and promotes glucagon secretion via PI3K
and PLC-γ1, even at high glucose such as 16.7mM [35].

PI3K activates PLC-γ1 through production of phos-
phatidylinositol 3-phosphate, but Akt can also activate this
phospholipase, especially when EGFR is also activated [36].
PLC-γ1 generates IP3, which causes ER calcium release and
glucagon secretion as already described in Glucagon Secretion
Pathways. PKC-δ promotes trafficking of glucagon secretory
granules to sites close to L-type VDCCs that participate in
ER-dependent glucagon secretion [37]. Thus, by activating
PI3K-Akt, glucose can induce glucagon secretion similarly to
melatonin. At increasing glucose above the 7mM glucose, the
ATP level in alpha cells remains constant and maximal [20,
38]. Therefore, the increase in glucagon secretion with
increasing glucose may be due to increasing activation of the
signaling pathway in Figure 2 rather than changes in ATP.
Nox activity may increase with increasing glucose because of
higher NADPH availability from the pentose phosphate
pathway, since this pathway was found to be required for
hyperglycemia-induced Nox activity elevation in cardiomyo-
cytes [28]. Moreover, with increasing glucose, there is
increased nonenzymatic protein glycation, which further
promotes the activation of Nox and Src [28, 39, 40].

PI3K activates PKC-δ [41], which activates Akt, Nox, and
Src [41–43]. Src activates Nox, PLC-γ1, and EGFR [25, 44,
45]. EGFR activates both PLC-γ and PI3-K [36]. Nox
produces superoxide anions that are converted by superoxide
dismutase to hydrogen peroxide (H2O2). Hydrogen peroxide,
via Src, activates PI3K [46], thus establishing a positive
feedback loop for sustained P13-Akt activation and hydrogen
peroxide generation. This also explains the fact that hydro-
gen peroxide can promote glucagon secretion, increase
glucagon content, and cell proliferation [22].

Hydrogen peroxide-mediated Src activation depends on
sulfenylation of two cysteine residues [47]. ROS-mediated
carbonylation of specific proline and threonine residues of
Na+/K+ ATPase additionally promotes Src signaling by
freeing the latter from an inhibitory interaction with the
former, and this has been reported to be involved in the path-
ogenesis of obesity and cardiovascular dysfunctions [48, 49].
Although it has been suggested that such carbonylation
involves hydroxyl radicals generated by the Fenton reaction
between hydrogen peroxide and ferrous ions [48], this is
unlikely due to the very high reactivity of hydroxyl radicals,
which makes them react unselectively [50]. Singlet oxygen
(1O2) is a more selective ROS, which can be formed by the
reaction of hydrogen peroxide with glucose [51], oxidizes
amines [52], and such oxidation was recently suggested as
being involved in the formation of biologically relevant
amide-type adducts such as Nε-(hexanoyl) lysine [53]. Thus,
it is proposed that the carbonylation of Na+/K+ ATPase may
be mediated by singlet oxygen according to Figure 3.

4. Elevated Plasma Nonesterified Fatty Acids
(NEFA) Induce Alpha Cell Insulin Resistance
and Associated Dysfunctions That Promote
the Pathogenesis of Type 2 Diabetes

Dysregulation of glucagon secretion starts before the
development of type 2 diabetes [54, 55]. The path towards
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type 2 diabetes involves two major types of prediabetic states,
namely, impaired fasting glucose (IFG, defined by fasting
glucose of 5.6-6.9mM) and impaired glucose tolerance
(IGT, defined by 2-hour glucose of 7.8-11mM after oral con-
sumption of 75 g equivalent of glucose) [56]. Elevated hepatic
glucose production is the key characteristic of IFG and
decreased suppression of postprandial hepatic glucose
production contributes to IGT [57]. Fatty acids induce a
dose-dependent elevation of glucagon secretion at both low-
and moderate-glucose concentrations [14, 16, 58]. Thus,
conditions such as obesity that elevate plasma NEFA expose
alpha cells to the latter’s glucagon-elevating effects [59]. How-
ever, both glucagon and fatty acids induce insulin secretion
[16, 60], which inhibits glucagon secretion. Hence, elevated
fatty acids may initially promote fasting hyperinsulinemia
but not hyperglucagonemia (Figure 4). Sustained NEFA eleva-

tion and resultant hyperinsulinemia can induce insulin resis-
tance in alpha cells, hepatocytes, and other cell types [61–63].
Palmitate induces both insulin resistance and ER stress in alpha
cells [61, 64]. ER stress upregulates glycogen synthase kinase 3
(GSK3) [65], which causes insulin resistance by phosphorylat-
ing insulin receptor substrate 1 (IRS1), which subsequently
undergoes ubiquitination and proteosomal degradation [66].

Insulin inadequately inhibits glucagon secretion in
insulin-resistant alpha cells [61], resulting in fasting hyperglu-
cagonemia, which promotes fasting hepatic glucose produc-
tion and IFG, especially in the setting of hepatic insulin
resistance (Figure 4). Fasting hyperglucagonemia may
promote muscle wasting and is associated with IGT due to
decreased postprandial uptake of glucose by muscles [1, 67].
Likewise, alpha cell insulin resistance reduces postprandial
glucagon suppression, and thus sustains hepatic glucose
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Figure 2: Suggested signaling pathway for glucose-induced increase in glucagon synthesis, glucagon secretion, and alpha cell proliferation.
Melatonin and hydrogen peroxide (H2O2) also initiate the pathway.
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production in the postprandial state, which contributes to IGT
[68]. Chronic exposure of beta cells to palmitate induces ER
stress and apoptosis [64], which reduces insulin production,
thus contributing to IGT. Although alpha cells are subject to
ER stress, they are resistant to apoptosis [69]. Thus, the alpha
cell to beta cell ratio with associated glucagon to insulin ratio
may increase with time, further elevating blood glucose [31].

Prediabetic individuals either revert to normoglycemia or
progress to diabetes. Systemic oxidative stress is an important
factor associated with progression to diabetes [70–73].
Hypertension is also strongly related to the progression to
diabetes [74], and this can be linked to oxidative stress [75].
During systemic oxidative stress, alpha cells may be chroni-
cally exposed to hydrogen peroxide from beta cells and endo-
thelial cells, and this may lead to chronic activation of PI3K-
Akt signaling in alpha cells according to Figure 2. Although
Akt ordinarily phosphorylates and inhibits GSK3, chronic
Akt activation desensitizes GSK3 from this inhibition [76].
GSK3 activation promotes mitochondrial damage, including
inhibition of complex 1, mitochondrial fission, dissolved cris-
tae, and overall change in morphology [77–80]. Alpha cells
with such mitochondrial damage may be under elevated
superoxide anion production even at basal glucose [81]. As
described in the next section, oxidative stress and mitochon-
drial alterations increase glucagon secretion at normal and
high glucose and are therefore likely to accelerate the occur-
rence of frank hyperglycemia characteristic of diabetes.
Hence, chronic infratherapeutic treatment of Goto-Kakizaki
young rats with the GSK3 inhibitor, lithium, prevented islet
inflammation and diabetes [82].

5. Alpha Cell Insulin Resistance, Mitochondrial
Abnormalities, and Chronic Oxidative Stress
Dysregulate Glucagon Secretion in Diabetes

In normal pancreatic islets, unlike isolated alpha cells, the rise
in glucagon secretion at glucose concentrations above 7mM
is suppressed by paracrine action of somatostatin and insulin
produced by beta cells and delta cells, respectively, and by gap
junction coupling between these cells [11, 83]; but, this
paracrine suppression is lost in diabetes because of alpha cell
insulin and somatostatin resistance [18, 55]. Chronic
exposure of alpha cells to high glucose upregulates the
expression of SGLT-1 [9, 29] and overactivates the signaling
pathway in Figure 2, as evidenced by increased activation of
PI3K-Akt, PKC-δ, Src, and ROS generation in diabetic islets
[24–27, 81]. Oxidative stress and mitochondrial abnormalities
cause reduced ATP production in alpha cells [9, 84, 85].
Decreased ATP increases glucagon secretion at both moderate
and high glucose [9, 85]. On the other hand, at low glucose,
ATP can drop below the level required for glucagon secretion,
thus leading to failure of glucagon counterregulation and
hypoglycemia [9, 84, 85]. Accordingly, the antioxidant
epigallocatechin-3-gallate prevented oxidative stress and
restored glucagon secretion in a TC1-6 pancreatic alpha cell
line, leading to the suggestion that combining conventional
antihyperglycemia therapy with antioxidant therapy may
avert hypoglycemia in clinical treatment of diabetes [86]. Oral
administration of glucose restores glucagon secretion [87].
Apart from its role as a substrate for ATP synthesis, glucose
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Figure 4: Fatty acid- and oxidative stress-induced alpha cell dysfunction upstream of type 2 diabetes.
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is metabolized through the pentose phosphate pathway to
generate NADPH for reduction of oxidized glutathione, and
hence alleviation of oxidative stress [88]. Notably, in response
to hypoglycemia, activation of the hypothalamic-pituitary-
adrenal axis occurs, resulting in release of catecholamines that
greatly increase plasma free fatty acids, yet this does not neces-
sarily resolve the hypoglycemia [89]. Although fatty acids may
supply energy to prevent hypoglycemia [11], it is likely that they
do not efficiently promote hypoglycemia recovery because they
cannot resolve the oxidative stress and might even aggravate it.

6. Antioxidant Antidiabetic Agents Improve
Glucagon Hypersecretion and Hyposecretion

Glucagon-like peptide 1 (GLP-1) and GLP-1 receptor agonists
such as exendin reduce hyperglycemia and are associated with
lower risk of hypoglycemia [25, 90, 91]. They promote cAMP
formation, which, through Epac2, inhibits Src signaling and
induces Nrf2 antioxidant response [25, 92]. Thus, by reducing
ROS formation, GLP-1 and its receptor agonists increase ATP
production [25, 93], to improve glucagon hyposecretion and
hypersecretion. G protein-coupled receptor 119 (GPR119)
agonists induce glucagon secretion during hypoglycemia but
not hyperglycemia in diabetic mice [94]. Like GLP-1R signal-
ing, GPR119 signaling involves cAMP production; and this
receptor has the advantage of being robustly expressed in
alpha cells, unlike the GLP-1 receptor [94].

Exogenous insulin administration promotes somatostatin
secretion, which aggravates hypoglycemia by reducing cAMP
formation; while somatostatin receptor antagonists improve
hypoglycemia by increased cAMP [3], and associated
reduction in oxidative stress. It is likely that, at high glucose,
somatostatin only lowers glucagon when in collaboration with
insulin, which activates Akt, thus inhibiting GSK3 and pro-
moting Nrf2-associated expression of antioxidant enzymes.
Otherwise, somatostatin alone, by reducing cAMP, might
induce oxidative stress. Accordingly, diabetes patients, with
low insulin secretion, experience hyperglucagonemia although
their somatostatin secretion is even upregulated [95].

Although according to Figure 2, SGLT-1 inhibitors should
inhibit PI3K-Src-ROS signaling and thus prevent hypoglyce-
mia, this is not the case in [29]. This can be explained by their
reduction of glucose entry for ATP synthesis and glutathione
reduction. A related result has been reported that in cardio-
myocytes, SGLT-1 induces ROS generation at high glucose
but promotes survival at low glucose by replenishing ATP
stores through enhanced glucose availability [96].

There has been increasing interest in the antidiabetic
effects of the flavonoid quercetin, but this has mainly been
limited to animal studies [97]. Quercetin has been demon-
strated to inhibit glucagon secretion through PKC-δ inhibi-
tion [27], and it is also known to be an antioxidant and
inhibitor of Src [98]. Further studies of this flavonoid and
related phytochemicals in the prevention or management of
diabetes are warranted. The same applies to the peptide
pNaKtide which inhibits Na+/K+ ATPase-dependent Src
activation and has been found to be beneficial against various
other metabolic disorders [49].

7. Conclusion

In healthy individuals, glucose increases ATP to promote
glucagon secretion in hypoglycemia and to suppress glucagon
secretion at higher glucose levels to prevent hyperglycemia. At
high glucose, such as in the postprandial state, glucagon
secretion is suppressed by paracrine action of somatostatin
and insulin produced by beta cells and delta cells, respectively.
Alpha cell dysfunctions such as insulin resistance, mitochon-
drial alterations, and oxidative stress contribute to the
pathogenesis of type 2 diabetes and glucagon dysregulation
in diabetes. A signaling pathway that can be initiated by glu-
cose and sodium transport through SGLT-1 or by hydrogen
peroxide promotes glucagon secretion and, if overactivated,
may induce oxidative stress and ATP reduction as key contrib-
utors to glucagon dysregulation in diabetes. This pathway can
be targeted in the search for new antidiabetic agents.
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