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Abstract: The circularization of viral genomes fulfills various functions, from evading host defense
mechanisms to promoting specific replication and translation patterns supporting viral proliferation.
Here, we describe the genomic structures and associated host factors important for flaviviruses
genome circularization and summarize their functional roles. Flaviviruses are relatively small, single-
stranded, positive-sense RNA viruses with genomes of approximately 11 kb in length. These genomes
contain motifs at their 5′ and 3′ ends, as well as in other regions, that are involved in circularization.
These motifs are highly conserved throughout the Flavivirus genus and occur both in mature virions
and within infected cells. We provide an overview of these sequence motifs and RNA structures
involved in circularization, describe their linear and circularized structures, and discuss the proteins
that interact with these circular structures and that promote and regulate their formation, aiming to
clarify the key features of genome circularization and understand how these affect the flaviviruses
life cycle.
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1. Introduction

Flaviviruses comprise a number of arthropod-borne infections, most of which are
prevalent in tropical and subtropical regions around the globe [1–4]. Prominent members
of the Flavivirus genus include yellow fever (YFV), tick-borne encephalitis (TBEV), Japanese
encephalitis (JEV), Zika (ZIKV), West Nile (WNV), and dengue (DENV) viruses [5,6]. DENV,
transmitted by Aedes spp. female mosquitoes (A. albopictus and A. aegypti), is estimated
to infect approximately 400 million people per year, with some cases progressing to hem-
orrhagic dengue fever, leading to over 20,000 deaths worldwide every year [3]. Whereas
vaccines are available and effective against YFV, a broadly effective vaccine against all four
subtypes of DENV (DENV-1 to DENV-4), or against ZIKV, remains elusive [7,8]. ZIKV,
transmitted by the same mosquitoes, is also a global concern due, among other factors,
to the continued expansion of these mosquito vectors. Approaches to deal with DENV
and ZIKV infections focus mainly on relieving and managing the symptoms. Appropriate
medical care of patients progressing to severe dengue can reduce the mortality rate from
approximately 20% to 1% [3]. However, this approach alone is insufficient, as medical care
may not be affordable or available to vulnerable socio-economic groups in developing
countries where flavivirus infections are most prevalent. Therefore, reducing the number
of infections is also imperative. Moreover, as highlighted by the ongoing severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 pandemic, rapid outbreaks
can locally saturate medical care units, even in developed countries, by overwhelming
the national healthcare system’s capacity. Further research of preventive or therapeutic
strategies is critical, as their immediate availability could mitigate limited medical re-
sources. In addition to accelerated spread, ZIKV poses risks not associated with DENV.
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Complications such as microcephaly and other neurological conditions arising from ZIKV
infection may occur and add to a total mortality rate near 8%, as demonstrated in Brazil [9].
Both DENV and ZIKV cases have been rising in recent years, not only in at-risk develop-
ing countries, but also in developed nations, since outbreaks associated with travel are
now documented in Europe and North America [3,10–12]. Two causal factors, operating
concurrently, increase the spread of flavivirus infection: (i) globalization of travel and
trade, which escalates virus circulation by exposing naive populations to these infectious
agents of foreign origin, plus (ii) the expansion of mosquito habitat resulting from climate
change, urbanization, and other factors that help to establish reservoir vector populations
in regions that were previously inhospitable to these arthropods [13–17]. These changes
in flaviviruses distribution and vector routes support predictions of further expansion
worldwide. Thus, effective and readily available treatments and/or prophylactic measures
have become a top priority of governments worldwide, with preventative actions being
the best approach to deal with the devastating effects of major epidemics on affected
populations and their countries’ economies.

2. General Genome Structure

Flaviviruses contain single-stranded (+)-sense RNA genomes approximately 11 kilo-
bases (kb) in length, with a single open reading frame encoding a genomic polyprotein
that is post-translationally processed into its constituent parts. These genomes encode
three structural proteins at the 5′ end, namely the capsid (C), precursor membrane, and
the envelope protein, plus seven nonstructural proteins (detailed ahead). All flavivirus
genomes include a short 5′ untranslated region (UTR) of approximately 100 nucleotides
(nt) and a variable-length 3′ UTR containing a number of crucial RNA motifs broadly
conserved across the family. As shown in Figure 1A, these motifs comprise a 5′ stem loop
(SLA), a short hairpin (SLB), a capsid hairpin (cHP) at the 5′ end, and at the 3′ end of the
genome frequently two dumbbell structures (5′ and 3′ DB) upstream of a terminal 3′ stem
loop (3′ SL), and another short hairpin (sHP, also referred to as a “small stem loop” or SSL
by some authors), which is preceded in sequence by a variable combination of stem-loops
(SL), from 1 to 4 (SL-I to SL-IV), at the 5′ end of the 3′ UTR. In addition to these structures in
the 5′ and 3′ regions, recent large-scale structure probing and crosslinking studies of DENV
and ZIKV revealed a variety of conserved structural elements throughout the coding region,
and functional experiments have demonstrated their importance for viral fitness [18–20].
In Figure 1, key elements are identified within a simplified graphical linear schematic of
flaviviruses genomes. Overall, the flavivirus genome is relatively rich in conserved nu-
cleotide sequences integrated into a variety of functional secondary structure elements with
important roles in regulation and viral replication. The following section presents major
functional regions individually and describes their particular structural characteristics.

2.1. The 3′ UTR

The 3′ UTR (Figure 1) is an approximately 300–700 (depending on species) nucleotide
long stretch of RNA terminating in a conserved hydroxylated CU motif, which acts as a
recognition site for the viral RNA-dependent RNA polymerase domain of non-structural
protein 5 (NS5) [21]. This region includes numerous conserved secondary structures and
sequence motifs, each critical to the flavivirus life cycle. Broadly organized, the 3′ UTR is
composed of a 5′ variable region (VR), which is dispensable for replication but influences
the replication and translation processes, and an essential and relatively invariable 3′ core
region, required for genome synthesis [21]. Rigorous structure-based classification divides
the 3′ UTR into three discrete domains (the aforementioned core and VR domains, plus
an intervening dumbbell region), each with unique roles in viral growth, replication,
transcription, translation, and virulence. To better understand their relevance, a brief
summary of each domain follows, highlighting their structure and function, with attention
given to significant motifs and subregions.
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Figure 1. Structural overview of flaviviral genomes. (A) Schematic representation of the linear 5′ and 3′ untranslated region 
(UTRs). Circularization motifs are indicated and labeled in color. The upstream AUG region (UAR; blue) is followed by 
the downstream AUG region (DAR; green) and the highly conserved circularization sequence (CS; red). Translation 
initiation happens within stem loop B (SLB) between 5′ UAR and 5′ DAR. The order of circularization sequence motifs is 
inverted in the 3′ region. (B) The circular form of the genome (paired motifs shown in color). SLB, capsid hairpin (cHP), 
short hairpin (sHP), and 3′SL undergo structural reorganization upon circularization. (C) Overview of flaviviral RNA 
genes. An ≈100 nt 5′ UTR is followed by a ≈10 kb single open reading frame coding a single genome polyprotein, which is 
post-translationally processed to form the structural (C, prM, and E) and non-structural proteins comprising the flaviviral 
proteome. The open reading frame is followed by an ≈300–700 nucleotides (depending on species) 3′ UTR containing 
conserved structural elements. 
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Figure 1. Structural overview of flaviviral genomes. (A) Schematic representation of the linear 5′ and 3′ untranslated
region (UTRs). Circularization motifs are indicated and labeled in color. The upstream AUG region (UAR; blue) is followed
by the downstream AUG region (DAR; green) and the highly conserved circularization sequence (CS; red). Translation
initiation happens within stem loop B (SLB) between 5′ UAR and 5′ DAR. The order of circularization sequence motifs is
inverted in the 3′ region. (B) The circular form of the genome (paired motifs shown in color). SLB, capsid hairpin (cHP),
short hairpin (sHP), and 3′SL undergo structural reorganization upon circularization. (C) Overview of flaviviral RNA
genes. An ≈100 nt 5′ UTR is followed by a ≈10 kb single open reading frame coding a single genome polyprotein, which is
post-translationally processed to form the structural (C, prM, and E) and non-structural proteins comprising the flaviviral
proteome. The open reading frame is followed by an ≈300–700 nucleotides (depending on species) 3′ UTR containing
conserved structural elements.

2.2. The 3′ Core Region Structures and Sequences Involved in Flavivirus Genome Circularization

Cyclization, defined as the process of circularization that occurs in the flavivirus
genome, is discussed in the context of this review. Here, both terms (cyclization and
circularization) are used interchangeably. The most conserved 3′ UTR structures and
sequences reside in a core region where RNA motifs directly participate in flavivirus
genome replication. A single copy of the 3′ conserved sequence (CS1 or 3′ CS) is located
upstream of the 3′ stem loop (3′ SL) (Figure 1A). CS1′s 5′ end contains eight consecutive
highly conserved nucleotides, known as the 3′ cyclization sequence (3′ CYC), whose
corresponding complement is located near the 5′ UTR capsid hairpin (cHP) (described in
detail in Section 2.10). This area incorporates the 3′ conserved and cyclization sequences
and the less conserved 3′ upstream of AUG region (named 3′ UAR) and 3′ downstream
of AUG region (termed 3′ DAR), all of which are involved in genome circularization. CS1
is situated upstream of the 3′ SL, while the 3′ UAR is located within the 3′ SL’s lower
stem and the 3′ DAR sits between the 3′ UAR and the 3′ CYC (Figure 1A). The 3′ DAR
motif overlaps the short hairpin (sHP) and together with the 3′ UAR form a long-range
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interaction with complementary sequence motifs in the 5′ UTR. This interaction initiates
the protein-independent cyclization of the flavivirus genome.

2.3. The 3′ Stem-Loops (3′ SL)

The 3′ terminal stem-loops (3′ SL) (Figure 1A, 1B) were the first RNA structures
identified in mosquito-borne flavivirus (MBFV) genomes. Their location at the extreme
3′ end of the flavivirus genome places them directly after the ubiquitous sHP, which is
one of two RNA structures found in all flavivirus genomes. 3′ SL structures were vali-
dated and are well characterized via biochemical analysis and nuclear magnetic resonance
spectroscopy [22–24]. In DENV genome 3′ SL consists of 79 nucleotides, while sHP is
14 nucleotides long. The size variation of these motifs is observed in comparison to similar
flaviviruses; however, they are representative structures within the genus Flavivirus, as
there is high sHP sequence conservation throughout the genus as a whole. Mutational and
knockout analysis determined the 3′ SL is a cis-acting regulatory element essential to virus
replication and lethal to infectious flavivirus clones if deleted, but it does not influence
translation [25,26]. Likewise, deletion of sHP is lethal in WNV, and loop mutations or
base-pairing disruptions in the sHP stem are lethal for WNV and DENV, respectively [27].

Tertiary interactions between the 3′ SL and sHP have been proposed for WNV [28],
but mutational analysis and nuclear magnetic resonance spectroscopy were unable to
demonstrate this interaction for truncated 3′ WNV RNA [23]. Shi et al. [28] observed a
structural transition at low temperatures by circular dichroism, which they attributed
to the disorganization of the putative tertiary interaction. However, Davis et al. [23]
show that the observed structural change likely stems from the lower portion of the 3′ SL,
which contains the UAR element involved in circularization, proposing a role for the host
factor eEF1A in the structural rearrangement at this site. This metastable region offers
conformational flexibility necessary in the lower portion of the 3′ SL to allow switching
from the 3′ SL and 5′ cHP structures to the 3′–5′ RNA–RNA interaction [23]. Through
mutational analysis, Davis et al. demonstrated that the eEF1A–RNA interaction is essential
for efficient negative-strand synthesis, which is a finding that highlights the multifunctional
nature of the 3′ SL [29].

2.4. The 3′ Conserved/Cyclization Sequence (CYC) and UAR/DAR

The long-range 3′-5′ RNA–RNA base-pairing interaction of complementary cyclization
motifs results in formation of the 5′-3′ panhandle structure, which is a signature of circular
flavivirus genomes, and it is a required precursor for negative-strand synthesis. The circular
structure initiates the replication of negative-sense genomic progeny RNAs via NS5 C-
terminal binding at the last two nucleotides of the 3′ SL. The native sequences of these
motifs (3′ CYC and 5′ CYC) are critical to flavivirus replication, as alternative base-pair
substitutions were found to reduce virus replication efficiency [30]. Introducing mutations
in the CYC adjacent sequence increasingly affected the replication of WNV infectious
clones. Five mismatches were lethal, but two or three mismatches reduced replication
efficiency and were rapidly reverted [30]. These CYC adjacent sequences function to extend
the long-range 3′–’5 RNA–RNA interaction by base-pairing with 5′ UTR complements but
is not necessary for genome circularization. The UAR and DAR (Figure 1A, 1B) are poorly
conserved between flavivirus species, but 3′–5′ complementarity is preserved within their
respective genomes [31]. Mutational experiments demonstrated the sequence requirements
of genome cyclization leading to replication where base-pair disruptions in the 3′–5′ CYC
formed neither CYC nor UAR interactions, but genome constructs with mismatches in
the UAR were able to circularize [32]. Further studies by other groups solved the order in
which these 5′–3′ RNA–RNA interactions occur in the flavivirus genome: the 5′ and 3′ CYC
sequences initiate the interaction, followed by 5′–3′ DAR annealing, and lastly 5′–3′ UAR
pairing to stabilize the complex [31].
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2.5. Structure Duplication within the 3′ UTR and Flavivirus Host Switching

The 5′ variable region (VR) of the flavivirus 3′ UTR contains two independently folded
domains, each comprised of several direct sequence repeats. Studies focusing on duplicated
RNA structures derived from these repeats support a model in which the presence of
redundant elements allows the virus to accommodate mutations beneficial in one host, but
deleterious in the other, thereby increasing the robustness of flavivirus genomes [33]. The
flavivirus genome is well adapted to function under disparate environmental stressors,
even when changes in sequence compromise replication efficiency. Such an adaptive
mechanism may also explain the prevalence of disordered regions throughout the flavivirus
proteome [34]. These disordered regions increase the functional diversity of a finite viral
proteome by conferring a greater potential for viral–host protein interactions [35].

The dumbbell region (DBR), first identified in the 3′ UTR of DENV genomes, is so
named due to one or two tandemly repeated stem-loops with a characteristic dumbbell
structure. Initial investigations, spurred by flaviviruses’ curious maintenance of duplicate
RNA structures, attempted to explain the biological function of each element. Dumbbell
1 (DB1) and dumbbell 2 (DB2) were initially believed to act primarily as viral replication
augmenters [36]. However, secondary structure prediction discovered that these dumbbells
occur with unequal frequency in the 3′ UTR of different flavivirus genomes. Additional
computational analysis predicted that DBs can also adopt uniquely folded tertiary structure
intermediates, via complementary base-pairing between terminal loop 1 and 2 (TL1 and
TL2) and their respective pseudoknots (PK3 and PK4), although biochemical data support
the existence of only the DB1 TL1–PK3 pseudoknot in DENV2 [24,37]. Further biochemical
analysis conducted as cap-independent translation assays revealed that mutations both in
TL1 and TL2 reduced DENV2 translation by 60% [37]. The DBR contains two conserved
sequences, both overlapping the first loop of their respective structures: repeated conserved
sequence 2 (RCS2) belongs to DB1, while conserved sequence 2 (CS2) resides in DB2.
Definitive functions related to these two motifs remain unclear, but one study suggests
CS2 and RCS2 mutations to adversely impact translation [38]. Overall, DBR is a crucial
element in the maintenance of global viral RNA genome structure and plays a major role
in translation efficiency.

Despite this information, explicit DBR functions may be challenging to elucidate, as
the DB structures, pseudoknots, and RCS2/CS2 sequences all influence genome folding. As
discussed elsewhere [39], more recent investigations focus on structure duplication within
the DBR and explore the nature of these elements and their significance in flavivirus host
switching. Comprehensive sequence analysis of the entire flaviviruses family postulated
that duplicated motifs are an outcome of evolutionary pressure favoring viral adaptation to
multiple hosts [40]. Recent experimental data confirmed functional roles for duplicate DBR
structures in host switching and supports distinct functions for each DB structure. Here, the
authors found that each DB structure is under different selective pressure within a particular
host [41]. Sequence analysis determined greater DB2 sequence variation within a given
MBFV serotype, suggesting that the functional diversification of paralogous DB1 and DB2
occurred after duplication and, therefore, could be driven by host-specific requirements [41].
In support of this hypothesis, the authors found that positively selected mutations occurring
in adult mosquito cells that affect the DB2 structure result in enhanced RNA replication [41].
Similarly, the deletion or mutation of SL-II confers a significant replication advantage in
mosquito cells, while SL-I mutations have little effect on viral fitness. In contrast, SL-I
and SL-II appear to have redundant roles in the human host. Moreover, DENV constructs
with either DB1 or DB2 deletion demonstrated opposing effects on luciferase expression,
with DB1 deletion yielding a 10-fold decrease and DB2 deletion yielding an 8-fold increase
relative to the wild-type virus. These results were confirmed in mosquito cells through
measurements of viral RNA accumulation and demonstrate the DBR’s effect on viral titer.
In human cells, a double deletion reduced viral replication by nearly 400-fold, while single
deletions exhibited the same effect in mosquito cells, albeit to a considerably different
degree [41]. As a consequence, viral replication depends on DBR stability as mutations
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within this region severely affect genome replication efficiency. To the extent that DBR
mutations elicit local changes in secondary structure, resulting genome circularization
patterns may be altered, explaining the observed phenotypic differences.

2.6. The Variable Region (VR)

Spanning approximately 84 nucleotides, the variable region (VR) is situated immedi-
ately 3′ of the stop codon and exhibits comparatively low sequence conservation within
the 3′ UTR. VR size varies: similar to DBR, the VR may contain one to three conserved
direct repeat sequences. In WNV, these are known as conserved and repeated conserved
sequence 3 (CS3 and RCS3, respectively). Large sequence alignment analysis suggests
that short direct VR repeats are remnants of a larger ancient long repeat sequence [42].
VR length is inconsistent even within virus types, which may contribute to intra-species
diversification and aid viral fitness. In DENV and TBEV, the VR exhibits substantial fluc-
tuations in length among serotypes, ranging from less than 50 nucleotides to more than
120 [43,44]. In TBEV strains passaged in mammalian cells or isolated from human patients,
these size fluctuations arise from sequence deletions or poly-A insertions [45–47]. Such
length alterations, particularly direct repeats, correlated to RNA replication, suggest a
mechanism for flavivirus host cell adaptation and may explain virulence in severe clinical
cases [48]. Structurally, this subregion contains species-specific stem loops of varying size
and number, some of which with functions crucial to flavivirus fitness. Efficient genome
replication, but not translation or infectious viral particle production for DENV-1/2 in
mammalian cells, requires complete and intact VR sequences [36,49]. Furthermore, detailed
studies of the VR have uncovered subregion specialization that may endow members of the
Flavivirius genus with the ability to calibrate viral RNA accumulation in response to host
cell type during infection. Based on local sequence conservation, the VR can be divided
into 5′ hypervariable (HVR) and 3′ semi-variable (SVR) regions. In 2007, Tajima et al.
reported that deletions occurring within either or both subregions reduced the growth
of recombinant DENV-1 virions in mammalian cells, but reverse sequence alterations in
the SVR alone were able to influence viral replication in host cells, but not in mosquito
cells [36,49]. Whereas HVR supports efficient DENV-1 growth in a sequence-independent
manner and reversed SVR sequences impeded DENV-1 growth kinetics, it follows that
the length of the HVR, along with some critical SVR secondary structure, is important for
adequate DENV-1 replication.

In addition to genome replication, evidence from studies in mouse models suggests
the VR is also a critical flavivirus virulence factor. Using chimeric TBEV constructs de-
rived from strains of disparate pathogenicity, a highly pathogenic Sofjin-HO Far-Eastern
subtype VR was transposed with the VR from a low pathogenic strain (Oshima 5–10) [50].
Oshima-derived chimeric viruses with Sofjin VR achieved virulence levels comparable
to native Sofjin viruses. Furthermore, the nearly identical viral titer levels of chimeric
Oshima resulted in histopathological changes to brain tissue that are characteristic of Sofjin
infection. The following studies suggested that TBEV pathogenicity is associated with
VR conformational structure [50,51], as recombinant TBEV constructs with specific VR
stem-loop deletions displayed increased virulence in mouse brain tissue, with no reduction
in subgenomic flavivirus RNA (sfRNA) production. Overall, the VR acts as a modulator of
genome replication as well as host and cell type selectivity, and it impacts the virulence of
individual strains or serotypes [33].

VR stem-loops vary considerably both in size and number between flavivirus species;
the stem-loops of the WNV VR are the most well-characterized, comprising four stem-
loops, designated SL-I through SL-IV. SL-II and SL-IV of WNV may provide resistance
to host nuclease activity [51]. SL-II, SL-IV, and (potentially) DB1 are capable of stopping
genome degradation by pausing exoribonuclease Xrn1 at VR stem-loops. Pausing results
in the accumulation of undigested sfRNA fragments [52,53]. These non-coding fragments
help neutralize the antiviral responses of mosquito and human cells in a concentration-
dependent manner [54]. Undigested sfRNA fragments achieve this outcome via two
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distinct mechanisms: (i) antagonization of the host’s innate immune response by block-
ing interferon-α activity, and (ii) direct inhibition of the exoribonuclease Xrn1 activity at
stem-loop sites [55,56]. sfRNA production via this mechanism has been shown in human
and mosquito cells for ZIKV [57]. Additionally, duplicate DENV structures SL-I and SL-II
are functional analogues of WNV SL-II and SL-IV and are composed of nearly identical
sequence repeats. These VR stem-loops also form pseudoknots through interactions be-
tween apical loop sequences and conserved pseudoknots located in their respective basal
stems. The presence of consecutive pseudoknots may act as size-restricting checkpoints
during the production of biologically active sfRNA fragments and promote their formation.
These functions in concert may help to protect other viral genome RNAs from degrada-
tion. The structure of the sfRNA of Murray Valley encephalitis virus was determined by
crystallization and demonstrates resistance to Xrn1-mediated degradation [58].

VR stem-loops formed from direct repeat sequences (e.g., DENV SL-II) garner muta-
tions that can provide host-specific adaptations. One study revealed a hot spot for sequence
variations in the 3′ UTR in DENV populations restricted to replicate in either mosquito or
human cells [33]. Subsequent deep sequencing discovered that mutations selected for in
mosquito cells mapped to SL-II. The authors observed that mutations disrupting the SL-II
structure increased viral fitness in mosquito cells relative to DENV constructs harboring
native SL-II [33]. Conversely, SL-II disrupting mutations reduced viral replication in hu-
man cells [33]. SL-I does not induce this effect in mosquito cells and remains intact during
flavivirus replication in both mosquito and human cells. These disparate observations
support the functional diversification hypothesis of duplicated VR elements.

2.7. The 5′ UTR

The flavivirus genome begins with the approximately 100 nucleotide long, highly
conserved, 5′ UTR (Figure 1). In relation to the 3′ UTR, the shorter length of 5′ UTR
exemplifies the region’s well-defined structural landscape and concise range of functions.
The 5′ terminus is decorated with an m7GpppAmpN2 type I cap structure consisting of N7
and 2′OH methyl groups that is followed by a conserved AG dinucleotide [59]. The 5′ UTR
contains one and a half RNA stem-loops that act as distinct functional domains during viral
genome synthesis and translation. These structures include the large highly conserved
stem-loop A (SLA), a short relatively variable stem-loop B (SLB), and the downstream cHP
segment. The following is a brief survey of each structure and its primary functions.

2.8. The Stem-Loop A (SLA)

The roughly 70-nucleotide long SLA (Figure 1A, 1B) is the second of two RNA elements
preserved throughout the flaviviruses family (the other one being sHP, which was already
discussed above in Section 2.3.). Its highly conserved Y-shaped secondary structure consists
of a main stem-loop and smaller side stem-loop. SLA size and sequence vary throughout the
flavivirus genus (Figure 1A). SLA acts as a promoter of negative-strand RNA synthesis and
interacts with NS5 MTase during capping. Interactions between the NS5 methyltransferase
(MTase) domain and specific architectural features of the SLA (the internal loop, as well
as basal and upper stem residues) position the NS5 RNA-dependent RNA polymerase
domain near the 3′ end of the genome during the 3′–5′ RNA–RNA long-distance interaction.
At this point, RNA-dependent RNA polymerase activity can initiate de novo synthesis
of the negative strand [60,61]. SLA also directs the addition of a 5′ cap during synthesis
by repositioning the 5′ end of the nascent genomic transcript near the MTase active site
for catalytic addition of the guanylyl and methyl groups [62,63]. This is a critical function,
as translation of the mosquito-borne flaviviruses’ polyprotein is modulated in a cap-
dependent manner [64]. Thus, the SLA region contributes to regulation and fine-tuning of
long-ranged interactions, as well as to the production of viral genome copies, by interacting
with NS5 MTase, leading to the proper placement of NS5 RNA polymerase domain.
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2.9. The Stem-Loop B (SLB)

A small stem-loop present in most flavivirus species, known as stem-loop B (SLB)
(Figure 1A,B), resides downstream of the 5′ SLA. DENV SLA and SLB are separated
by a flexible oligo (U) tract that promotes structural rearrangement during linear and
circular genome cycling [65]. SLB exhibits greater size and structural variability than
SLA and also contains the AUG translation initiation site as part of its stem region. The
5′ UAR sequence overlaps SLB in both WNV and DENV, while the 5′ DAR sits in SLB
and/or in the adjacent 3′ sequence (Figure 1A). The placement of these long-range RNA–
RNA interaction motifs requires the entire SLB to unfold during genome circularization,
whereupon hybridization of the former stem-loop region with its 3′ complement closes
the circular structure (Figure 1B). Compelled by this mechanism, SLB participates in
long-range RNA–RNA interactions that form canonical flavivirus circularization patterns.
Furthermore, SLB’s 3′ flanking region acts as an additional recruitment site for NS5, the
flaviviral RNA-dependent RNA polymerase (RdRp) [66]. Liu and Qin [66] provide a
detailed discussion of cis-acting flavivirus structures, some of which have recently been
characterized by nuclear magnetic resonance spectroscopy [67]. These data show high
structural conservation between DENV and WNV SLB structures and confirm SLB’s role
as a key cis-acting element involved in circularization. The lower stem of SLB is a U-rich
region known as the 5′-UAR-flanking stem (UFS). Here, base-pair identity acts to lock
5′UAR/SLB conformation, which is an essential recognition structure for NS5 recruitment
and, also, a switching mechanism for viral RNA synthesis [66]. These competing functions
derive from UFS helix stability. Primarily consisting of destabilizing U·A/A·U base pairs,
the UFS duplex is likely more flexible than SLB’s upper stem-loop [68]. Neutral energetic
contributions of G·C/C·G substitutions allow base-stacking interactions to dominate UFS
stability resulting in decreased genome cyclization and viral RNA replication [66,68].
Functioning in tandem, the interplay between SLB structure and UFS stability may be
a critical determinant for flavivirus cyclization and fitness, with further investigation
being required.

2.10. The Capsid Hairpin (cHP)

The cHP is a stable and well-conserved hairpin that follows downstream of SLB and
covers the first nucleotides of DENV and WNV capsid coding regions (Figure 1A). Along
with the 3′ sHP, the 5′ cHP is only present in the linear flavivirus genome, as some of their
stem nucleotides participate in alternative long-distance base pairing during cyclization.
The cHP regulates the selection of the translation initiation codon by positioning a host
ribosome near the first AUG start codon of SLB. The efficiency with which the cHP is able
to direct translation initiation from the suboptimal first start codon is independent of its
position and its sequence, but is instead proportional to its thermodynamic stability [69].
Stable stem-loop structures existing downstream of an AUG codon that is integrated in
a poor Kozak context can pause translation machinery such that it must first unwind
the hairpin before proceeding [70]. Through this stalling mechanism, the cHP acts as a
translation enhancer by facilitating extended ribosomal contact with the optimal flavivirus
start codon.

The cHP also acts as cis-replicating element in both WNV and DENV genomes, dis-
tinguishing it as an RNA domain with multifunctional influence over the flavivirus life
cycle [71]. Translation initiation is promoted during early infection when the viral genome
has not acquired the circular conformation required for replication. In the linear genome,
the cHP stem-loop causes the ribosomal complex to linger briefly at the appropriate start
codon, thereby encouraging its recognition. When switching to genome replication, long-
range RNA–RNA interactions are established between the 5′ and 3′ genome ends to form
the circular flavivirus genome. Induction of the circular conformation shortens the cHP
stem, which in turn lengthens the neighboring 3′ stretch of RNA. Therefore, structural
rearrangement of the translation competent scaffold exposes the 5′ CS that overlaps the
3′ component of the cHP stem and helps organize the replication competent circular
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genome (Figure 1A,B) [71]. Thus, not only SLB, but also the cHP have a key influence
over circularization.

3. Circularization Structures

The occurrence of 5′-3′ circularization through intramolecular duplexes formation
is conserved across the flaviviruses family, and it is effected by three complementary
regions: (i) the DAR, (ii) the UAR, and (iii) the circularization sequence (CS) [72,73]. The
circularization motif was first identified as a conserved sequence near the 3′ UTR by
Hahn et al. [74]. These authors also located a complementary conserved element in the 5′

UTR and postulated potential circularization in a flaviviruses. The functional importance
of these sites was shown by Men et al. [75] by examining various deletion mutants in
the 3′ UTR [74]. Their study showed that all 3′ UTR deletion mutants of DENV-4 were
viable (albeit attenuated), as long as the deletion did not include the last 113 nucleotides
containing the circularization motif and 3′ SL. Subsequently, 5′–3′ interactions were shown
to be important for other flaviviruses [76–78]. The DAR/UAR/CS cyclization motif is
thought to act as a single regulatory unit. As Zhang et al. [79] have shown, deletion of CS
in WNV is lethal, but can be rescued by compensatory strengthening of interactions in the
DAR/UAR regions.

The UAR is located closer to the 5′ and 3′ ends than the CS. The UAR and DAR are
mostly contained in structured elements in the linear form of the genomic RNA, whereas
the CS is located in a single-stranded stretch between 3′ DB and sHP. Consequently, these
structural elements undergo rearrangement upon circularization. Such a feature has been
previously observed in different (+)-sense RNA viruses. Olsthoorn et al. described a
conformational change in the 3′ region of plant viruses of the Alfamovirus and Ilarvirus
families that is necessary to initiate viral replication [80]. In particular, 5′-3′ circularization
as a regulatory point controlling RNA replication has been described for Tombusvirus, as
negative-strand synthesis is inhibited by formation of the circular form [81]. Circularization
as a regulatory mechanism is not confined to the 5′ and 3′ terminal regions, as demonstrated
by Zhang et al. [82,83]. They found that an interaction of a 3′ structural element in the
turnip crinkle virus genome with a large internal loop structure suppresses negative-strand
RNA transcription and posit that such inhibitory motifs are responsible for asymmetric
ratios of negative to positive strands in a range from 1:10 to 1:1000 during RNA-dependent
RNA polymerase-dependent transcription [82,83].

Circularization of the genome is essential for its replication [76–78,84]. Corver et al. [84]
identified specific interacting nucleotides of YFV in the 5′ UTR necessary for replication,
such as an 18 nt stretch at positions 146–163, with a slightly longer stretch of 21 nucleotides
(146–166), required for full replication efficiency, which is a longer segment than the univer-
sally conserved 8 nucleotides across flaviviruses. Noteworthy, not all sequences involved
in the 3′–5′ interaction are located in the 5′ UTR (as some are in the coding region). Circu-
larization has been shown to be necessary for (-) strand synthesis. Moreover, requirements
for replication rely on the presence of specific nucleotides at certain positions beyond
the requirement for complementarity [85]. Alvarez et al. [85] demonstrated that specific
mutations within the UAR caused a significant delay in viral replication for variants with
multiple mutations, despite reconstituted complementarity and the ability to form cyclical
genomes in these variants. A possible explanation for this effect is that the sequences
are multifunctional and have specific roles in the linear and circular form, forming either
a local or a long-range interaction; whereas the transposition of these sequences would
maintain their function in the circular state, the function in the local context of the linear
form would be disrupted [85].

Lott and Doran [86] suggested that under cellular conditions, the formation of dimeric
or multimeric forms connected by their respective circularization sequences is more likely.
This argument is based on molecular crowding in local environments that arise from the
remodeling of the endoplasmic reticulum membrane induced by flavivirus infection [87].
Brinton et al. [88] dispute that the formation of concatemers on the ground would lead to
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increased efficiency of minus strand synthesis, which is inconsistent with available evidence
on minus strand abundance throughout the replication cycle [88]. WNV variants with a
high abundance of minus strand have been shown to have decreased virus production
and decreased positive strand levels [29]. Evidence from structure-probing studies show
that a cyclized form is present in virions [18–20] and is consistently one of the most
pronounced signals.

3.1. Internal Circularization

In addition to 5′-3′ circularization, recent flaviviruses studies revealed internal long-
range interactions of functional relevance. These motifs involve the flaviviral genome-
coding region and form persistent long-range interactions. Some interactions are exclusive
to the packaged state of the genome within virions, whereas others are found in the virion
and within infected cells. Chemical cross-linking techniques used to reveal these interac-
tions include COMRADES (cross-linking of matched RNAs and deep sequencing) [18] and
SPLASH (sequencing of psoralen crosslinked, ligated, and selected hybrids) [19,20]. An
overview of internal circularization sites of DENV genome is depicted in Figure 2.
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Figure 2. Internal circularization sites of DENV-1 genome, as determined by SPLASH cross-linking [19]. It is apparent that
the number of internal circularization motifs in virions (red) is much higher than those identified in infected cells. A number
of interactions persist in cells (blue). This may be attributed to the spatial constraints imposed by the virion shell or it
may be a prerequisite for packaging. Functional assays demonstrate the importance of these motifs for viral fitness, with
structure-disrupting changes causing a pronounced drop in viral activity. Compensatory mutations restore viral fitness.
Several of the identified internal circularization sites show multiple interaction partners in the SPLASH experiment and
structure models of the relevant regions show competing base pairs among the possible partners. It is currently unclear
whether these competing interactions form in a stochastic manner or whether specific interactions are present at different
stages of the viral life cycle and/or rearrange dynamically.

The functional role of these internal circularization motifs is particularly interesting
as the associated sequence elements are subject to two distinct sources of evolutionary
constraint: when sequences that include a coding region change their nucleotides and
evolve, the respective translated protein regions must maintain protein function while
simultaneously maintaining a functional level of the interactions that are promoted by the
nucleotide sequence. In addition, a nucleotide-level constraint exists to maintain RNA
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complementarity. DENV was particularly suitable to study these interactions, as it has four
distinct serotypes that have been surveilled throughout lengthy periods of time and wide
geographical areas. This has enabled the gain of a relatively comprehensive collection of
viral sequences that lend themselves to statistical analysis for covariation. Covariation in
genome sequences allows us to identify evolutionary constrained base pairs in genome
structures. The basic approach behind this analysis is to assess complementary mutations
for variation at each position. If the maintenance of a base pair is functionally important,
then mutation in a specific base will induce a compensatory mutation at the paired base
with higher than expected likelihood, which can be statistically evaluated. This statistical
evaluation of covariation is implemented in the R-scape tool [89]. The key limitation to
this methodology for structure identification is that it requires a sufficient stock of genetic
history of the sequence under investigation. Dengue is a rare case where the breadth
and depth of sequences available allow for such an analysis. We attempted to apply the
same technique to study ZIKV, but we were severely limited due to the lack of diversity
in available sequences. Most ZIKV sequences were deposited during the 2015–2016 Zika
pandemic and, hence, are of limited genetic variability, making it challenging to identify
covarying base pairs.

Previous studies of internal circularization motifs have revealed competing structures
within the genome of flaviviruses [19]. Only about two-thirds of interactions identified
by cross-linking have unique interaction partners, and a number of sites show highly
promiscuous behavior with nine or more interaction sites [19]. It cannot be ruled out
that some of these interactions are artifacts of non-specific crosslinking stemming from
the experimental protocol, but structural modeling of the proposed interactions reveals
likely circular structures for multiple partner sites for some sequences [19]. A caveat of
chemical crosslinking procedures is that the position resolution is limited by the length
necessary for unique read mapping and is therefore usually in the tens of nucleotides.
As structural motifs may be both adjacent and short, it is possible that these ostensibly
competing interactions coexist in close spatial proximity. However, structural models again
suggest that the actual bases involved are shared between multiple predicted interactions
and, hence, true competition for specific sites exists in flavivirus genomes [18–20].

The functional relevance of these internal circularizing interactions has been estab-
lished by mutational studies. These show severe attenuation of viral fitness even if pre-
serving both the protein sequence and avoiding rare codons that might reduce translation
efficiency. Moreover, compensatory mutations at partner sites were able to restore viral
fitness, hence demonstrating convincingly that the structure at the RNA level is indeed
functionally necessary. The precise function of these structural motifs in the coding se-
quence remains elusive. Several possible explanations for their biological importance
exist. One hypothesis is that these structural motifs promote viral packaging into nascent
virions by compacting the genome after replication. In a similar vein, these structural
motifs, together with other shorter-range structures, may form anchor points for host or
viral protein interactions involved in viral replication and/or packaging. Unfortunately,
current experimental data are not able to answer whether these motifs are of a dynamic
or static nature. Evidence of competing interactions suggest that alternate conformations
are possible but, at present, it is unclear whether these interactions will: (i) be formed in a
“thermodynamic funnel”, where the genome folds into a local minimum and remains in a
specific conformation until disturbed (e.g., by translation or replication); or, (ii) whether
these motifs are dynamic and can rearrange in response to environmental conditions,
possibly performing a regulatory function.

3.2. Protein Interactions

The importance of the circularization motif for self-primed genome replication has
been demonstrated by You et al. [90,91]. They also posit that several cellular proteins
previously identified to interact with this motif [92–94] could play a role in modulating the
stability of the circularized structure. Interestingly, Shi et al. [92] were able to find proteins
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specifically interacting with the (-)-strand of the 3′ stem-loop structure. Blackwell and
Brinton [93] identified the key translation elongation factor 1 alpha as a crucial host protein
interacting with the 3′ stem loop. This protein has been identified as a key host factor in the
replication of diverse viruses, including retroviruses, flaviviruses, and bacteriophages [95].
Concerning the non-structural viral proteins, NS5 is, in this context, a key protein, with a
major role in regulating cyclization and viral activity, as presented in Figure 3 [66]. NS5
has methyltransferase, guanylyltransferase, and RNA-dependent RNA polymerase (RdRp)
activities. This enables NS5 to interact and bind to the flavivirus RNA, to other viral
nonstructural proteins, and to host factors. Filomatori et al. [96] showed that the NS5
methyltransferase domain interacts specifically with SLA in the 5′ region, which through
the circularization motif brings NS5 into proximity with the 3′ transcription initiation
side. Subsequently, Lodeiro et al. [97] proceeded to identify the specific regions of SLA
responsible for polymerase binding and identified the crucial role of the apical loop and
side stem loop regions. These regions are conserved across flaviviruses. Dong et al. [98]
investigated the potential of the methyltransferase domain of NS5 as an antiviral target,
but they mainly focused on the methylation activity of this domain. Overall, it is crucial
for assembly of the viral replication complex essential for vRNA synthesis [66]. Most
importantly, it regulates cyclization and viral synthesis by binding to the stem loop region.
Moreover, integrity of the 3′ stem loop is ensured by the nucleotidyl transferase activity of
NS5, as Teramoto et al. [99] have demonstrated. Deletions (e.g., caused by RNase digestion
of the 3′ end) cause a severe drop in viral fitness, as measured by NS1 antigen production.
However, reconstitution of the deletion mediated by NS5 does occur and recovers the
original sequences as consensus, enabling the reformation of the 3′ stem loop structure [99].
Another mechanism of initiation site conservation was described by Selisko et al., [100] who
demonstrated that NS5 polymerase forms and/or elongates pppAG dinucleotides, even in
the case of incorrect 3′ ends, in the presence of Mg2+ ions [100].

The C protein plays a key role in the formation of the circular form of the RNA genome.
Ivanyi-Nagy et al. [101] demonstrated that the C protein is an important RNA chaperone,
and that the interaction of the C-terminal region of the C protein substantially increases
the rate of 5′-3′ circularization [102]. The C protein has N-terminal and C-terminal RNA-
binding regions [103], from which only the C-terminal region acts as a chaperone [101].
In cells, the C protein may be supplemented in this function by the abundance of host
RNA chaperones [104]. In addition to the chaperone activity of the C protein, the weak
chaperone activity of NS5 has been described by Pong et al. [105], who concurrently could
not identify any chaperone activity of NS3. The heterogeneous nuclear ribonucleoprotein
A2 (hnRNP A2) was identified as an important host factor interacting with the C protein,
NS5, and the 5′ UTR of the minus strand of JEV [106]. The precise functional nature of
these interactions in the context of flaviviruses remains unclear. hnRNP interactions are
proliferative (e.g., in Sindbis virus and enteroviruses), while exerting an antiviral effect
(e.g., in hepatitis C virus). It is presumed that this is associated with hnRNPs effect on
viral and host gene expression [107]. NS3 has been shown to promote complementary
strand annealing, both internal to the viral genome and between host and viral RNA [108].
Moreover, Gebhard et al. [108] showed that while NS3 promotes annealing in an ATP-
independent manner, increased ATP concentration allows NS3 to unwind RNA. Recently,
Swarbrick et al. [109] have shown that the interaction between the 5′ end of flavivirus RNA
and NS3 is sequence-specific, with guanosines in the 2 and 5 positions causing significantly
higher activity.
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Bidet et al. [110] provided a summary of a variety of host factors positively identified
to interact with flavivirus RNA, either promoting or inhibiting viral proliferation. It is
notable that most of the identified host factors interact with the 3′ stem loop, 3′ dumbbell,
or the 5′ and 3′ UTRs involved in genome circularization. However, it is unclear if this
reflects the balance of interactions inside cells or if it is an artifact of the level of research
applied to these specific regions, while for instance the coding region has been less explored.
Most of the proteins summarized by Bidet et al. are host factors generally involved in
the transcription and processing of RNA [110]. A key host factor interacting with both 5′

and 3′ ends simultaneously is the host protein La. Initially, La has been shown to bind
the 3′ stem loop structure by Vashist et al. [111], who subsequently demonstrated high
affinity of the 5′ UTR of JEV to La as well [112]. Such an interaction pattern by La protein
has also been shown for DENV4 [113], indicating that this is a shared mechanism across
flaviviruses. They posit that this simultaneous interaction may promote circularization
and thereby enhance viral replication. Chien et al. [114] demonstrated that FUSE binding
protein 1 (FBP1) also interacts with both 5′ and 3′ UTRs in JEV, but they found that the
overexpression of FBP1 induced a reduction in viral replication and the knockdown of
FBP1 promoted enhanced replication, which points to a different mechanism of action than
La protein for this antiviral interaction. The degradation of viral RNA is an important
host defense mechanism. In the context of flaviviral RNA, the ribonuclease MCPIP1 was
shown to broadly reduce viral activity in cells [115]. The above-mentioned undigested
sfRNA fragments [52,53] that reduce antiviral responses by inhibiting exoribonuclease Xrn1
activity at stem-loop sites [55,56] are also an example of key interactions of RNA with the
host proteins, in this case aiming at protecting nascent viral RNA copies from degradation.

4. Concluding Remarks

Viruses have evolved several mechanisms in order to increase their protection against
host cellular surveillance and attack mechanisms, as well as to manipulate cellular path-
ways to their own benefit, subsequently increasing their survival and persistence in the host.
Genome circularization is one such mechanism that has been reported in a broad range of
viruses. Flavivirus, which include several human pathogens, is one of the best-described
genera exhibiting genome circularization and long-range RNA–RNA interactions (internal
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circularization). Several sequences have been identified as essential for these processes. It
was demonstrated that genome circularization is a regulatory mechanism essential for the
synthesis of the negative strand during genome replication. Studies in which long-range
RNA–RNA interactions were impaired have shown drastic decreases in viral fitness, sug-
gesting their importance in the assembly and encapsidation (packaging) of the new virions.
It is also proposed that these interactions generate secondary and tertiary structures that
act as anchor points for viral and/or cell proteins that facilitate virion packaging. Both
mechanisms provide ideal conditions for viral life cycle steps. Several host proteins have
been identified as essential to the circularization process and necessary for stabilization of
the circular form (e.g., hnRNP). Viral proteins also participate in circularization, such as
the C protein (RNA chaperone), which increases the genome circularization rate.

The flavivirus capsid protein is proposed to bind the RNA genome and promote its
packing within the tight space of the virion. This function would not be possible without
a concomitant condensing of the genome via circularization and long-range interactions.
Mechanistically, specific loops, hairpins, and tertiary structure elements may coordinate
RNA binding to the protein in addition to specific sequence motifs. However, the absence
of circularization and long-range interactions would make viral genome packing extremely
difficult. This is supported by the observation that such interactions are seen in genomes of
other viruses. For example, long-range RNA–RNA interactions have also been reported
for coronaviruses, being involved in essential steps of the viral life cycle. It is possible that
if flaviviruses evolved to infect a single host, circularization and evolution into a latent
virus form might have occurred. However, since flaviviruses infect several hosts, and given
that several regions involved in circularization are also involved in virulence and host
adaptability, it follows that it is more difficult for a virus that switches between hosts to
develop and evolve into a fully circular latent genome form. Guided by these limitations,
flaviviruses take advantage of circularization and long-range RNA–RNA interactions.
While interesting from an evolutionary perspective, this knowledge is also relevant in
the medical context. This is clear evidence that circularization is extremely important to
the flavivirus life cycle and is therefore an interesting target that should be thoroughly
explored for therapies against flaviviruses.
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