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Siderophores are iron chelating molecules produced by nearly all organisms, most notably
by bacteria, to efficiently sequester the limited iron that is available in the environment.
Siderophores are an essential component of mammalian iron homeostasis and the
ongoing interspecies competition for iron. Bacteria produce a broad repertoire of
siderophores with a canonical role in iron chelation and the capacity to perform
versatile functions such as interacting with other microbes and the host immune
system. Siderophores are a vast area of untapped potential in the field of cancer
research because cancer cells demand increased iron concentrations to sustain rapid
proliferation. Studies investigating siderophores as therapeutics in cancer generally
focused on the role of a few siderophores as iron chelators; however, these studies are
limited and some show conflicting results. Moreover, siderophores are biologically
conserved, structurally diverse molecules that perform additional functions related to
iron chelation. Siderophores also have a role in inflammation due to their iron acquisition
and chelation properties. These diverse functions may contribute to both risks and
benefits as therapeutic agents in cancer. The potential of siderophore-mediated iron
and bacterial modulation to be used in the treatment of cancer warrants further
investigation. This review discusses the wide range of bacterial siderophore functions
and their utilization in cancer treatment to further expand their functional relevance in
cancer detection and treatment.

Keywords: microbiome, bacteria, siderophores, enterobactin, deferoxamine, cancer, tumor, iron
1 INTRODUCTION

Siderophores are iron chelating molecules produced by nearly all organisms to enhance iron
acquisition from the environment (1–3). Iron is an essential micronutrient for biological and
metabolic cellular functions, but has limited availability in the environment (2, 3). Iron can accept
and donate electrons and primarily exists in two states in biological systems, ferric (Fe3+) and
ferrous (Fe2+), which allows iron to bind different ligands. Ferrous iron (Fe2+) can generate reactive
oxygen species (ROS) through the Fenton and Haber-Weiss reactions (4, 5). At physiological pH,
ferrous (Fe2+) iron is oxidized to the low solubility ferric (Fe3+) state (6). Iron levels are tightly
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regulated through the production of various binding molecules
and transporters such as transferrin, ferritin and ferroportin,
which decrease the potential of ferrous iron to generate ROS
(4, 7) (Figure 1A). This regulation results in an ongoing battle
for iron between mammalian hosts and their microbial
inhabitants (8–11). Bacteria evolved to improve their odds in
this battle by producing an extensive repertoire of siderophores
that bind ferric (Fe3+) iron (2, 12). These siderophores are
recognized for their diverse functionality beyond iron binding,
including roles in signaling, virulence, protection against
oxidative stress, metal acquisition, and competition with other
microbes and their hosts (13–15).

Siderophores and iron have become relevant in
carcinogenesis because cancer cells demand increased iron
concentrations to sustain rapid proliferation, which increases
the activity of many iron-binding molecules [transferrin, the
transferrin receptor, ferritin and lipocalin 2 (Lcn2)] while
decreasing the activity of the cell iron exporter ferroportin
(Figure 1B) (11, 16–18). Bacterial dysbiosis is also common
during cancer (19–22), which could affect siderophore secretion
in this disease (Figure 1B). Iron accumulation is usually
observed in tumors, which has been linked to worse cancer
prognosis and increased invasion and metastasis (11, 23)
(Figure 2A). There is extensive evidence that iron supports
various steps of cancer progression, and modulating iron levels
has been considered as a promising alternative cancer therapy.
Bacterial and synthetic siderophores have been used as iron
Frontiers in Oncology | www.frontiersin.org 2
chelating agents to reduce iron levels in tumors (24) but the
function and potential of siderophores in cancer continues to be
severely underexplored. Published preclinical data and some
clinical studies using siderophores in cancer reported both
beneficial and inconsistent results (Figure 2B; Tables 1, 2) (35,
46, 68–70), suggesting that their role in cancer warrants
further investigation.

Siderophore interactions with the immune system contribute
to the ongoing struggle for iron homeostasis. Immune cells
enhance the production of siderophore-binding proteins and
proinflammatory cytokines (71–73). In response, bacteria
upregulate siderophore production and synthesize stealth
siderophores to evade host immune defenses which will be
described in detail below (3, 72). These siderophore-mediated
adjustments in iron availability suggest a link between the
immune response and iron accumulation in cancer cells.
Insight into the balance between iron, siderophores, and
immune function could contribute to a more comprehensive
understanding of the role of siderophores in cancer.

This review focuses on the current research investigating the
role and therapeutic potential of bacterial siderophores in cancer,
highlighting their functions and interactions with the
microbiome and the immune system that could be relevant in
cancer research. While we provide brief summaries on
siderophore functionality and the relationship between iron
and cancer, we would like to direct the readers to the following
reviews for a deeper understanding of these topics (4, 13, 14, 23).
A B

FIGURE 1 | (A) Mechanisms of iron acquisition between bacteria and normal epithelial cells. Bacteria-secreted siderophores and mammalian siderophores
(2,5-DHBA) acquire ferric iron (Fe3+) for bacteria or host uptake. Siderophores can also chelate iron away from transferrin. LCN2 can bind the bacteria-secreted
siderophores to sequester ferric iron (Fe3+) away from bacteria. Transferrin and LCN2 bind ferric iron in the extracellular space, and by binding the transferrin
receptor or the LCN2 receptor (respectively) in the cell surface, the transferrin/LCN2-iron complex enters the cell through endocytosis. Once iron is in the
cytoplasm, it is converted to the ferrous form (Fe2+) by the STEAP2 enzyme, and exits the endosome through the DMT1 transporter. In the cytosol, iron can be
stored in ferritin back in the ferric form (Fe3+). Iron can exit the cell via ferroportin, which is regulated by hephaestin. This process is tightly regulated to avoid the
generation of ROS from the labile iron pool (free ferrous iron (Fe2+) in the cytoplasm). (B) Mechanisms of iron acquisition between bacteria and cancer cells.
Many cancers are characterized by increased bacterial growth and dysbiosis. Iron uptake is increased in cancer cells, which is accomplished by increasing the
function of transferrin, the transferrin receptor, ferritin iron storage, and decreasing the function of ferroportin. LCN2 and its receptor are also increased during
cancer. Increased ferrous iron (Fe2+) accumulation in the cytosol generates ROS.
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This review also lists the clinical trials that use siderophores and
analogs as interventions in cancer. We compare and discuss their
settings and regimens to provide a broader perspective of how
siderophores are administered to patients, and what factors need to
be taken into consideration in cancer. We searched the following
databases: clinicaltrials.gov, the European Society of Medical
Oncology (ESMO), and the World Health Organization. We used
the following search terms: “siderophores” OR “deferoxamine” OR
“deferasirox” OR “enterobactin” OR “desferrithiocin” OR
“ferrichrome” OR “deferiprone” OR “2,3‑dihydroxybenzoic acid”
AND “cancer”. By highlighting the role of these siderophore
interactions and how they are used in preclinical cancer models,
we aim to promote novel research that leverages these connections
in cancer detection and treatment.
2 SIDEROPHORES AS IRON CHELATORS

Iron is an essential element for nearly all life forms, with critical
roles in various biological and metabolic processes for cell
survival. Iron availability within aerobic environments is
severely limited due to low ferric (Fe3+) iron solubility and low
Frontiers in Oncology | www.frontiersin.org 3
ferrous (Fe2+) iron availability (2, 3). Essentially all
microorganisms, bacteria, fungi, plants, and animals produce
siderophores to sequester iron from the environment.
Siderophores are high-affinity iron chelators that bind iron to
maintain iron levels required for survival (1, 3, 8, 12, 14).
Siderophores are small molecules, around 500–1500 Daltons in
molecular weight that bind primarily to ferric iron (Fe3+) (2) and
exhibit high structural diversity (hundreds have been structurally
characterized and described) (2, 74). Thus, siderophores are
biologically important and have the potential to selectively
compete in cellular processes, which makes them an interesting
target in cancer research. Understanding their functions and
interactions in the microbiome and with the host will be needed
to explore their role and potential in cancer.

2.1 Mammalian Siderophores
Free ferric iron (Fe3+) is tightly regulated in human hosts; most
iron is bound to transferrin in serum, or to lactoferrin primarily
in secretory fluids, thereby limiting iron availability for bacterial
acquisition (8–10). Mammals produce a limited number of
siderophores, including 2,5-dihydroxybenzoic acid (2,5-DHBA)
(8, 75) and catechols (76, 77), which enable iron acquisition from
transferrin, lactoferrin, and the environment Figure 1A (71, 77, 78).
A

B

FIGURE 2 | Potential effects and mechanisms of an exogenous siderophore treatment in cancer cells. (A) Under normal conditions, cancer cells increase their iron
uptake, which increases the iron labile pool (Fe2+) and ROS generation, and has been related to increased invasion, proliferation and tumor growth. (B) During
exogenous siderophore treatment, siderophores bind ferric iron (Fe3+) and decrease the levels of free iron available for bacteria, LCN2 and cancer cells. As a result,
cancer cells display reduced proliferation and tumor growth, and induction of apoptosis. Proposed mechanisms include: reduction of ferric iron (Fe3+) availability, the
intracellular iron pool (Fe2+), ROS generation and expression of the anti-apoptotic gene Bcl-2, increasing expression of p53 and the pro-apoptotic genes Bax and
Fas, activating the pro-apoptotic pathway through DDIT3, and inhibiting HDAC.
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TABLE 1 | Bacterial siderophores used in cancer research.

Siderophore Structure 2D Secreted by Cancer Type Studied

Deferoxamine (DFO)

PubChem Identifier: CID 2973 (25)

Streptomyces spp Macrophage (34), leukemia (34, 35), breast
cancer (34, 36, 37), hepatocellular carcinoma (34,
38–40), gastric cancer (41), neuroblastoma (42,
43), ovarian (36), epidermoid carcinoma (36).

DFCAF (DFO complex)

PubChem Identifier: CID 2973 (25)

PubChem Identifier: CID 2519 (26)

Streptomyces spp Cancer stem cells (44).

Desferrithiocin (DFT)

PubChem Identifier: CID 101609363 (27)

Streptomyces
antibioticus DSM

Hepatocellular carcinoma (45).

Enterobactin

PubChem Identifier: CID 34231 (28)

E. coli, Salmonella
enterica, Shigella
dysenteriae and
Klebsiella
pneumoniae

Monocyte-derived cancer cells (46).

Ferrichrome

PubChem Identifier: CID 644246 (29)

Lactobacillus casei Gastric (47) and colon cancer (48, 49).

(Continued)
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Synthesis of the mammalian siderophore 2,5-DHBA is catalyzed by
the enzyme 3-hydroxybutyrate dehydrogenase-2 (Bdh2) (8). During
the innate immune response to lipopolysaccharide exposure, toll-
like receptor 4 (TLR4) suppresses Bdh2 through the transcriptional
repressor B lymphocyte–induced maturation protein (Blimp-1)
(8, 79). This reduces the circulating 2,5-DHBA levels during
bacterial infection and limits the host-derived iron complexes
available for pathogens to sequester (76, 77, 79). Embedded in the
Frontiers in Oncology | www.frontiersin.org 5
role of iron binding and transport, 2,5-DHBA is involved in
intracellular iron homeostasis, erythrocyte maturation, and
mitochondrial iron uptake (8, 80, 81). Decreased 2,5-DHBA
through reduction of Bdh2 can lead to anemia, cytoplasmic iron
accumulation, mitochondrial dysfunction, and potential apoptosis
(8, 80, 81). A group of siderophore-binding proteins called
lipocalins or siderocalins bind mammalian and bacterial
siderophores with specificity for nearly all catecholate
TABLE 1 | Continued

Siderophore Structure 2D Secreted by Cancer Type Studied

Exochelin-MS

PubChem Identifier: CID 139583168 (30)

Mycobacterium
smegmatis

Macrophage, liver cancer, leukemia, breast
cancer (34).

Mycobactin S

PubChem Identifier: CID 3083702 (31)

Mycobacterium
smegmatis

Macrophage, liver cancer, leukemia, breast
cancer (34).

Amamistatin A

PubChem Identifier: CID 135430484
Amamistatin A (32)

Nocardia asteroids Leukemia, breast, lung, and stomach cancer (50).

Amamistatin B

PubChem Identifier: CID 135438025
Amamistatin B (33)

Nocardia asteroids Leukemia, breast, lung, and stomach cancer (50).
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siderophores and some carboxylate siderophores (71, 72). Thus,
mammalian siderophores, alongside lipocalins and transferrin, have
a critical role in mammalian iron homeostasis through intracellular
iron balance and mitochondrial function (8, 71, 77, 78, 80). Future
work might uncover new siderophores and functionalities within
the mammalian iron chelator protein family that could be used to
alter iron availability within cancer cells.

2.2 Bacterial Siderophores
Bacteria produce siderophores to obtain iron from their hosts or
environment and to outcompete other microbes within their
environment (3, 14, 82). The ferric uptake regulator (Fur) is a
bacterial transcription factor that upregulates siderophore
production based on low intracellular iron availability to
rapidly acquire iron for metabolic processes and virulence (9,
83, 84). When iron availability is high, Fur suppresses iron
acquisition and transport genes, including TonB, thereby
preventing iron toxicity and intracellular oxidative stress (83–
85). Siderophores enable bacteria to bind ferric iron (Fe3+) from
their hosts or environment when under low iron availability, and
then selectively import iron via specific cognate receptors. The
specificity of siderophores and siderophore receptors enable
microbes to support their own proliferation while competing
with other microbial populations for limited iron resources (12,
14). However, there is evidence of both cooperation and
competition among bacterial populations for iron, and bacteria
can modulate siderophore production in specific hosts or
environments (14, 86, 87). Cooperation in bacterial iron
uptake involves the production of siderophores that can be
taken up by bacterial species other than the initial producer,
although there is a correlation between bacterial relatedness and
cooperation. Competition in bacterial iron uptake occurs when
bacteria that do not produce specific siderophores express
receptors that enable siderophore uptake, thereby exploiting
the siderophore production of other bacteria. Competition also
happens when bacteria secrete specific siderophores for which
other bacteria lack the matching receptors for uptake or when the
secreted siderophores have higher affinity for iron. Therefore, the
bacteria that secreted the specific siderophore (or higher affinity
siderophores) decreases the iron available to other species
(14, 88). Cooperation and competition has been extensively
studied in Pseudomonas aeruginosa and its siderophore
pyoverdine (PVD) (14, 15, 88–91).

Bacteria can synthesize multiple siderophores with varying
iron affinities and minor structural variations, which can
enhance iron uptake, reduce the frequency of competitive
theft, and improve the competitive advantage over other
microbes (3, 12, 82). Several microbes produce stealth
siderophores, which are essential in evading the mammalian
host innate immune molecule, siderophore binding Lcn2 (3,
72). For example, E. coli and Salmonella spp. can modify the
siderophore enterobactin, which can be neutralized by Lcn2,
to form salmochelin, a stealth siderophore that cannot be
bound by Lcn2, thereby enhancing their survival when the
acute phase response of infection and inflammation has been
triggered (2, 3). Enterobactin from E. coli is usually associated
with a negative impact on iron homeostasis and host health.
Frontiers in Oncology | www.frontiersin.org 6
Mice deficient in Lcn2 have increased susceptibility to E. coli-
induced septicemia (73). At the same time, enterobactin
increases the host iron pool and promotes mitochondrial
iron uptake by binding to the ATP synthase a subunit in
mammalian cells and C. elegans (92) . This positive
relationship between enterobactin and the host could
explain why the host continues to tolerate enterobactin-
producing bacteria in their microbiome.

To further showcase the multifunctionality of siderophores,
PVD, a siderophore produced by P. aeruginosa, can enter C.
elegans and induce death by acting as a toxin. PVD and P.
aeruginosa can also disrupt C. elegans’ mitochondrial
homeostasis inducing mitophagy, which is accomplished by
the host as a mechanism to resist damages by PVD or P.
aeruginosa (93). Exogenous iron chelators attenuate P.
aeruginosa-mediated C. elegans killing by limiting bacterial
growth. Interestingly, the same iron chelators reduce
mitochondrial mass and induce mitochondrial fragmentation
in C. elegans, and induce mitochondrial turnover and
degradation in mammalian cells (93). This same group found
that the siderophore PVD (but not pyochelin) was required for
P. aeruginosa to induce cell death in C. elegans, which occurs
through hypoxia induction. Similarly, exogenous iron chelators
at higher concentrations also trigger a hypoxic response and
death in C. elegans (94). The flexibility and diversity of bacterial
siderophore production indicates that these molecules have
important and complex roles in iron acquisition that should be
taken into consideration in the context of cancer.
2.3 Other Siderophores
Both plants and fungi produce hundreds of unique siderophores.
Plant siderophores (phytosiderophores) are most notably
secreted by gramineous plants to obtain ferric iron (Fe3+), and
likely zinc and copper, from soils that are deficient in these
metals (95). Fungi utilize siderophores for iron import and can
even upregulate bacterial siderophore transporters to compete
for iron in the environment (2, 96–98). The focus of this review is
bacterial siderophores and their role in cancer; however, the
interactions among fungal, bacterial, and host iron acquisition
systems may be disrupted in cancer and should be considered.
3 VERSATILE FUNCTIONS OF
SIDEROPHORES

Siderophores perform a multitude of functions in addition to
iron acquisition. These include roles in signaling, protection
against oxidative stress, sequestration of other metals, and
siderophore moieties as antibiotics (13). Although iron
chelation is the most important and well-characterized role of
siderophores, these additional functionalities indicate their
biological significance and structural diversity (12).
Understanding whether these functions can be applied or
studied in the context of cancer will elucidate the potential of
siderophores as cancer research targets.
June 2022 | Volume 12 | Article 867271
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TABLE 2 | Clinical trials that investigated siderophores and siderophore analogs as cancer therapeutics.

Regime Clinical Trial Number Source Refs.

NCT02233504 clinicaltrial.

gov

6 months or until

absence of disease

e toxicity

NCT01273766 clinicaltrial.

gov

t 10 mg/kg/day

blet (FCT) 7 mg/kg/

hropoietin 40,000

alone)

NCT01868477 clinicaltrial.

gov

r the first 2 weeks of

g/kg/day (once daily)

ment

NCT00940602 clinicaltrial.

gov

(51)

NCT01250951 clinicaltrial.

gov

(52)

NCT00481143 clinicaltrial.

gov

(53)

NCT00564941 clinicaltrial.

gov

NCT00469560 clinicaltrial.

gov

(54–

56)
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Study title Age

years

Status Enrollment Condition Intervention Primary Outcome Intervention

Pilot Study to Assess

Hematologic Response in

Patients with Acute Myeloid

Leukemia or High Risk

Myelodysplastic Syndromes

Undergoing Monotherapy

With Exjade (Deferasirox)

≥18 Completed 25

(estimated)

High risk myelodysplastic

syndromes or acute

myeloid leukemia

Deferasirox

(Exjade,

ICL670)

Number of adverse events (time frame: 2

years)

Oral administration

Deferasirox in Treating Iron

Overload Caused by Blood

Transfusions in Patients with

Hematologic Malignancies

≥18 Completed 16 Leukemia, lymphoma, and

133 more

Deferasirox

(Exjade,

ICL670)

Changes in mean neutrophil values

(measured by lab) for Arm 1

(time frame: baseline up to 6 months)

Once daily, orally, for up to

blood counts recover in the

progression or unacceptab

Combination Study

of Deferasirox and

Erythropoietin in Patients with

Low- and Int-1-risk

Myelodysplastic Syndrome

≥18 Completed 28 Low and Int 1-risk

myelodysplastic syndrome

Deferasirox,

erythropoietin

alpha

Difference in percentage of patients

achieving erythroid response within 12

Weeks, by treatment group

(time frame: baseline up to 12 weeks)

Deferasirox dispersible table

or deferasirox film-coated ta

day in combination with ery

units/week (or erythropoieti

Myelodysplastic Syndromes

(MDS) Event Free Survival

with Iron Chelation Therapy

Study

≥18 Completed 225 Myelodysplastic syndromes Deferasirox Event free survival (time frame: Day 1 to

end of treatment period, approx. 7 years)

10 mg/kg/day (once daily) f

treatment, followed by 20 m

from Week 2 to end of trea

This Study Will Evaluate

Efficacy and Safety of

Deferasirox in Patients with

Myelodysplastic Syndromes

(MDS), Thalassemia and Rare

Anemia Types Having

Transfusion-Induced Iron

Overload

≥2 Completed 111 Myelodysplastic syndrome,

thalassemia

Deferasirox,

ICL670

Changes in ferritin level compared to

baseline in patients with transfusion-

induced iron overload treated

with exjade (time frame: baseline

assessment is followed by monthly

assessments for up to 1 year)

NA

Efficacy and Safety

of Deferasirox in Patients with

Myelodysplastic Syndrome

and Transfusion-dependent

Iron Overload

≥18 Completed 63 Myelodysplastic syndromes,

transfusion-dependent iron

overload

ICL670/

Deferasirox

To assess iron chelation by comparing

serum ferritin values at baseline vs. 52

weeks of treatment with deferasirox

(time frame: 52 weeks)

NA

Evaluating the Efficacy of

Deferasirox in Transfusion

Dependent Chronic Anaemias

(Myelodysplastic Syndrome,

Beta-thalassaemia Patients)

with Chronic Iron Overload

18–

80

Completed 309

(estimated)

Myelodysplastic syndromes,

beta-thalassemia

Deferasirox This study will evaluate the safety and

efficacy of deferasirox in transfusion

dependent myelodysplastic syndrome,

beta-thalassemia major patients with

chronic iron overload [time

frame: monthly during the therapy and at

the end of the treatment (after 9 months

therapy)]

NA

Safety, Tolerability, and

Efficacy of Deferasirox in MDS

18–

80

Completed 158 Myelodysplastic syndromes,

hemosiderosis

Deferasirox To evaluate the tolerability and safety

profile of deferasirox in patients with MDS

with post-transfusional hemosiderosis

(time frame: baseline assessment and

then monthly thereafter)

NA
l

t

n

o

t
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TABLE 2 | Continued

egime Clinical Trial Number Source Refs.

NCT00061763 clinicaltrial.

gov

day, per os (PO)

ken once daily

NCT00673608 clinicaltrial.

gov

(57)

D for 12

en every morning 30

NCT00117507 clinicaltrial.

gov

(58)

NCT00452660 clinicaltrial.

gov

(59)

NCT02477631 clinicaltrial.

gov

ed orally, 10 mg/kg/ 2011-004559-38

ISRCTN62162141

EU Clinical

Trials

Register

50 mg/kg, once per

or without

IRCT2016021915666N3 World

Health

Organization

JPRN-UMIN000009054 World

Health

Organization

onventional

tion

NCT03652467 clinicaltrial.

gov

(Continued)
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Study title Age

years

Status Enrollment Condition Intervention Primary Outcome Intervention

Study of Deferasirox in Iron

Overload from Beta-

thalassemia Unable to be

Treated with Deferoxamine or

Chronic Anemias

≥2 Completed 175 Beta-thalassemia,

myelodysplastic syndromes,

Fanconi syndrome,

Diamond-Blackfan anemia,

aplastic anemia

Deferasirox To evaluate the effects of treatment on

the liver iron content

NA

Magnetic Resonance Imaging

(MRI) Assessments of the

Heart and Liver Iron Load in

Patients with Transfusion

Induced Iron Overload

≥18 Completed 118 Hemoglobinopathies,

myelodysplastic syndromes,

other inherited or acquired

anemia, MPD syndrome,

Diamond-Blackfan anemia,

other rare anemias,

transfusional iron overload

Deferasirox Change in cardiac iron load and cardiac

ejection fraction by MRI recorded at

baseline and after 53 weeks

(time frame: 12 months)

Deferasirox up to 40 mg/kg

(orally), dispersible tablets, t

Study for the Treatment of

Transfusional Iron Overload in

Myelodysplastic Patients

≥18 Completed 24 Myelodysplastic syndromes,

iron overload

Deferasirox Number of participants with adverse

events and serious adverse events

(time frame: up to Week 52)

Deferasirox 20 mg/kg/day O

months; deferasirox was ta

minutes before breakfast

Evaluation the Effect

of Exjade on Oxidative Stress

in Low Risk Myelodysplastic

Syndrome Patients with Iron

Overload

≥18 Completed 21 Myelodysplastic syndrome Deferasirox

(Exjade)

To evaluate the antioxidative effect

of Exjade therapy in MDS patients

(time frame: one year)
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Effect of Deferiprone on

Oxidative-Stress and Iron-

Overload in Low Risk

Transfusion Dependent MDS

Patients

≥18 Completed 19 Myelodysplastic syndrome,

iron overload due to

repeated red blood cell

transfusion

Deferiprone To evaluate the effect of deferiprone on

oxidative stress parameter ROS in iron

overloaded and blood dependent

patients with MDS (time frame: 4 months)

NA

A Phase 2 Study of the

Efficacy and Safety of

Deferasirox Administered at

Early Iron Loading in Patients

with Transfusion-Dependent

Myelodysplastic Syndromes

≥18 Completed 13 Myelodysplastic syndromes Deferasirox

(Exjade)

Primary outcome is time to mean serum

ferritin > 1500 mg/l, as measured from

the time of initiation using the mean

serum ferritin value of 2 consecutive

measurements of ferritin, where the first

level is >1500 mg/l and CRP is <3 times

baseline measurement

Dispersible tablet administe

day

The Efficacy of Deferoxamine

in Preventing Nephrotoxicity

of Anthracyclins in Pediatric

Cancer Patients

2–18 Completed 60 Nephropathy in pediatric
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creatinine, urine N-acetyl beta

glucosaminidase, urine protein
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day via IV over 8 hours with

anthracyclin infusion

Deferoxamine for Patients

with Advanced Pancreatic

Cancer: Pilot Study
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terminated

10 Pancreatic cancer Deferoxamine Safety NA

The Safety and Efficacy of

Deferoxamine for Treating

Unresectable Hepatocellular

Carcinoma

≥18 Recruiting 100

(estimated)

Unresectable hepatocellular

carcinoma

Deferoxamine Progression free survival in participants

with unresectable hepatocellular cancer

[time frame: first dose to date of

progressive disease or death due to any

cause, every 3 cycles up to 36 months (1

cycle=2 weeks)]
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transarterial chemoemboliza
R
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a

k
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Study title Age

years

Status Enrollment Condition Intervention Primary Outcome Intervention Reg

Evaluating Low-

Dose Deferasirox (DFX) in

Patients with Low-Risk MDS

Resistant or Relapsing After

ESA Agents

18–

100

Recruiting 39 Myelodysplasia Deferasirox

(Exjade)

Percentage of patients without

transfusion-dependence at 12 months

(time frame: 12 months)

Deferasirox at 3.5 mg/kg/day, o

Phase II Study to Evaluate

Overall Response in Patients

with Higher Risk

Myelodysplastic Syndromes

(MDS) Treated with

Azacitidine with or

without Deferasirox

18–

80

Terminated 1 High risk myelodysplasia Azacitidine,

azacitidine

plus

deferasirox

Overall response rate per IWG 2006

criteria (time frame: 1 year)

Azacitidine 75 mg/m2, 7 days/2

IV, deferasirox 10 mg/kg/day

A Phase II Pilot Study to

Assess the Presence of

Molecular Factors Predictive

for Hematologic Response in

Myelodysplastic Syndrome

Patients

Receiving DeferasiroxTherapy

≥18 Terminated 1 Myelodysplastic syndrome Bone marrow

aspirate, and

deferasirox

Fold increase/decrease in gene

transcription from baseline bone marrow

aspirate of responders versus

nonresponders (time frame: 18 months)

Deferasirox; patients are already

deferasirox before entering the

Myelodysplastic Syndrome

(MDS) Gastrointestinal (GI)

Tolerability Study

≥18 Terminated (low

enrollment)

12 Myelodysplastic syndrome,

transfusional iron overload

Deferasirox

(ICL670)

Difference in the frequency of overall

newly occurring GI adverse events in the

two treatment arms (time frame: 3

months)

Deferasirox 20 mg/kg/day taken

30 minutes before food OR def

kg/day taken in the evening, no

after the last food intake or at le

before the evening meal

Azacitidine Plus

Deferasirox (ICL670) in Higher

Risk Myelodysplastic

Syndromes (MDS)

≥18 Terminated

(accrual too slow)

1 Myelodysplastic syndromes Deferasirox

(Exjade,

ICL670) plus

azacitidine

Difference in proportion of patients with

hematologic improvement as defined by

the IWG criteria30 with the addition

of deferasirox to azacitidine compared

with azacitidine alone in higher risk non-

responding MDS patients after 6 cycles

of azacitidine (time frame: 6 months)

Azacitidine 75 mg/m2 sc daily fo
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kg/day depending on transfusio

Deferoxamine for Iron

Overload before Allogeneic

Stem Cell Transplantation

≥18 Terminated (slow

patient accrual)
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leukemia, myelodysplastic

syndrome

Deferoxamine Safety of deferoxamine therapy

determined by the number of participants

with Grade 3 or higher toxicities (time

frame: baseline, 6 months, 1 year)

50 mg/kg/day of deferoxamine

therapy for at least 2 weeks prio

myeloablative transplant, intrave

subcutaneously

Deferasirox in Treating

Patients with Iron Overload

after Undergoing a Donor

Stem Cell Transplant

≥18 Terminated(slow

accrual of

patients)

4 Breast cancer, iron
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lymphoma, multiple

myeloma and plasma cell

neoplasm, myelodysplastic

syndromes, neuroblastoma,

ovarian cancer

Deferasirox

(Exjade)

Number of patients not completing

treatment (time frame: 6 months)

20 mg/kg once daily orally for 6
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and
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3.1 Siderophores as Virulence Factors
Siderophores have been rigorously linked to pathogen virulence
(99–104). As mentioned earlier, Pseudomonas aeruginosa
produces PVD, a siderophore that stimulates its own
production along with the virulence factors exotoxin A and
lysyl endoprotease through a transmembrane signaling
pathway described by Lamont et al. (99, 105). Klebsiella
pneumoniae strain CG43 carries the virulence plasmid pLVPK,
which expresses genes involved in iron acquisition,
pathogenicity, capsular polysaccharide synthesis, and genes
that confer resistance to lead and tellurite (106). K.
pneumoniae genes for the siderophores enterobactin,
aerobactin, and salmochelin are encoded in the chromosome,
the plasmid, or both; aerobactin and salmochelin are associated
with hypervirulence (104). Siderophore synthesis promotes iron
acquisition in an iron-limited environment, which enhances
microbial proliferation and pathogenic virulence during
invasion and colonization of the host.

3.2 Siderophores as Signaling Molecules
Microbes can use siderophores as intraspecies signaling
molecules that are responsive to their environment and modify
their own iron acquisition capabilities, and as interspecies
signaling molecules between microbial populations across the
environment (13). The siderophore PVD from P. aeruginosa is
produced through a complex signaling pathway, described by
Lamont et al. and Beare et al., that also initiates transcriptional
activation of the endotoxin A (toxA) gene (99, 107, 108). Another
signaling mechanism of P. aeruginosa involves siderophore-
induced upregulation of the TonB-dependent receptors FoxA
and FiuA in response to the heterologous siderophores
ferrioxamine B and ferrichrome (109). This confers a
competitive advantage to P. aeruginosa by enhancing iron
sequestration from the environment. The E. coli TonB-
dependent receptor FecA is activated by binding to ferric
citrate, and then initiates the transcription of ferric citrate
transport proteins to facilitate transport of citrate-bound iron
(ferric citrate) into the cytoplasm (110, 111). Some microbial
siderophores act as signaling molecules that regulate the
production of their own virulence factors, stimulate iron
transport, and communicate within and between microbial
communities, an important consideration when factoring in
disrupted iron homeostasis in hosts with cancer.

3.3 Siderophores in Oxidative Stress
ROS are a lethal threat to microbes, and are often synthesized by
mammalian polymorphonuclear lymphocytes that utilize iron as
part of the innate immune response (112, 113). Siderophores
have been implicated in reducing the levels of ROS produced by
the host and minimizing oxidative stress through multiple
mechanisms (7, 114, 115). For example, the siderophore
yersiniabactin, which is produced by some Yersinia spp. and
other Enterobacteriaceae, inhibits ROS production in human
and mouse white blood cells by binding iron more effectively
than mammalian lactoferrin and transferrin (7). This
subsequently blocks the innate immune system by blocking
Frontiers in Oncology | www.frontiersin.org 11
iron acquisition for the production of ROS, which ultimately
reduces oxidative stress in the presence of yersiniabactin (7). E.
coli produces the enterobactin siderophore, which protects
against oxidative stress (116). Enterobactin is internalized and
hydrolyzed in the bacteria cytoplasm to relieve oxidative stress by
scavenging radicals (116, 117). The role of siderophores in
oxidative stress will be discussed in greater detail later.

3.4 Metal Sequestration by Siderophores
Siderophores primarily bind iron, but they also can bind other
metals based on their major structural group (118). P. aeruginosa
produces two major siderophores, PVD and pyochelin, which form
complexes with Fe3+, Ag+, Al3+, Cd2+, Co2+, Cr2+, Cu2+, Eu3+, Ga3+,
Hg2+, Mn2+, Ni2+, Pb2+, Sn2+, Tb3+, Tl+, and Zn2+, althoughmany of
these metals are not efficiently transported into the cell (119, 120).
The ability of siderophores to bind and selectively transport specific
metals into cells allows these metals to act as cofactors for biological
processes (119, 120). However, toxic metals may remain bound to
siderophores with limited uptake into cells, while potentially
triggering the production of additional siderophores (120–122).
Toxic metals that are transported into the microbial cytoplasm
can be expelled via efflux pumps, thereby enhancing microbial
survival in environments containing toxic metals (119, 121–123).
This is seen during E. coli infections, where E. coli secretes the
siderophore yersiniabactin as a protective mechanism against
copper toxicity (124). Yersiniabactin was found to be a favorable
copper (II) ligand that prevents copper (II) reduction to copper (I)
and helps E. coli resist toxicity during infections (7, 124).

With a different purpose, gallium (Ga3+) can replace ferric
iron (Fe3+) already bound to siderophores (125). Gallium and
iron share similar chemical properties, which allows gallium to
also bind iron-binding molecules like transferrin and ferritin,
and to be taken up by cells through the transferrin receptor (126–
129). Gallium and iron differ in their pharmacokinetics and
cellular functions, iron is eliminated at a faster rate than gallium
and they cannot be interchanged in essential iron-catalyzed
reactions (130). The ability of siderophores to bind other
metals and interfere with iron metabolism suggests a
therapeutic potential for gallium to control and treat bacterial
infections (see section titled “Antibiotic Activity of
Siderophores”). The mechanisms explored here could
potentially be applied for siderophores in cancer research.
Gallium treatment is already used as a cancer treatment in pre-
clinical models, which we describe in the section titled
“Siderophores as Iron Chelating Anticancer Agents”.

3.5 Antibiotic Activity of Siderophores
Targeting siderophore-mediated iron acquisition has become an
attractive approach to treat bacteria, as they become more
resistant to drug antibiotics. For example, gallium was found to
reduce microbial iron uptake and hamper bacterial growth. By
binding endogenous siderophores like PVD and pyochelin,
gallium can be taken up instead of iron by P. aeruginosa,
which disrupts iron metabolism and inhibits bacterial growth
(131–134) . Gal l ium coupled with the s iderophore
deferrioxamine is a successful bactericidal therapy against P.
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aeruginosa infection (135). Importantly, the antibacterial activity
of gallium on P. aeruginosa is greatly influenced by the
siderophore ligand type and the bacterial carbon source, which
is important to consider when using this mechanism to develop
medical therapies (136). Therefore, siderophores may have
antibacterial effects by starving pathogens for iron. Similarly,
pathogens can control the growth of bacteria by limiting iron
acquisition through competition, discussed in the “Bacterial
Siderophores” section (14). Additionally, siderophores exert
antimicrobial activity against competing microbes through the
formation of sideromycins (2, 13). Sideromycins are generated
by linking a siderophore to an antibiotic component, although
naturally occurring sideromycins are limited (2, 13, 137). A
number of sideromycins have been synthesized to use as
therapeutics against bacterial infections due to their targeted
antimicrobial activity (10, 118, 137). Burkholderia thailandensis
produces the natural sideromycin malleonitrone (138), which
exhibits antibiotic activity against Gram-negative bacteria and
inhibits P. aeruginosa (138). Streptomyces spp. produce the
sideromycin albomycin, which inhibits protein synthesis and
exerts a broad range of antibiotic and antimicrobial activities (2,
13, 137). Nonetheless, pathogenic bacteria can still develop
resistance to sideromycins. This is seen in many bacteria
mainly through the loss of siderophore receptors (139, 140),
and therefore understanding the mechanisms of resistance is
vital to develop more effective and targeted treatments.
Salmycins, ferromycins, and microcins are sideromycins that
exhibit more limited antimicrobial effects, typically against
Gram-positive bacteria (13). The antibiotic and antimicrobial
activities of sideromycins suggest that the extensive variety of
siderophores produced by microbes has biological relevance
beyond the acquisition of iron.

3.6 Siderophore Interactions With the
Immune System
Iron has a key role in immune competency (13). As previously
discussed, iron availability within hosts is limited and results in
pathogen upregulation of siderophores to confer a survival
advantage (83, 141). Iron availability and acquisition are
critical for bacterial pathogenesis (103, 142, 143). Increased
iron availability in normal and once-immunized mice was
associated with lethal infection regardless of Salmonella
typhimurium virulence, and the observed reduction in
mortality of twice-immunized mice was associated with timing
of the iron injection in relation to infection (142). Although
excess siderophores in normal mice increased mortality, the
injection of siderophores into immune mice did not enhance
the lethality of infection (142). Siderophores enhance microbial
iron acquisition and may induce competition that alters the
balance of the microbiome and iron homeostasis in the host (10,
14, 144).

Iron availability within hosts potentiates pathogen infection/
proliferation and cancer, so bound iron is essential for immunity.
Iron regulation is more tightly controlled during host disease
states as a form of nonspecific immunity used to mitigate the
proliferation of pathogens or cancer (77, 145, 146). As previously
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mentioned, Lcn2 represents a method of iron regulation during
immune stimulation as part of the acute phase response (72, 77,
147), and can be synthesized by a variety of cells, including
neutrophils and epithelial cells (147–149). Mouse Lcn2 was
upregulated in macrophages (in vitro) and in serum (in vivo)
via TLR4 receptor signaling when stimulated or injected,
respectively, with lipopolysaccharide (73). Lcn2 transcription
was increased in blood cells, hepatocytes, macrophages,
fibroblasts, and endothelial cells of mice infected with E. coli
H9049, further implicating its role in innate immune function
(73). Lcn2 has been extensively reviewed in the literature
regarding its relation to cancer (150–155), whereas interactions
between siderophores and the immune system have not been as
comprehensively studied.

Some siderophores interact directly with the immune system
by interfering with host defense mechanisms. For example, the
enterobactin siderophore produced by E. coli impeded the
defensive functionality of neutrophils by inhibiting ROS that
prevented the formation of neutrophil extracellular traps (156).
Enterobactin also inhibited myeloperoxidase activity by
binding directly to the enzyme, thereby preventing an
oxidative burst (157). Lcn2 can bind enterobactin and
counterbalance its immune-inhibiting activity in ROS
production, neutrophil extracellular trap formation, and
myeloperoxidase activity (156–158). By binding siderophores,
Lcn2 aids in limiting microbial iron acquisition while
simultaneously enhancing the innate immune system (157,
158). However, this competition triggers the production of
stealth siderophores that cannot be bound by Lcn2 (2, 157),
perpetuating the battle for iron and forcing the host to utilize
additional defenses. The host defense peptide LL-37 is
produced ubiquitously at epithelial surfaces and binds stealth
siderophores such as aerobactin and rhizoferrin to defend
against pathogenic microbes (159). Siderophores and Lcn2
also have roles in stimulating the immune response (71, 160,
161). Enterobactin enhanced the secretion of Lcn2 and
triggered the release of the inflammatory cytokine IL-6 (161).
Siderophores and siderophore-Lcn2 complexes also increase
IL-8 expression (160, 161). The Lcn2-induced secretion of
proinflammatory cytokines IL-6, IL-8, and CCL20 was
enhanced through superfluous siderophore iron chelation
(161). Immune cells are sensitive to the levels of iron and
other metals that modulate signaling, cytokine production, and
antimicrobial functionality (162). Siderophores can initiate the
innate immune response and modulate the immune response
system through various mechanisms related to iron
homeostasis. The ability of hosts to respond to siderophores
and control iron homeostasis could be crucial for controlling
iron availability in cancer.

The potential of siderophores as therapeutics for cancer
warrants further investigation, but the complex interactions
between siderophores and the immune system could
complicate any beneficial effects. Therefore, it is necessary to
understand the role of siderophores in iron chelation and
immune response mechanisms before developing innovative
cancer therapeutics.
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4 SIDEROPHORES AND CANCER

4.1 Iron and Cancer
There is a complex relationship between iron and cancer, as
different cancers display distinct and altered iron regulation and
metabolism (11). Health status and associated diseases have an
important role in determining the fate of iron in the body and
during carcinogenesis. Most solid tumors accumulate iron within
the cancer site (11). Tissue-specific transcriptomic analyses
showed that excess ferrous iron (Fe2+) and H2O2 undergo
Fenton reactions in the cytosol and mitochondria of 14
different cancers (163). This study predicted that cytosolic
Fenton reactions increase intracellular pH by producing OH–,
thereby increasing glycolytic ATP and nucleotide synthesis,
which are key mediators of rapid cancer proliferation (23,
164). The Fenton reaction also generates hydroxyl radicals
(•OH), which promotes inflammation and metabolic rewiring,
dysregulates cell signals, damages lipids in the cell membrane,
and can ultimately induce iron-dependent ferroptotic cell
death (23).

The relationship between iron and cancer is clear in
hereditary hemochromatosis, a genetic disorder that causes
increased iron absorption. Hemochromatosis is a known risk
factor for hepatocellular carcinoma (HCC) (165, 166), and
previous studies investigated the mechanisms underlying
hemochromatosis-mediated excess iron accumulation and
tumor development (167). Reducing iron levels in vitro and in
vivo suppresses HCC cell growth (168), and iron chelation
therapy is advised for patients with hemochromatosis. The
evidence suggests that excess iron can induce p53 mutations
(169), which are the primary causes for increased risk of HCC
along with increased oxidative stress (170).

One of the most widely accepted hypotheses for the increased
iron levels in tumors is the need for increased iron to support and
sustain the rapid growth and proliferation of cancer cells
compared to non-neoplastic cells. Consistent with this
proposal, many cancer cells display upregulation of the iron
import protein transferrin, its receptor, and the iron storage
protein ferritin Figure 1B (16, 18, 171, 172). HCC, breast cancer,
ovarian cancer, and colorectal cancer (CRC) display increased
levels of transferrin receptor and aberrant expression of other
iron transport–related proteins such as ferroportin (iron export
transmembrane protein) and the divalent metal transporter
(DMT1), required for iron uptake into enterocytes and
transport across the endosomal membrane once iron is taken
up by the cell (173) Figure 1B (174–176). Suppression of the
transferrin receptor or reduction of intracellular iron levels in
breast and ovarian cancers reduces cancer cell proliferation in
vitro, inhibits tumor growth in vivo, and decreases metastases
(175, 176). Conversely, increased cellular iron accumulation
from iron loading is associated with increased proliferation in
CRC cells and decreased mRNA and protein expression of E-
cadherin (174). CRC cells can increase motility and invasiveness
by reducing E-cadherin expression, suggesting a role for iron in
promoting invasion (174). The Carotene and Retinol Efficacy
Trial revealed a trend relating higher iron intake with increased
risk of clinically aggressive prostate cancer (177). Although there
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was no significant association between iron intake and overall
risk for prostate cancer in this study, it proposes that iron intake
could have a prominent role in prostate cancer (177). Iron
dysregulation and excess have been implicated in other
cancers, including pancreas (178), lung (179), and bladder
cancer (180), melanoma (36), and hematological malignancies
(181, 182). These studies support the role of iron in increasing
cancer risk by promoting cancer cell proliferation, invasion,
tumor growth, and inhibiting apoptosis Figure 2A.

Dietary iron supplementation can modulate iron availability
in the host, thereby increasing iron availability to cancer cells,
promoting microbial siderophore-mediated iron acquisition,
changing the intestinal microbiome, and potentially increasing
inflammation (183–186). In particular, iron fortification
increases the growth of enterobacteria over bifidobacteria or
lactobacilli, and increases pathogenic E. coli in the microbiome of
children (187). Most bifidobacteria and lactobacilli do not secrete
siderophores and provide a barrier against pathogenic invasion
(188, 189), whereas enterobacteria usually secrete siderophores
for iron uptake. This demonstrates a powerful role of dietary iron
and siderophores in bacterial growth, and the potential for these
changes to influence cancer development.

There is extensive evidence, reviewed here (4, 23), that iron
supports cancer progression, and that modulating iron levels can
be considered a promising cancer therapy. Iron chelators have
been tested as an anticancer treatment to reduce iron levels (190).
These chelators consist of bidentate, tridentate, and hexadentate
ligands that form octahedral complexes with ferric iron (Fe3+)
(24). Siderophores secreted by bacteria are considered iron
chelators, and siderophore-like molecules have been
synthesized to mimic the iron chelation activity of bacterial
siderophores and tested in preclinical models (Table 1) and
patients (Table 2). Reducing iron levels through iron chelation
has successfully reduced proliferation, tumor growth, and
metastasis in preclinical models of pancreatic (191), liver (34,
38), gastric (41), breast (37, 192), prostate (193), esophageal (69),
and melanoma (36) cancers (Table 1; Figure 2B); however, the
results from the few patient interventions have had conflicting
outcomes (Table 2). The following sections evaluate cases and
studies where siderophores were involved in cancer.

4.2 Siderophore Detection in Cancer
There is scarce evidence on whether siderophores can be detected
in tumors or in the microbiome of subjects with cancer. A small
pilot study in 2017 evaluated the potential of the sputum
microbiome for diagnosing lung cancer status and stage (194).
The study included 10 patients referred with possible lung cancer;
four were diagnosed with lung cancer after one year, and the other
six remained cancer free (194). The study investigated differences
in the bacterial species present in patients that developed lung
cancer and those that did not. Seven bacterial species were found in
both cohorts, and from those, five species were more abundant in
the patients that developed lung cancer than those that did not, but
only the average percentage abundance of Streptococcus viridans
was significantly higher. The abundances of Granulicatella
adiacens, Streptococcus intermedius, Mycobacterium tuberculosis,
Streptococcus viridans, andMycobacterium bovis were significantly
June 2022 | Volume 12 | Article 867271

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pita-Grisanti et al. Bacterial Siderophores in Cancer
higher in patients that developed lung cancer than those that did
not. Of note, Mycobacterium tuberculosis and Mycobacterium
bovis secrete mycobactin siderophores for iron uptake (143,
195). The researchers used metagenomics sequencing and
functional alignment analyses to determine that iron siderophore
receptors were higher in patients that developed lung cancer than
those that did not (194). Since excess iron has been implicated in
lung carcinogenesis (179), understanding the reason for sputum
microbiome upregulation of iron siderophore receptors in lung
cancer is relevant to understand disease progression. This was the
only study that identified resident siderophores or their receptors
in cancer. Future studies should characterize these molecules to
further understand tumor-microbiome interactions.

4.3 Siderophores in Cancer Treatment
Natural and synthetic siderophores have been extensively studied
as potential therapies and therapy vehicles for different cancers
due to their iron chelating capabilities (Table 1; Figure 2B).
These approaches are discussed in the following sections.

4.3.1 Siderophores as Iron Chelating
Anticancer Agents
One of the most popular bacterial siderophores in cancer therapy
research is deferoxamine (Desferal, desferrioxamine,
desferrioxamine-B, or DFO), which is a water-soluble
trihydroxamate hexadentate siderophore secreted by many
Streptomyces species (196, 197). DFO is commercially available
and has been used to treat iron overload diseases (70, 198–200). In
leukemia, DFO promotes apoptosis in vitro by upregulating the
tumor suppressor gene p53 and the pro-apoptotic genes Bax and
Fas, and reducing the expression of the anti-apoptotic gene Bcl-2
(35). DFO alone and in combination with doxorubicin
chemotherapy inhibited breast tumor growth in xenograft mouse
models (37). When combined with doxorubicin, DFO inhibited the
cardiotoxic side effects that commonly occur in doxorubicin therapy
without compromising the treatment efficacy, suggesting that
siderophores have a beneficial role as an adjunct treatment with
chemotherapy (37). DFO administration during the initial stages of
tumor formation in a subcutaneous xenograft mousemodel of HCC
regressed or slowed tumor growth due to a decrease in intracellular
iron concentration (Figure 2B; Table 1) (39).

Most preclinical studies demonstrated the antitumor effects of
DFO. By contrast, studies in cancer patients had conflicting
outcomes, with many clinical trials terminating due to
difficulties in patient enrollment (Table 2). An early clinical
study of ten children with recurrent neuroblastoma (NB) after
1–3 treatment regimens administered continuous IV DFO
infusion at 150 mg/kg/day for five consecutive days every other
week (42). Within one month from the initiation of therapy, nine
patients had progressive disease, and one patient had stable
disease. This study concluded that the selected dosage and
interval of DFO was ineffective as a single therapy for NB
patients. Higher DFO doses such as 240 mg/kg/day have serious
adverse effects and are not recommended for use (42). Another
clinical trial of ten children with unresectable NB administered
Frontiers in Oncology | www.frontiersin.org 14
DFO at 150 mg/kg/day followed by preoperative chemotherapy,
surgery and postoperative chemotherapy (43). There were three
complete responses, six partial responses, and one minor response.
Nine out of ten patients underwent complete remission following
surgery, and the tenth patient underwent complete remission after
postoperative chemotherapy. The authors concluded that the DFO
regimen used was effective in achieving complete tumor resection
(43). A more recent study of ten adult patients with advanced
HCC, who did not have a response to hepatic arterial infusion
chemotherapy, were administered 10–80 mg/kg of DFO during 24
hours on alternate days an average of 27 times (40). The overall
response rate and the 1-year cumulative survival for these patients
was 20% (40), indicating that DFO treatment was not successful in
the majority of cases. Only four of the clinical trials registered, that
used siderophores and iron chelation therapy in cancer, used DFO
for the intervention (Table 2). One of these studies focused on
patients with leukemia and myelodysplastic syndrome and
reported low accrual (n=5) due to the need for home
administration of deferoxamine (50 mg/kg/day) and the
considerable intervention window (60). All patients enrolled had
iron overload and were scheduled to undergo myeloablative
allogeneic hematopoietic stem cell transplantation (60). No
serious adverse side effects were reported and serum ferritin
decreased after the treatments, but liver iron content remained
unchanged. The estimated progression-free survival after
transplantation was 100% (60), but the authors are not able to
draw any reliable conclusions due to the low number of patients
enrolled. The other three clinical trials are in pediatric cancers with
nephropathy, HCC patients, or pancreatic cancer patients. The
HCC trial is currently recruiting while the pancreatic cancer trial
was completed/terminated and did not provide the DFO dosage or
preliminary results. Conclusions from the clinical studies
described here are limited and should be taken with caution due
to the low enrollment, lack of standardized dose, and absence of
appropriate control groups.

DFO is a hydrophilic molecule that presents many disadvantages
including poor membrane permeability, poor oral viability, and a
short plasma half-life of ~12 minutes (201, 202). This requires that
DFO is continuously administered subcutaneously or intravenously
(68, 203) according to a rigorous infusion regime 8–12 hours/day 3–7
days/week (204, 205). As expected, this administration method has a
compliance of <50% (206). The inconsistent success of DFO as an
antitumor agent has encouraged the design of more effective iron
chelators, with particular focus on chelator lipophilicity, membrane
permeability, and selective antitumor activity.

To improve the efficacy of DFO as a cancer therapy,
researchers analyzed the effects of a synthesized DFO variation
bound to caffeine called desferrioxamine-caffeine dimer
(DFCAF), which has greater cell permeability than DFO alone
(44). DFCAF cytotoxicity was tested against cancer stem cells
(CSCs, the source of biological variability within a tumor), which
often determine neoplasm resistance to traditional therapies.
CSCs give rise to diverse tumor cell populations and can
initiate metastasis, and therefore demand a high intake of
nutrients such as iron (44). DFCAF conferred greater ability to
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sequester iron within breast CSCs, which was measured as the
concentration of an intracellular iron storage protein remaining
after treatment. The CSCs also had reduced viability, reversed
epithelial-to-mesenchymal transition, and increased clearance
after DFCAF treatment in vitro.

Another bacterial siderophore that has been studied is
desferrithiocin (DFT) (Table 1). DFT is a tridentate natural
siderophore from Streptomyces antibioticus DSM (207), which
displays antineoplastic activity in HCCs in vitro and has high
oral effectiveness (45). However, it also confers severe
nephrotoxicity, which makes it unsuitable for chelation therapy.

En t e r o b a c t i n i s p r o du c e d b y G r am-n e g a t i v e
Enterobacteriaceae (208) (E. coli, Salmonella enterica, Shigella
dysenteriae, and Klebsiella pneumoniae) and is reported to have
anticancer properties (Table 1). This siderophore does not have
polar properties and is permeable across the cell membrane.
Although there is a lack of evidence relating this siderophore to
cancer, enterobactin displays anticancer properties by disrupting
the generation of ROS and disturbing the homeostasis of the labile
iron (redox-active iron that can be chelated) pool in vitro.
(Figure 2B) (46) Enterobactin showed efficacy in selectively
chelating iron in monocyte-derived cancer cell lines and
refraining from sequestering iron pools in bone marrow–derived
macrophages (46). Iron-bound enterobactin exhibits cytotoxic
capabilities in rapidly dividing cell lines, whereas unbound
enterobactin does not display cytotoxic effects. The observed
increase in intracellular Lcn2 concentrations in noncancerous
cells could reflect the reduced tendency of enterobactin-induced
cytotoxicity in these cells, whereas the lower Lcn2 levels in
cancerous cells may allow the increased free enterobactin to
exhibit its anticancer properties (46). Lcn2 levels are usually
higher in many types of cancers (152) (not the case in this
study), which might prevent these results from being translated
to other tumor types.

Ferrichrome is another bacterial siderophore with anticancer
properties (Table 1). Ferrichrome originates from the common
probiotic strain Lactobacillus casei (47), and was studied for
potential cytotoxic effects on gastric and colon cancer cell lines
and xenograft mouse models (47, 48). Unbound ferrichrome has
antitumor activity through activation of the pro-apoptotic
pathway c-Jun N-terminal (JNK)-DNA damage–inducible
transcript 3 (DDIT3) (Figure 2B). In this study, iron-bound
ferrichrome did not display the same antitumor suppression
activity. The authors suggested that the mechanism of antitumor
activity in ferrichrome is likely located in the iron-chelation site
(47). Another study used a xenograft model of CRC and reported
similar results for the tumor suppression activity of unbound
ferrichrome through upregulated DDIT3 (49). Ferrichrome
treatment did not alter serum iron levels in mice, suggesting
that it does not necessarily reduce systemic iron levels (49).

A recent study investigated the effects of three bacterial
siderophores on the proliferation of malignant and non-
malignant mouse and human cell lines: exochelin-MS (Exo-
MS), mycobactin S (MBS), and deferoxamine B (DFO) (34).
Exo-MS and MBS are water-soluble and lipid-soluble
siderophores, respectively, and both are produced by
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Mycobacterium smegmatis. DFO is a water-soluble siderophore.
Exo-MS inhibited the growth of mouse cancer cell lines, but not
human cancer cell lines (34). DFO inhibited the growth of mouse
cancer cells and human breast and leukemia cancer cells (34).
MBS decreased the survival of human liver cancer cells, which
was not observed with DFO or Exo-MS. The authors suggested
that conjugating water-soluble siderophores with lipid molecules
could increase their effectiveness against tumor cells (34).

The antitumor effects of siderophore-like molecules derived
from bacteria have also been investigated. Amamistatin A and B
were isolated from the actinomycete Nocardia asteroids, and have
similar structures as mycobacterial siderophores. Amamistatin A
displayed antiproliferative effects against the human tumor cell
lines MCF-7 breast, A549 lung, and MKN45 stomach.
Amamistatin A and B displayed cytotoxicity against mouse
lymphocytic leukemia cells (50). The authors suggested that the
antitumor activity of amamistatins could be explained by their
iron chelating properties, similar to the bacterial siderophores.
Amamistatins might act as histone deacetylase (HDAC) inhibitors
through their N-formyl hydroxylamine or retrohydroxamate
moiety. HDAC inhibition prevents tumor growth (209), and the
retrohydroxamate ligand has been utilized in small molecule
HDAC inhibitors (210), suggesting that amamistatins may be
useful in cancer therapy and warrant further investigation.

Since siderophores are also able to bind gallium, which
prevents the growth of pathogenic bacteria, research has
expanded to understand this interaction in cancer. Gallium can
be taken up by tumors exhibiting antineoplastic activity (211,
212). In human lymphoma cells, gallium induced cell death by
activating pro-apoptotic Bax and inducing mitochondria-
generated ROS (168). Gallium nitrate is approved by the FDA
and is being studied in clinical trials to treat cancers like Non-
Hodgkin’s Lymphoma, where it had favorable results (213).
Cancer patients treated with gallium have a disrupted iron
metabolism (214) which indicates that the antitumor function
of gallium might be due to iron-related effects. However, the
mechanism of action in cancer is still not clear, and patients
treated with gallium are at higher risk of iron deficiency and
complications like anemia. Continuous treatment with gallium
nitrate promotes the development of resistance, which is
accompanied by changes in iron trafficking and metabolism
(134). Interestingly, other types of gallium, like gallium
maltolate, can still inhibit the growth of lymphoma cells that
become resistant to gallium nitrate (215). Since some bacteria
can become resistant to sideromycins, it will be important to
assess whether bacterial and synthetic siderophores could
generate resistance in cancer cells.

Recent research focus has shifted to the development of
synthetic iron chelators with superior pharmacological properties
and similar preclinical results (211, 212), that avoid the adverse
effects of siderophores in humans. Optimal iron chelators for cancer
treatment must be readily absorbable, with a long-half life in the
blood and higher affinity for iron over other metals, although we
have reported the benefits of siderophores being able to bind other
metals. Selectivity for or against cancer cells is also an important
characteristic that should be investigated to avoid systemic iron
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deprivation when it is not needed (212, 216). The synthetic iron
chelator thiosemicarbazone-24 (TSC24) suppressed human HCC
tumor growth by disrupting iron homeostasis, reducing available
iron, and triggering cell cycle arrest and apoptosis without any
apparent host toxicity (168). Other synthetic iron chelators
currently in preclinical studies as anticancer agents include
deferiprone (193) and deferasirox (191, 192, 217), which are also
in clinical trials to treat cancers related to iron overload (Table 2).

All clinical trials using iron chelation as a cancer therapy are
summarized in Table 2. A number of bacterial siderophores and
siderophore analogs are studied in preclinical studies; however,
only DFO, deferasirox (synthetic), and deferiprone (synthetic) are
undergoing clinical trials. Deferasirox is more commonly used
than DFO, probably due to its more convenient oral
administration. None of these clinical trials are investigating the
effects of chelators/siderophores in solid tumors (other than one
HCC and one pancreatic cancer study without results), whereas
most of the research in preclinical studies is focused on tumors. All
conditions and diseases studied in the clinical trials involve
systemic iron overload, including beta-thalassemia, leukemia,
and myelodysplastic syndrome (which requires increased blood
transfusions). The clinical studies are not reflective of the
preclinical data generated in mouse models and in vitro cell
cultures, where siderophores are studied for tumor treatment
regardless of systemic iron overload. A potential reason for this
is that these chelators act systemically and do not specifically target
the tumor. Therefore, other tissues could be damaged and anemia
could be developed by a drastic reduction in iron levels. Future
studies should address chelator targeting for non-systemic
reduction in tumor iron levels and obtain further evidence to
increase the translation of these studies to the clinic.

4.3.2 Siderophores as Mediators of Drug Delivery
Siderophores and their analogs are also used for iron transport–
mediated drug delivery through sideromycins (Trojan horse
antibiotics). Microbes can develop antibiotic resistance by altering
permeability barriers, altering the drug target binding sites,
synthesizing enzymes that destroy antibiotics, and developing
mechanisms to transport antibiotics out of the cell before they
induce damage (218). Siderophores can evade membrane-
associated drug resistance because microbes require nutrient
uptake from the environment for survival, which enables a route
and target of drug delivery. Siderophores were investigated as a drug
transport agent to overcome antibiotic resistance and target
pathogenic bacteria. Successful results in targeting antibiotic-
resistant bacteria suggested that this mechanism could be used to
target cancer cells. This seems to be a promising proposition, as
siderophore-iron complexes can bind Lcn2 and travel in circulation
(219), and iron-loaded Lcn2 can be taken up by cancer cells where
Lcn2 is commonly upregulated (220), creating a pathway for the
implementation of a modified “Trojan horse” drug delivery.

A recent study conjugated the siderophore PVD from P.
aeruginosa, a mixed-type siderophore with hydroxamate and
catecholate groups, to synthesize superparamagnetic iron oxide
nanoparticles (SPION) (221). The PVD-iron complex has strong
binding and high stability, which protects it from hydrolysis and
enzymatic degradation. PVD-SPIONwas covalently conjugated to a
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mucine 1 aptamer (MUC1Apt) and loaded with doxorubicin, which
is used in chemotherapy. MUC1Apt is one of the most studied
aptamers as it specifically recognizes the mucin 1 (MUC1) protein
that is strongly upregulated in most cancer cell surfaces, which
makes it a great target in cancer (222). The investigators showed
that the PVD-SPION-MUC1Apt complex was successfully taken up
by cancer cells, and conferred tumor inhibitory growth effects and
improved survival in mice bearing C26 colon carcinoma (221). This
complex also served as a diagnostic agent that improved contrast at
the tumor site in magnetic resonance images (221). This study is
one of the first to show the potential of siderophores as
chemotherapy delivery agents and diagnostic tools in cancer.

4.3.3 Risks of Siderophore Treatment
While siderophore treatment in cancer has shown some
beneficial results in pre-clinical models, and some siderophores
and analogs have been used in clinical trials, additional studies
are needed to determine side effects or potential risks of these
interventions. Understanding siderophore functions in
mammalian cells will help assess the risk of siderophore
implementation in cancer. We previously mentioned that iron
chelat ion reduces mitochondrial mass and induces
mitochondrial fragmentation in C. elegans, and that it
promotes mitochondrial degradation in mammalian cells (93)
In addition, iron chelation induces C. elegans’ death through
hypoxia (94). Iron chelation therapy is commonly used to lower
systemic iron levels in iron overload diseases (202), and data
from the literature suggest that chelation therapy could also
enhance iron absorption, which might be undesirable in the
context of cancer (223). Therefore, investigating the effects of
siderophore therapy on the microbiome, the mitochondria (in
not only cancer cells, but also other cells of the body) and
systemic and cellular iron levels, will be vital when evaluating
the feasibility of these interventions.

Another factor to consider is whether cancer cells can become
resistant to siderophore treatment, as bacteria are known to become
resistant to sideromycins by losing their siderophore receptors
(139, 140), and to gallium nitrate treatment (134). Moreover, it is
supported that cancer cells employ Lcn2 to collect extracellular iron
to support cancer growth in renal cell carcinoma (220) and
leptomeningeal metastasis (224). Thus, understanding the
function of Lcn2 as a result of a siderophore treatment will
further elucidate additional risks related to these treatments.
5 CONCLUSIONS

Siderophores are secreted by many organisms including bacteria,
to sequester essential iron from the environment to sustain their
growth. This function has gained interest in cancer research
because excess iron availability is linked to increased cancer risk,
and cancer cells require higher iron levels to sustain their rapid
proliferation and growth Figure 1 (71, 225). Therefore, bacterial
siderophores and siderophore analogs are being utilized to
chelate iron and prevent it from being taken up by cancer
cells, which inhibits the proliferation and growth of many
different cancers in preclinical studies Figure 2.
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Siderophores also function as signaling molecules that can lead to
the production of virulence factors and the regulation of siderophore
synthesis. Siderophores can interact with the immune system,
mitigate oxidative stress, protect microbes from ROS and bind
other metals in addition to ferric iron (Fe3+). Finally, siderophores
can form sideromycins and have antimicrobial effects against other
microbes in the environment. Each of these described siderophore
functions does not fully consider the interactions between microbes
in a competitive environment, and how these functions may be
enhanced or suppressed through these interactions.

There is still much to learn about the effects and interactions of
siderophores in cancer. Most of the preclinical and clinical studies
use inconsistent dosages, conditions, and safety and outcome
measures, which reduce their translational value for additional
studies in patients. Data regarding endogenous siderophores in
cancer and related changes to the microbiome are also lacking.
Additional studies are needed in these areas to assess the potential
efficacy of siderophores in cancer detection and therapeutics. This
review discussed bacterial siderophores and analogs that have
potential benefits for cancer therapy, but even less is known about
mammalian or fungal siderophores in cancer and immunity. It will
be crucial to map the relationships between siderophores, iron,
immune function, and cancer to develop stable, effective, and
targeted therapeutics. These efforts should leverage the functions
of siderophores and translate the outcomes to the clinical setting.
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