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Identifying biomarkers of developing mental disorder is crucial to improving early
identification and treatment—a key strategy for reducing the burden of mental disorders.
Cross-frequency coupling between two different frequencies of neural oscillations is one
such promising measure, believed to reflect synchronization between local and global
networks in the brain. Specifically, in adults phase–amplitude coupling (PAC) has been
shown to be involved in a range of cognitive processes, including working and long-term
memory, attention, language, and fluid intelligence. Evidence suggests that increased
PAC mediates both temporary and lasting improvements in working memory elicited
by transcranial direct-current stimulation and reductions in depressive symptoms after
transcranial magnetic stimulation. Moreover, research has shown that abnormal patterns
of PAC are associated with depression and schizophrenia in adults. PAC is believed to
be closely related to cortico-cortico white matter (WM) microstructure, which is well
established in the literature as a structural mechanism underlying mental health. Some
cognitive findings have been replicated in adolescents and abnormal patterns of PAC
have also been linked to ADHD in young people. However, currently most research
has focused on cross-sectional adult samples. Whereas initial hypotheses suggested
that PAC was a state-based measure due to an early focus on cognitive, task-
based research, current evidence suggests that PAC has both state-based and stable
components. Future longitudinal research focusing on PAC throughout adolescent
development could further our understanding of the relationship between mental health
and cognition and facilitate the development of new methods for the identification and
treatment of youth mental health.

Keywords: EEG, cross-frequency coupling, PAC, mental disorder, cognition, youth mental health,
neurostimulation, DTI

INTRODUCTION

In Australia, mental disorders were estimated to have a direct economic cost of up to $51 billion
and a further $130 billion cost as a result of diminished well-being during the 2018–2019 period
(Productivity Commission, 2019). Mental health research and reform is currently focusing on
adolescence as it is recognized as a critical period for the development of mental disorder (Paus,
2005; Hickie et al., 2013). More than 50% of mental disorders develop before 14 years of age

Frontiers in Human Neuroscience | www.frontiersin.org 1 March 2021 | Volume 15 | Article 622313

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.622313
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2021.622313
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.622313&domain=pdf&date_stamp=2021-03-26
https://www.frontiersin.org/articles/10.3389/fnhum.2021.622313/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-622313 March 23, 2021 Time: 14:28 # 2

Sacks et al. PAC Implications for Adolescence

and more than 75% before 24 years of age (Kessler et al., 2005).
In Australia, 14% of those aged 4–17 years are evaluated as
having a mental disorder in the prior 12 months (Lawrence et al.,
2015). Young people frequently present with subthreshold, non-
specific symptoms that are associated with significant, ongoing
socio-occupational impairment (Lee et al., 2013; Iorfino et al.,
2018) and an increased chance of developing discrete disorders
(Fergusson et al., 2005; Iorfino et al., 2019). The rapid differential
structural brain changes that occur during adolescence result
in an increased risk of developing mental disorders during this
period, as well as risk-taking behavior that can introduce various
other risk factors for mental health (Andersen, 2003; Paus, 2005;
Casey et al., 2010, 2011).

Traditional psychiatric approaches that focus on the
identification and treatment of established mental disorders
have limited application for developing psychopathology (Hickie
et al., 2013). Thus, using neuroscience to investigate biomarkers
related to youth mental health is critical to improving our
understanding of emerging psychopathology and developing
new methods of early identification and treatment. Phase–
amplitude coupling (PAC), a type of cross-frequency coupling
(CFC) between different frequencies of neural oscillation is
a promising biomarker that may improve our understanding
of mental health and cognition in adolescence. In this review
article, we provide a brief overview of (1) CFC, specifically PAC
in EEG research, (2) PAC in cognition/information processing,
including memory, attention, language, and fluid intelligence, (3)
PAC’s implications for neurostimulation and mental health, (4)
PAC and structural connectivity, and (5) PAC developmentally.
Finally, future directions for research are discussed.

EEG AND PAC

The EEG has been used to analyze the rhythmic, oscillatory
activity of the human brain for nearly 100 years since Berger
(1929) performed the first human EEG studies and discovered
the alpha wave. Subsequently, an abundance of research has
focused on delineating the properties and functions of individual
frequency bands of various neural oscillations. The five most
well-established frequency bands are: delta, theta, alpha, beta,
and gamma, which have been implicated across a range of
cognitive functions that vary according to context and associated
region. For an overview, see Herrmann et al. (2016). Analysis
of different frequencies independently aligns with the traditional
perspective that the brain is comprised of phylogenetically
distinct networks that operate at different frequencies. However,
recent EEG research, in conjunction with electrocorticography
(ECoG) and magnetoencephalography (MEG), suggests that
there is a dynamic interplay between neural frequencies that
reflects the integrative nature of cortical networks.

Cross-frequency coupling between two different frequencies
of neural oscillations is hypothesized to facilitate communication
between meso and microscales within regions, and
synchronization and interaction between local and global
networks in the brain inter-regionally (Canolty and Knight,
2010). Through use of source localization techniques and

concurrent fMRI, studies are now able to provide greater spatial
resolution to complement EEG analyses. A now common
perspective is that oscillatory activity is hierarchical—the phase
of slower oscillations modulates the amplitude, frequency, or
phase of faster oscillations (Jerath et al., 2019). Recent efforts
have focused on coupling between the phase of slower oscillatory
activity and the amplitude of faster oscillatory activity (i.e., PAC).
Importantly, it is now understood that PAC provides additional
explanatory power beyond simple “neuronal communication
through neuronal coherence” (Fries, 2005), with evidence
suggesting that PAC may facilitate separate, spatially distributed
cortical networks operating in parallel (van der Meij et al., 2012).
Findings suggest that PAC is a fundamental neurological process
that can potentially help us better understand information
processing and mental health in the brain.

PAC AND COGNITION

PAC and Memory
One of the most researched areas in the context of PAC is
memory. Numerous adult EEG studies have implicated theta–
gamma PAC as a neural substrate of visual and auditory working
memory (Axmacher et al., 2010; Kaminski et al., 2019). Theta–
gamma PAC (one of the most prominent types of PAC) has
been recorded within multiple brain regions, but specifically in
the hippocampal region and prefrontal cortex during working
memory tasks. These results have been replicated in adolescents.
Theta–gamma PAC within frontal and temporal regions, as well
as interregionally between frontal and posterior regions has also
been implicated in the encoding and retrieval of items in long-
term, declarative memory in adults (Friese et al., 2013; Lara et al.,
2018; Köster et al., 2019).

One popular model of working memory suggests that
individual gamma waves represent memory items, which are
“nested” in theta, enabling the retention of multiple items. See
Sauseng et al. (2019) for a review of evidence—pertinently,
researchers were able to elicit temporary improvements in
visual and verbal working memory using transcranial alternating
current stimulation (tACS) to slow theta waves, theoretically
enabling the nesting of an additional gamma wave (Vosskuhl
et al., 2015; Wolinski et al., 2018).

PAC, Language, Attention, and
Intelligence
Other complex areas of cognition that have been associated
with PAC in adults include language, attention, and fluid
intelligence. PAC has been associated with linguistic processes
such as verb generation (Doesburg et al., 2012), linguistic
structure composition (Brennan and Martin, 2020), and language
prediction (Wang et al., 2018). An oscillatory model of language
is described by Murphy et al. across a series of studies (Murphy,
2016, 2018; Benítez-Burraco and Murphy, 2019).

Phase–amplitude coupling is also implicated in selective
attention in adults (e.g., Doesburg et al., 2012; Saalmann et al.,
2012). Gonzalez-Trejo et al. (2019) demonstrated differences
between “car drivers” and “co-pilots” in PAC within the
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prefrontal cortex, frontal eye fields, primary motor cortex, and
visual cortex during a simulated driving task. Mento et al. (2018)
demonstrated that theta–beta coupling at Cz is associated with
the temporal orienting of attention in 8–12-years-olds.

Chuderski (2016) criticized the methods used by previous
research that reported a relationship between PAC and fluid
intelligence (Pahor and Jaušovec, 2014) but highlighted that
measures of intelligence are strongly correlated with working
memory and thus likely associated with PAC. Gągol et al. (2018)
identified that greater beta–gamma PAC coupling at rest and
during a reasoning task was associated with increased fluid
intelligence at individual sites across the brain, with greater
strength at medial, frontal, and parietal electrodes. See Hyafil et al.
(2015) for further discussion about the cognitive mechanisms of
PAC. Further research is required to determine how findings in
adults translate into adolescents. It is now well established that
cognition and mental health are closely intertwined; consistent
cognitive deficits are present across mental disorders in youth
and relate directly to functioning and illness trajectory (Lee
et al., 2013, 2018). Evidence increasingly suggests that PAC is a
fundamental process underlying information processing.

PAC, NEUROSTIMULATION, AND
MENTAL HEALTH

Neurostimulation
One of the most interesting developments in the PAC
literature is that both temporary and lasting changes can
be elicited by contemporary treatment modalities such
as tACS (mentioned above), transcranial direct current
stimulation (tDCS), and transcranial magnetic stimulation
(TMS). Jones et al. (2020) demonstrated that combining
tDCS with working memory training over 4 days resulted
in significantly greater working memory improvements
than working memory training alone in adults, which
were mediated by greater inter-regional theta–gamma
PAC strength between the prefrontal cortex and temporo-
parietal regions. This is not only relevant to cognition, but
also mental health.

Noda et al. (2017) analyzed resting-state PAC before and
after a typical 2-week course (10 sessions) of repetitive TMS
(rTMS) targeting the dorsolateral prefrontal cortex in adult
patients with depression; rTMS was associated with improved
scores on the Hamilton Rating Scale for Depression, Beck
Depression Inventory and increased PAC at the C3 (left
temporal) and T3 electrode site at rest. These findings suggest
that decreased resting-state theta–gamma PAC may be a
biomarker of poorer mental health (specifically depression)
and that lasting changes in PAC may be a mechanism
underlying TMS treatment. Notably, cross-frequency theta–
gamma tACS protocols have been demonstrated to influence
memory (Alekseichuk et al., 2016; Lara et al., 2018), cognitive
control (Turi et al., 2020), and emotional-action control
(Bramson et al., 2020). Alekseichuk et al. (2016) reported
that theta–gamma tACS has a greater effect on working
memory than theta tACS. If PAC is disrupted in mental

disorder, then cross-frequency tACS may be a promising
prospective treatment.

Mental Disorder
Currently, research investigating the links between mental health
and PAC is emerging. A number of studies have investigated
the relationship between PAC and psychotic disorders. Barr
et al. (2017) compared PAC between adults diagnosed with
schizophrenia and healthy controls. Theta–gamma coupling
within the prefrontal cortex was significantly reduced during a
working memory task in the patient group compared to controls.
Whereas increased theta–gamma coupling was associated with
correct responses on a working memory task in the controls,
there was no association between coupling and accuracy in the
patient group. Theta–gamma coupling within the occipital region
decreased with working memory load in controls, but there was
no pattern in patients. Other studies (Won et al., 2018; Lee et al.,
2019) have compared PAC at rest in healthy controls to young
adults (mean age = 23.2 and SD = 4.9) with first-episode psychosis
and adults with neuroleptic-naïve schizophrenia, respectively.
Both studies identified increased theta–gamma PAC at rest within
regions known to be associated with the default mode network
(DMN) in patient groups compared to controls. These results
suggest people with psychosis have dysfunctional hyperactivation
of resting-state theta–gamma PAC within DMN-related brain
regions, which may be a result of compensatory reallocation of
cognitive resources due to dysfunction in the prefrontal cortex.
Won et al. (2018) also reported that PAC better predicts patients
with schizophrenia (with a classification accuracy of 92.5%)
compared to power spectra analysis (which had 62.2% accuracy),
suggesting that it is a promising neurophysiological marker
of schizophrenia.

Another study compared theta–gamma PAC between young
people with ADHD and healthy controls. The ADHD group
demonstrated significantly reduced PAC within diffuse regions
across the cortex during an arithmetic task compared to
the controls. Deficits in PAC were associated with reduced
performance on the arithmetic task. The authors hypothesized
that reductions in PAC reflected deactivation of the DMN during
the task, but failure to shift to attentional networks (Kim et al.,
2016). Although further PAC research is required across a range
of disorders, these early results suggest that PAC is associated
with functional aspects of various mental disorders. Further
detailed research is likely to provide a greater understanding of
its mechanisms across cognition and mental health.

PAC AND STRUCTURAL CONNECTIVITY

Currently, the exact mechanisms that underpin CFC are
unknown. The EEG signal is believed to be predominantly
generated by pyramidal cells in the cortex (for a full explanation
of the EEG signal generation process, see Steriade et al., 1990;
Kirschstein and Köhling, 2009). EEG functional connectivity
is believed to be strongly influenced by white matter (WM)
in myelinated axons—specifically cortico-cortical axons
(Nunez et al., 2015). Through in vivo analysis of WM using
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contemporary MRI techniques such as diffusion tensor imaging
(DTI) abnormalities in WM microstructure have been established
across a range of mental disorders (Kanaan et al., 2005; Sexton
et al., 2009; Heng et al., 2010). Although DTI resolution is too
limited to create comprehensive maps of axon connectivity
(Nunez et al., 2015), combining EEG and DTI may improve
our understanding of how anatomical connectivity shapes
functional connectivity (Cohen, 2011). Early research into
alternative measures (cross-correlation and coherence) of EEG
functional connectivity has identified associations with structural
connectivity (Chu et al., 2015).

We are unaware of any studies to date that have implemented
concurrent EEG and DTI to investigate how PAC is related
to brain structure. Hawasli et al. (2016) hypothesized that
WM and gray matter (GM) lesions in humans undergoing
resection surgery for epilepsy or brain tumors would result in
disruption to PAC. Contrary to their hypothesis, they reported
that PAC was maintained after WM lesions, and GM lesions
resulted in increased beta–gamma PAC in the resected area.
Using concurrent DTI and EEG analyses may provide further
insight into how the relationship between WM microstructure
and PAC both within regions and across cortical networks
affects information processing. Specifically, such research during
adolescent brain development may help us better understand
healthy and pathological neural development trajectories and
thus lead to new methods of identification and treatment for
mental disorder in youths.

PAC AND THE DEVELOPING
ADOLESCENT BRAIN

The majority of PAC research to date has focused on
cross-sectional adult samples. Although some recent studies
investigating younger age groups have been completed (i.e.,
in memory, attention, and ADHD), there does not appear
to have been any large-scale studies that have investigated
PAC longitudinally, from a developmental perspective. As
adolescence is known to be a critical period for the development
of mental disorders, recent evidence that PAC is associated
with mental health demonstrates a clear requirement for PAC
research throughout this period. Understanding the emergence
of pathology is critical for understanding the biological basis of
mental illness. Because initial PAC research focused on task-based
cognitive studies, some initial perspectives suggested that PAC is a
transient, state-based measure, whereas other forms of CFC may
be more steady and suited to longitudinal research. For example,
amplitude–amplitude coupling (AAC) between lower frequency
oscillations was suggested to be particularly suited to longitudinal
research as it demonstrated trait like properties associated with
motivational and emotional processes, as well as anxiety (Schutter
and Knyazev, 2012). Knyazev et al. (2019) investigated AAC
annually in 7–10-year-olds, finding that AAC appears to have
non-linear growth trajectories with strong test–retest reliability
and that higher AAC in cortical areas related to emotion,
attention, and social cognition was related to introversion.

However, little is known about AAC as it has received
relatively little attention in the literature compared to PAC.
Recent evidence demonstrating that PAC is associated with
mental health and cognition, including at rest and pre-
post intervention, illustrates that PAC clearly has persistent,
stable components equally suited to longitudinal research.
This emerging research suggesting that PAC may be an
important biomarker of mental health highlights the importance
of longitudinal research investigating PAC throughout the
rapid differential structural brain changes that occur during
adolescence. Longitudinal research to determine whether PAC
demonstrates similar non-linear growth trajectories to AAC
and how these are associated with adolescent cognitive
development and mental health may be crucial to better
understanding how PAC research can contribute to better
understanding mental health.

LIMITATIONS

It is important to also acknowledge potential confounds in
PAC research. Specifically, the susceptibility of PAC measures to
spurious identification of PAC has recently been highlighted (Aru
et al., 2015). Numerous measures have been developed, each with
strengths and weaknesses (Hülsemann et al., 2019). In particular
higher harmonics from non-sinusoidal cortical activity can result
in PAC that does not reflect true neuronal activity. This potential
for spurious PAC does not preclude the significance of true PAC,
rather it highlights the importance of deliberate methods and
analyses in future research to ensure that PAC findings reflect
true neural phenomena. Aru et al. (2015) and Jensen et al. (2017)
outline key recommendations and considerations for avoiding
confounds, including critically the presence of oscillations with
clear peaks in a time-resolved power spectrum. A number of
advanced signal-processing tools are being developed, including
the Extended Modulation Index Toolbox by Jurkiewicz et al.
(2020) designed specifically to address these issues.

CONCLUSION AND FUTURE
DIRECTIONS

Research increasingly suggests that PAC is a fundamental
component of human information processing, involved across a
range of cognitive processes. Recently, PAC has been implicated
in mental health as well, with a number of studies identifying
abnormalities in PAC as features of psychotic disorders and
ADHD. Decreased symptoms of depression after TMS were also
associated with an increase in PAC. More in-depth research is
required to fully understand PAC’s role in these disorders, as well
as similar research investigating whether abnormalities in PAC
are implicated across a range of other mental disorders. However,
PAC is believed to be closely associated with neuroplasticity and
thus likely critical across mental disorder and treatment. Current
findings suggest that better understanding PAC could potentially
lead to a better understanding of mental health. While our
knowledge regarding PAC is growing, the majority of research to
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date has focused on cross-sectional adult samples. As much
of the initial PAC literature focused on task-based cognitive
research, some initial perspectives suggested that PAC is useful
only as a transient, state-based measure. However, it is now
evident that PAC has both state-based and stable components,
considering current evidence demonstrating PAC’s association
with mental health at rest and changes over time pre- and
post-TMS treatment.

Further research is required to understand PAC during
adolescence—a critical period for mental health in which
early identification and treatment has been identified as a
key strategy for reducing the burden of mental disorder.
Longitudinal research focusing on PAC throughout adolescence
could help pinpoint the development of psychopathology
and the links between cognition and mental health during
this period. Combining EEG PAC analysis with DTI for
concurrent assessment of structural and functional connectivity
may provide the first insights into the relationship between
WM microstructure and PAC. For example, coupling between
the phase of theta oscillations in prefrontal cortex to
the amplitude of gamma oscillations in posterior visual
cortex may correspond to increased structural connectivity

between these regions. Such research may lead to a greater
understanding of the relationship between structural and
functional mechanisms underlying information processing
and mental health throughout adolescent development.
Considering the recently discovered association between PAC
and contemporary treatment methods such as TMS, such
research has the potential to facilitate a better understanding
of the mechanisms underlying such treatment and lead to
improved application of these treatments for mental health
disorders in the future.
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