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Abstract: Two new 11,20-epoxybriaranes, fragilides P (1) and Q (2), as well as two known
analogues, robustolide F (3) and juncin Z (4), were obtained from the gorgonian coral Junceella
fragilis. The structures, including the absolute configurations of briaranes 1 and 2, were elucidated by
using spectroscopic methods and comparing the spectroscopic and rotation data with those of known
related analogues. Briarane 4 decreased the generation of superoxide anions by human neutrophils.
The propionate group in 1 is rarely found.
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1. Introduction

Since the first structure elucidation of a briarane-type natural product, briarein A, in 1977 by
single-crystal X-ray diffraction analysis [1], over 700 marine origin briaranes have been isolated
and reported from various octocorals, especially from genera Briareum (family Briareidae) [2] and
Junceella (family Ellisellidae) [3–5]. Among these compounds, 11,20-epoxybriaranes were proven to be
a chemical marker for the gorgonian corals belonging to family Ellisellidae [6]. During the course of
our research on new natural substances from the marine invertebrates distributed in the waters of
Taiwan, a series of briarane-type diterpenoids were isolated from various octocorals belonging to the
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genera Junceella [7] and Briareum [8], and the compounds of this type were proven to possess various
interesting bioactivities. Recently, we focused our ongoing studies on a gorgonian coral identified
as Junceella fragilis. From the results of our studies on this species, we report herein the isolation,
structural determination, and bioactivity of two new briaranes, fragilides P (1) and Q (2), along with
two known metabolites, robustolide F (3) [9,10] and juncin Z (4) [11] (Figure 1).
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showed a pair of peaks at m/z 635/637 (3:1) [M + H+], suggesting a chlorine atom in 1—and further 58 
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Junceella fragilis.

2. Results and Discussion

Fragilide P (1) has the molecular formula C29H37ClO12 as deduced by (+)-ESIMS—which showed
a pair of peaks at m/z 635/637 (3:1) [M + H+], suggesting a chlorine atom in 1—and further confirmed
by (+)-HRESIMS at m/z 635.18683 (calcd. for C29H37

35ClO12 + Na, 635.18658). The IR spectrum of 1
indicated the presence of hydroxy (3466 cm−1), γ-lactone (1783 cm−1), and ester carbonyl (1735 cm−1)
groups. The 13C-NMR spectral data (Table 1) showed the presence of a disubstituted olefin (δC 132.7,
CH-4; 130.4, CH-3) and an exomethylene (δC 142.0, C-5; 115.1, CH2-16). Moreover, five carbonyl
resonances at δC 174.6, 173.3, 170.3, 169.9, and 169.6 in the 13C spectrum confirmed the presence of a
γ-lactone and four other ester groups. In the 1H NMR spectrum, three acetate methyls (δH 2.11, 2.09,
2.06, each 3H × s) and a propionate (δH 2.31, 2H, q, J = 7.6 Hz; 1.11, 3H, t, J = 7.6 Hz) were observed.
An exocyclic epoxy group was elucidated from the signals of two oxygenated carbons at δC 57.3 (C-11)
and 49.2 (CH2-20). The proton chemical shifts at δH 2.77 (1H, dd, J = 3.2, 1.2 Hz, H-20a) and 2.64 (1H, d,
J = 3.2 Hz, H-20b) confirmed the presence of this group. Moreover, a methyl singlet, a methyl doublet,
two aliphatic protons, a pair of aliphatic methylene protons, five oxymethine protons, a chlorinated
methine proton, and a hydroxy proton were observed in the 1H-NMR spectrum of 1 (Table 1).
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Table 1. 1H and 13C-NMR data for 1 and 2.

1 2

C/H δH
a (J in Hz) δC, b Mult. δH

c (J in Hz) δC, d Mult.

1 49.2, C 46.9, C
2 5.73 d (9.6) 75.6, CH 4.80 d (5.0) 74.8, CH
3 6.00 dd (15.6, 9.6) 130.4, CH 2.44 m; 1.68 m 32.3, CH2
4 6.89 d (15.6) 132.7, CH 2.47 m; 2.01 m 24.9, CH2
5 142.0, C 139.8, C
6 5.07 d (4.0) 65.0, CH 5.53 d (10.5) 119.2, CH
7 4.16 d (4.0) 80.6, CH 5.20 d (10.5) 77.0, CH
8 82.8, C 80.4, C
9 5.19 d (2.0) 72.2, CH 5.61 d (6.0) 67.6, CH

10 3.84 br s 33.8, CH 2.29 d (6.0) 39.6, CH
11 57.3, C 62.4, C
12 4.52 dd (2.4, 2.4) 73.7, CH 2.28 m; 1.16 m 23.6, CH2

13α/β 2.32 m; 2.06 m 29.0, CH2
1.77 ddd (15.5, 10.0, 10.0);

2.16 m 24.5, CH2

14 4.96 dd (2.4, 2.4) 73.1, CH 4.90 d (5.0) 72.9, CH
15 1.18 s 14.4, CH3 1.01 s 14.9, CH3

16a/b 5.34 s; 5.26 s 115.1, CH2
5.26 dd (16.0, 2.0); 4.23 d

(16.0) 67.1, CH2

17 2.84 q (7.2) 50.1, CH 2.34 q (7.0) 42.3, CH
18 1.25 d (7.2) 6.9, CH3 1.16 d (7.0) 6.7, CH3
19 174.6, C 176.4, C

20a/b 2.77 dd (3.2, 1.2); 2.64 d (3.2) 49.2, CH2 2.82 d (4.5); 3.23 br d (4.5) 59.0, CH2

2-OCOEt 2.31 q (7.6)
1.11 t (7.6)

173.3, C
27.7, CH2
8.8, CH3

Acetate
methyls

2.11 s
2.09 s
2.06 s

21.4, CH3
21.1, CH3
21.0, CH3

2.22 s
2.14 s
2.04 s
2.01 s

21.0, CH3
20.9, CH3
20.9, CH3
20.9, CH3

Acetate
carbonyls

170.3, C
169.9, C
169.6, C

170.8, C
170.8, C
170.2, C
169.5, C

8-OH 3.07 s 5.19 s
a Spectra recorded at 400 MHz in CDCl3 at 25 ◦C. b Spectra recorded at 100 MHz in CDCl3 at 25 ◦C. c Spectra
recorded at 500 MHz in CDCl3 at 25 ◦C. d Spectra recorded at 125 MHz in CDCl3 at 25 ◦C.

Analyses of 2D-NMR (COSY and Heteronuclear Multiple Bond Correlation (HMBC)) data
established a tetracyclic nucleus. This assignment was evident from the spin systems from H-2 to
H-3, H-3 to H-4, H-6 to H-7, H-9 to H-10, H-12 to H2-13, H2-13 to H-14, and H-17 to H3-18 (Figure 2),
while the HMBC between protons and quaternary carbons, such as H-2, H-10, H3-15/C-1; H-3, H-6,
H-16b/C-5; H-6, H-9, H-10, H-17, H3-18, OH-8/C-8; H-9, H-10, H-20b/C-11; and H-17, H3-18/C-19
revealed the carbon skeleton (Figure 2). The epoxy group positioned at C-11/20 was further confirmed
by the HMBC between H-20b to C-11 and C-12. The C-15 methyl group was positioned at C-1 from the
HMBC between H3-15 to C-1 and C-14. The HMBC spectrum also revealed that the carbon signal at δC

173.3 (C) was correlated with the signals of the methylene and methyl protons of propionate at δH 2.31
and 1.11, and it was assigned to the carbon atom of the propionate carbonyl group. The propionate
at C-2 was confirmed from the connectivity between H-2 and the carbonyl carbon of the propionate
group. The HMBC revealed that an acetoxy group is attached to C-9. The hydroxy group at C-8 was
deduced from the HMBC of a hydroxy proton (δC 3.07) to C-7, C-8, and C-9. Thus, the remaining
acetoxy groups were positioned at C-12 and C-14 by analysis of the characteristic NMR signals (δH 4.52,
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1H, dd, J = 2.4, 2.4 Hz; δC 73.7, CH-12; δH 4.96, 1H, dd, J = 2.4, 2.4 Hz; δC 73.1, CH-14), although no
HMBC was observed between H-12 and H-14 and the acetate carbonyl carbons.
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According to a summary of the chemical shifts of 11,20-epoxy groups in briarane derivatives,
with 13C-NMR data for C-11 and C-20 at δC 55−61 and 47−52 ppm, respectively, the epoxy group was
α-oriented and the cyclohexane ring existed in a chair conformation [12]; hence, the configuration of
the 11,20-epoxy group in 1 (δC 57.3, C-11; 49.2, CH2-20) should be α-oriented, and the cyclohexane
ring should be in a chair conformation. The E configuration of the C-3/4 double bond was determined
from the large proton coupling constant (J = 15.6 Hz) between H-3 and H-4. The stereochemistry of
the 11 stereogenic centers of 1 was established by analysis of NOE correlations observed in a NOESY
experiment and further supported by molecular mechanics 2 (MM2) force field analysis [13], as shown
in Figure 3. In the NOESY spectrum, NOE correlations were observed between H-10 and H-2/H-9/OH-8,
while no NOE correlation was seen with Me-15, suggesting that H-2, H-9, H-10, and OH-8 were all
α-oriented; meanwhile, a NOE correlation of Me-15 with H-14 indicated that H-14 was β-oriented.
In addition, H-12 was found to correlate with H-13α/β and one proton of C-20 methylene (δH 2.77,
H-20a), indicating that the C-12 acetoxy group was α-oriented. H3-18 showed a NOE correlation with
OH-8, indicating that Me-18 was α-oriented at C-17. H-7 exhibited NOE correlations with H-6 and
H-17, suggesting that H-6 and H-7 were positioned on the β face. Furthermore, H-3 showed a NOE
correlation with H3-15; and H-4 showed NOE correlations with H-2 and OH-8, demonstrating the
E-configuration of ∆3 and establishing the s-cis diene moiety. As briaranes 1 and 2 were isolated along
with a known metabolite 3 (robustolide F) from the same organism, and the absolute configuration
of 3 was determined by single-crystal X-ray diffraction analysis [10], it is reasonable on biogenetic
grounds and supported by the equal sign of optical rotation of 1, 2, and 3 to assume that 1 and 2 have
the same absolute configurations as 3. Therefore, based on the above findings, the configurations of
the stereogenic carbons of 1 were determined as 1R, 2S, 6S, 7R, 8R, 9S, 10S, 11R, 12R, 14S, and 17R
(see Figures S1–S10). It is interesting to note that the propionate group is rarely found in briarane-type
natural products [12,14–18].

Fragilide Q (2) was found to have the molecular formula C28H38O12 as determined from its
(+)-HRESIMS at m/z 589.22562 (calcd. for C28H38O12 + Na, 589.22555) (Ω = 10). Its absorption peaks
in the IR spectrum showed ester carbonyl, γ-lactone, and broad OH stretching at 1740, 1778, and
3273 cm−1, respectively. It was found that the 1H and 13C-NMR spectra of 2 resembled those of a
known analogue, juncin X (5) (Figure 1), isolated from gorgonian coral Junceella juncea collected off

the South China Sea [11], except that the signals corresponding to the acetoxy group at C-4 in 5 were
replaced by a proton in 2. The locations of the functional groups were further confirmed by HMBC
and COSY correlations (Figure 2); hence, fragilide Q was assigned the structure of 2, with the same
stereochemistry as that of 1, and the configurations of the stereogenic carbons were elucidated as 1S,
2S, 7S, 8R, 9S, 10S, 11S, 14S, and 17R (Figure 3) (see Figures S11–S20). Due to the chemical shifts for
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C-11 and C-20 which appeared at δC 62.4 and 59.0 ppm, respectively, the epoxy group was β-oriented
and the cyclohexane ring should exist in a twisted boat conformation [12].
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In an in vitro anti-inflammatory activity assay, it was found that briarane 4 (juncin Z) showed a
25.56% inhibitory effect on the generation of superoxide anions by human neutrophils at a concentration
of 10 µM, and briaranes 1–3 were inactive.

3. Materials and Methods

3.1. General Experimental Procedures

The optical rotations were recored using a Jasco P-1010 digital polarimeter (Japan Spectroscopic,
Tokyo, Japan). IR spectra were measured on a Thermo Scientific Nicolet iS5 FT-IR spectrophotometer
(Waltham, MA, USA). NMR spectra were taken on a Jeol Resonance ECZ 400S (Tokyo, Japan) or
on a Varian Inova (Palo, Alto, CA, USA) 500 NMR spectrometer using the residual CHCl3 signal
(δH 7.26 ppm) and CDCl3 (δC 77.1 ppm) as the internal standard for 1H and 13C-NMR, respectively;
coupling constants (J) are presented in Hz. Multiplicities of 13C-NMR data were determined by
Distortionless Enhancement by Polarization Transfer (DEPT) experiments. ESIMS and HRESIMS mass
spectra were measured on a Bruker mass spectrometer with 7 tesla magnets (model: SolariX FTMS
system; Bruker, Bremen, Germany). HPLC separations were carried out on a Hitachi L-2130 pump
(Tokyo, Japan) equipped with a Hitachi L-2455 photodiode array detector. The column used for HPLC
was reversed-phase silica (250 mm × 21.2 mm, 5 µM, Luna RP-18e; Phenomenex Inc., Torrance, CA,
USA). Column chromatography was carried out with Kieselgel 60 (230–400 mesh, Merck, Darmstadt,
Germany). TLC was performed on precoated Kieselgel 60 F254 (0.25 mm thick, Merck), then sprayed
with 10% H2SO4 solution, followed by heating to visualize the spots.

3.2. Animal Material

The sea whip gorgonian coral Junceella fragilis was collected by hand in April 2017 using
self-contained underwater breathing apparatus (SCUBA) gear at depths of 10–15 m off the coast
of South Bay, Kenting, Taiwan. The samples were then stored in a −20 ◦C freezer until extraction.
A voucher specimen was deposited in the National Museum of Marine Biology and Aquarium,
Taiwan (NMMBA-TW-GC-2017-022). Identification of the species of this organism was performed by
comparison as described in previous publications [3–5].
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3.3. Extraction and Isolation

The freeze-dried and sliced bodies (wet/dry weight = 795/313 g) of the coral specimen were
prepared and extracted with a 1:1 mixture of MeOH and CH2Cl2 to give 19.0 g of crude extract
which was partitioned between EtOAc and H2O. The EtOAc extract (8.0 g) was applied on silica gel
column chromatography (C.C.) and eluted with gradients of n-hexane/acetone (50:1 to 1:2, stepwise)
to furnish eight fractions (fractions A−H). Fraction G was chromatographed on silica gel C.C. and
eluted with gradients of n-hexane/EtOAc (4:1 to 1:1, stepwise) to afford 16 subfractions (fractions
G1−G16). Afterward, fraction G9 was separated by RP-HPLC using a mixture of MeOH and H2O
(with volume/volume = 60:40; at a flow rate of 4.0 mL/min) to afford fragilide P (1, 2.7 mg), fragilide Q
(2, 1.8 mg), robustolide F (3, 1.4 mg), and juncin Z (4, 1.2 mg).

Fragilide P (1): amorphous powder; [α]27
D −14 (c 0.9, CHCl3); IR (ATR) νmax 3466, 1783, 1735 cm−1;

1H and 13C-NMR data (see Table 1); ESIMS: m/z 635 [M + Na]+; HRESIMS: m/z 635.18683 (calcd. for
C29H37

35ClO12 + Na, 635.18658).
Fragilide Q (2): amorphous powder; [α]28

D −59 (c 0.6, CHCl3); IR (ATR) νmax 3273, 1778, 1740 cm−1;
1H and 13C-NMR data (see Table 1); ESIMS: m/z 589 [M + Na]+; HRESIMS: m/z 589.22562 (calcd. for
C28H38O12 + Na, 589.22555).

Robustolide F (3): amorphous powder; [α]23
D −37 (c 0.07, CHCl3) (ref. [9] [α]26

D −26.8 (c 1.038,
CHCl3)); ref. [10] [α]25

D −28 (c 0.24, CHCl3)); IR (ATR) νmax 3288, 1780, 1735 cm−1; 1H and 13C-NMR
data were found to be in absolute agreement with previous studies [9]; ESIMS: m/z 565 [M + Na]+.

Juncin Z (4): amorphous powder; [α]23
D +28 (c 0.06, CHCl3) (ref. [11] [α]D +31.57 (c 0.95, CHCl3));

IR (ATR) νmax 3433, 1782, 1738 cm−1; 1H and 13C-NMR data were found to be in absolute agreement
with previous studies [11]; ESIMS: m/z 617 [M + Na]+.

3.4. Molecular Mechanics Calculations

The molecular models were generated by implementing the MM2 force field [13] in ChemBio 3D Ultra
software (version 12.0) which was created by CambridgeSoft (PerkinElmer, Cambridge, MA, USA).

3.5. Superoxide Anion Generation by Human Neutrophils

Human neutrophils were obtained by means of dextran sedimentation and Ficoll centrifugation.
Measurements of elastase release and superoxide anion generation were carried out according to
previously described procedures [19]. Briefly, superoxide anion production was assayed by monitoring
the superoxide-dismutase-inhibitable reduction of ferricytochrome c. Elastase release experiments
were performed using MeO-Suc-Ala-Ala-Pro-Valp-nitroanilide as the elastase substrate.

4. Conclusions

The sea whip gorgonian coral Junceella fragilis, a zooxanthella-containing species [20], has been
demonstrated to have a wide structural diversity of interesting marine-origin briarane-type
diterpenoids [7], and the compounds of this type were suggested originally to be produced by
the host corals and not by its zooxanthellae [21]. In our continued study of Junceella fragilis collected in
the waters of Taiwan, two previously unreported briaranes, fragilides P (1) and Q (2), were isolated
along with two previously described analogues, robustolide F (3) and juncin Z (4). The structures,
including the absolute configurations of 1 and 2, were determined by using spectroscopic methods and
comparing the spectroscopic and rotation values with those of a known related analogue, robustolide F
(3) [9,10]. Juncin Z (4) was found to display an inhibitory effect on the generation of superoxide anions
by human neutrophils.

Supplementary Materials: The Supplementary Materials are available online. ESIMS, HRESIMS, IR, 1D
(1H, 13C-NMR, and DEPT spectra) and 2D (HSQC, COSY, HMBC, and NOESY) spectra of new compounds 1 and
2 and ESIMS, 1H, 13C-NMR, and DEPT spectra of 3 and 4.
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