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Liver injury threatens the overall health of an organism, as it is the core organ of the

animal body. Liver metabolism is affected by numerous factors, with dietary energy

level being a crucial one. Therefore, the present study aimed to evaluate hepatic injury

and to describe its metabolic mechanism in ruminants fed diets with different dietary

energy levels. A total of 25 Yunnan semi-fine wool sheep were fed diets with five dietary

metabolic energy levels and were randomly assigned to five groups as follows: low energy

(LE), medium–low energy (MLE), medium energy (ME), medium–high energy (MHE), and

high energy (HE). The results revealed that the average optical density (AOD) of lipid

droplets in the LE, MLE, and HE groups was higher than that in the ME and MHE

groups. The enzyme activity of alanine aminotransferase (ALT) was the lowest in the

ME group. An increase in dietary energy level promoted the superoxide dismutase (SOD)

and glutathione peroxidase (GSH-Px) activity and altered themalondialdehyde (MDA) and

protein carbonyl (PCO) concentration quadratically. In addition, both high and low dietary

energy levels upregulated the mRNA abundance of proinflammatory cytokine interleukin

(IL)-1β, nuclear factor-kappa B (NF-κB), and tumor necrosis factor (TNF)-α. Metabonomic

analysis revealed that 142, 77, 65, and 108 differential metabolites were detected in the

LE, MLE,MHE, and HE groups, comparedwithME group respectively. Thesemetabolites

were involved in various biochemical pathways, such as glycolipid, bile acid, and lipid

metabolism. In conclusion, both high and low dietary energy levels caused hepatic injury.

Section staining and metabonomic results revealed that hepatic injury might be caused

by altered metabolism and lipid accumulation induced by lipid mobilization.

Keywords: liver, injury, metabonomics, energy level, oxidative stress

INTRODUCTION

Yunnan semi-fine wool sheep, characterized by optimal reproductive performance, stable genetic
performance, strong adaptability, and excellent meat performance and shearing capacity, is an
important breed in the development of China’s livestock industry (1). In sheep breeding, the focus
is often on growth performance, and hence, the health of the heart, lungs, kidneys, spleen, liver,
and other organs is usually ignored. Organ health is an important factor that not only determines
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whether the lamb can develop quickly but also reflects its overall
health (2). The liver is the most important metabolic organ,
with functions such as bile secretion, glycogen storage, and the
regulation of protein, fat, and carbohydrate metabolism.

Several studies have reported that dietary energy
concentration exerts an important effect on the development
of ruminant organs, with the liver being the most significantly
affected (3). However, with an increase in energy intake, the liver
may also be affected by simultaneous damage, including liver
function impairment and oxidative damage (4, 5), which may
subsequently aggravate hepatocyte apoptosis and inflammatory
response. Researchers have reported that fatty liver causes
hepatic injury (6, 7). Fatty liver is a reversible disease, with
large amounts of triglycerides or lipid droplets accumulating
in hepatocytes through steatosis, which adversely affects the
development, health, and reproduction of cows (8, 9). Diets
with high energy levels downregulated the expression of 5

′

adenosine monophosphate-activated protein kinase (AMPK)
signaling pathways, thereby enhancing the expression of lipid
synthesis-related genes, promoting lipid synthesis in the liver
cells, reducing lipid oxidation, and increasing the triglyceride
concentration (10, 11). However, hepatic lipid accumulation in
animals fed diets with low energy levels has not been reported
yet. Studies on fatty liver disease in dairy cows have reported
a similar insufficient energy intake condition, which suggests
that lipid accumulation is frequently observed in the liver of
animals fed diets with low energy levels (12). Studies on dietary
energy levels that affect hepatic health are now mostly focused
on poultry (13, 14). The systematic evaluation of hepatic health
is overlooked when ruminants are fed diets with different dietary
energy levels. Therefore, it is necessary to systematically assess
the effects of dietary energy levels on hepatic health in Yunnan
semi-fine wool sheep to understand their metabolism.

Metabolomics displays all small-molecule metabolites
produced by alterations in the nutritional status of an organism,
thereby providing a more comprehensive and direct insight into
the chemical processes and changes in nutritional status (15).
Ippolito et al. used gas chromatography–mass spectrometry
(GC-MS) to analyze changes in the plasma nutrient metabolome
of rats under heat stress and obtained 28 heat stress markers,
involving those for apoptosis or catabolism, altered energy
balance, and cholesterol and nitric oxide metabolism (16). Zhang
et al. employed nuclear magnetic resonance (NMR) for analyzing
the plasma of cows exhibiting postpartum estrus, which showed
that the levels of seven plasma metabolites were significantly
lower in the estrus period than those in the normal period,
demonstrating that estrus is accompanied by altered amino acid,
glucose, and lipid metabolism (17).

Various studies have been reported on the energy
requirements of the sheep. However, only a few studies
have focused on the local breed of Yunnan semi-fine hair
sheep. Li reported that the metabolic energy requirement of
the sheep was 0.4359 MJ/kg of body weight (BW) 0.75/day +

0.0387 average daily gain (ADG) (18). Based on her study, we
designed a trial to investigate hepatic health and metabolism
by controlling the metabolic energy level of the diet using the
metabolomic technique liquid chromatography with tandem

MS (LC-MS/MS) in combination with multivariate statistical
analysis. The objective of this study was to evaluate the injury
caused by dietary energy levels, identify an energy level that is
the most beneficial for the hepatic health of Yunnan semi-fine
hair sheep, and investigate its metabolic mechanism.

MATERIALS AND METHODS

Experimental Design, Animals, and Sample
Collection
All experimental protocols were approved by the Animal Ethical
and Welfare Committee (AEWC) of the Sichuan Agricultural
University Academy of Sciences (approval no. 20180601). This
study was conducted in accordance with the Chinese Guidelines
for Animal Welfare. This study was conducted at the farm of
the Sichuan Agricultural University (Ya’an, Sichuan Province,
China). In this study, a total of 25 Yunnan semi-fine hair
wether sheep, with similar BW (33.30± 1.77 kg), were randomly
assigned to five groups. Each group of sheep was reared in
a pen. The sheep in the five groups were fed diets with five
metabolic energy levels as follows: 8.0, 8.6, 9.2, 9.8, and 10.4
MJ/kg. According to the standard energy requirement of Yunnan
semi-fine hair sheep (BW: 33.3 kg and ADG: 80 g/day) (18), these
five groups were distinguished as follows: low energy (LE; 86%
energy requirement), medium–low energy (MLE; 93% energy
requirement), medium energy (ME; 100% energy requirement),
medium–high energy (MHE; 107% energy requirement), and
high energy (HE; 114% energy requirement). The ingredients and
chemical compositions of each diet are provided in Table 1.

The trial lasted 45 days, with the first 15 days being the
preliminary period for the sheep to adapt to the diets and 30
days being the formal trial period. The sheep were fed twice
daily at 8:00 AM and 6:00 PM and had free access to water. The
criteria for euthanizing the sheep before the experiment included
anesthesia and neck bleeding.

On the 30th day of the formal trial, three sheep from each
group were selected to be weighed and anesthetized, which
were eventually euthanized. Subsequently, the whole liver was
separated and weighed. The left liver was collected and stored
in 4% paraformaldehyde and PBS for liver section staining. The
right liver was collected in a 30-ml Eppendorf (EP) tube for
later measurement.

Weight of the Liver and Liver Index
The data for the final BW and liver weight (LW) of sheep
were recorded, and the liver index (LI) was calculated as LI =
LW/BW (%).

Determination of Hepatic Lipid
Accumulation
Liver tissues were fixed with 10% formalin; they were embedded,
sliced, and stained with Oil RedO. Amicroscopic imaging system
was used to capture pictures. A total of three pictures were
captured for each sample. Image-Pro Plus 6.0 software was used
for analyzing the average optical density (AOD) of the positive
results of Oil Red O staining.
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TABLE 1 | Composition and nutrient levels of experimental diets.

Items Groups

LEc LME ME MHE HE

Ingredients Content (%)

Corn 11.00 19.35 28.15 34.15 30.00

Wheat bran 26.15 16.80 7.00 0.00 0.00

Soybean meal 6.00 7.00 8.00 9.00 9.00

Corn starch 0.00 0.00 0.00 0.00 4.15

NaCl 0.50 0.50 0.50 0.50 0.50

NaHCO3 0.35 0.35 0.35 0.35 0.35

Premixa 1.00 1.00 1.00 1.00 1.00

Corn silage 10.00 21.00 33.00 40.00 55.00

Wheat straw 45.00 34.00 22.00 15.00 0.00

Total 100 100 100 100 100

Concentrate : roughage

nutrient levelsb
45:55 45:55 45:55 45:55 45:55

ME (MJ/kg) 8.00 8.60 9.20 9.80 10.40

Dry matter (%) 92.62 92.19 91.88 91.47 91.20

CP (%) 10.42 10.42 10.42 10.48 10.46

NDF (%) 53.80 46.71 39.10 34.24 28.10

ADF (%) 21.96 20.92 19.62 19.63 19.20

Ca (%) 0.42 0.40 0.37 0.35 0.35

P (%) 0.44 0.38 0.33 0.39 0.37

aOne kilogram of premix contained the following: VA 500,000 IU, VD3 200,000 IU, VE 850

IU, nicotinic acid 1.2 g, Cu 2 g, Fe 10 g, Zn 6 g, Mn 5g, I 100mg, Co 55mg, Se 35 mg.
bME was a calculated value, and others were measured values.
cLE, MLE, ME, MHE, and HE represent the following groups: low energy, medium–low

energy, medium energy, medium–high energy, and high energy, respectively.

Determination of Transaminase and
Oxidative Damage
The enzyme activity of alanine aminotransferase (ALT),
aspartate aminotransferase (AST), malondialdehyde (MDA),
protein carbonyl (PCO), superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GSH-Px) and the total
antioxidant capacity (T-AOC) of liver samples were determined
using enzyme-linked immunosorbent assay (ELISA) kits
(19), purchased from Jiangsu Meimian Industrial Co., Ltd
(Jiangsu, China).

Real-Time Polymerase Chain Reaction of
Hepatic Inflammation-Related Genes
Inflammation-related gene expression was determined using
reverse-transcription polymerase chain reaction (RT-PCR). Total
RNA was extracted from the liver tissues using the TRIzol
RNA kit (Takara, Japan), catalog no. 15596026. Then its purity
and content were measured. cDNA was obtained through
reverse transcription of RNA samples with the TaKaRa Reverse
Transcription Kit. Real-time PCR (qPCR) primers were designed
using Primer 3 online software (Supplementary Table 1), and
gene expression was determined using an ABI 7900 fluorescent
quantitative PCR instrument using the SYBR (Takara) dye. The
reaction conditions were as follows: 95◦C for 30 s, followed by
40 cycles of amplification (95◦C for 5 s and 60◦C for 34 s) with

melting phase set to 95◦C for 15 s, 60◦C for 1min, and 95◦C for
15 s. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was
used as an internal reference gene, and its expression level was
analyzed using the 2−11Ct method.

Untargeted Metabonomics and Its Analysis
Samples for metabolites were extracted from liver tissues
(20). LC-MS/MS analyses were performed using a Vanquish
UHPLC system (Thermo Fisher Scientific) coupled with an
Orbitrap Q Exactive HF-X mass spectrometer (Thermo Fisher
Scientific) in both positive and negative modes. The raw
data files generated by UHPLC-MS/MS were processed using
the Compound Discoverer 3.1 (CD3.1, Thermo Fisher) to
perform peak alignment, peak picking, and quantitation for
each metabolite.

Principal component analysis (PCA) and partial least
squares discriminant analysis (PLS-DA) were performed at
metaX (a flexible and comprehensive software for processing
metabolomics data). Variable importance in the projection (VIP)
is the importance of the variables to the model and describes the
overall contribution of each variable to the differences between
groups. We applied univariate analysis (t-test) to calculate the
statistical significance (p-value). The metabolites with a VIP >1,
p-value <0.05, and fold change (FC)≥2 or≤0.5 were considered
to be differential metabolites.

As differential metabolites were selected, the metabolic
pathways for these differential metabolites were obtained from
the Kyoto Encyclopedia of Genes and Genomes database (http://
www.genome.jp/kegg).

Statistical Analysis
Statistical analyses except metabonomics were performed using
the one-way ANOVA procedure of the SPSS statistical software
(version 17.0, SPSS Inc., Chicago, IL, USA). Duncan’s multiple-
range test was used to compare the differences among five groups.
The data were expressed asmean± SEM. A p-value<0.05 was set
for significant differences. A value of 0.05 < p < 0.10 was set for
the trend of significant differences.

RESULTS

Liver Weight and Index
The LW and LI of Yunnan semi-fine wool sheep are provided
in Table 2. With an increase in dietary energy levels, LW and
LI of the sheep were increased and subsequently stabilized (p <

0.05). There were no significant differences among HE, MHE,
and HE groups.

Hepatic Lipid Accumulation
The results of Oil Red O staining of the liver are provided in
Figures 1A–E. Lipid droplets in hepatic cells were represented
in an orange-red color (bar = 50µm, ×200). The concentration
of lipid droplets was higher in the LE, MLE, and HE groups
than in the ME and MHE groups. The quantitative analysis of
AOD values (Figure 1F) revealed that dietary energy levels had a
significant effect on the AOD of liver lipid droplets (p < 0.05),
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TABLE 2 | The effects of dietary energy level on liver weight and index of Yunnan semi-fine wool sheep.

Items Energy level SEM P-value

LE MLE ME MHE HE Energy Linear Quadratic

Liver Weight (g) 471.93c 534.30b 603.87a 600.93a 608.97a 15.68 0.001 <0.001 0.017

Body Weight (kg) 34.90c 36.69bc 39.50ab 39.16ab 40.13a 0.62 0.007 0.001 0.169

Liver Index (%) 1.35b 1.45ab 1.53a 1.54a 1.52a 0.025 0.079 0.017 0.099

Values with different letters were significantly different (p < 0.05).

FIGURE 1 | The effects of dietary energy level on hepatic lipid accumulation of Yunnan semi-fine wool sheep. The results of Oil Red O staining for LE (A), MLE (B), ME

(C), MHE (D), HE (E) groups. The AOD values (F). Values with different letters were significantly different (p < 0.05).

FIGURE 2 | The effects of dietary energy level on transaminase enzyme activity of Yunnan semi-fine wool sheep. The result of ALT (A). The result of AST (B). Values

with different letters were significantly different (p < 0.05).

and the AOD values of LE and HE groups were significantly
higher than those of the ME and MHE groups.

Assessment of Hepatic Injury
The assessment of hepatic injury was based on transaminase
activity, oxidative damage, and inflammation.

The assessment of transaminase activity in the liver is
provided in Figure 2. The ALT enzyme activity in the liver
decreased and subsequently increased with an increase in dietary
energy levels (p < 0.05). The ALT enzyme activity of the ME

group was significantly lower than that of the LE and HE groups
(p < 0.05; Figure 2A). Dietary energy levels had no significant
effect on the liver AST enzyme activity (p > 0.05; Figure 2B).

The assessment of oxidative injury in the liver is provided
in Table 3. With an increase in dietary energy levels, the SOD
and GSH-Px enzyme activities increased linearly (p < 0.05).
MDA concentration in theME andMHE groups was significantly
lower than that in the remaining three groups (p < 0.05). PCO
concentration in the ME group was significantly lower than that
in the HE group (p < 0.05). CAT concentrations in the LE and
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TABLE 3 | The effects of dietary energy level on oxidative injury of Yunnan semi-fine wool sheep.

Items Energy level SEM P-value

LE MLE ME MHE HE Energy Linear Quadratic

MDA (nmol/L) 11.57a 11.91a 9.10b 8.84b 12.67a 0.39 <0.001 0.088 0.952

PCO (pg/ml) 189.80ab 187.51ab 154.97b 185.80ab 210.92a 5.79 0.035 0.224 0.010

SOD (U/ml) 70.79c 85.14b 91.87ab 96.39ab 105.58a 2.92 <0.001 <0.001 0.482

CAT (U/ml) 20.68a 16.54c 21.74a 19.33ab 17.11bc 0.51 <0.001 0.110 0.236

GSH-Px (U/L) 150.67c 167.00bc 192.91ab 189.87ab 209.43a 6.21 0.014 0.001 0.613

T-AOC (U/ml) 6.26 7.46 5.65 6.53 7.34 0.26 0.164 0.497 0.380

MDA, Malondialdehyde; PCO, protein carbonylation; SOD, superoxide dismutase; CAT, catalase; GSH-Px, glutathione peroxidase; T-AOC, total antioxidant capacity. Values with different

letters were significantly different (p < 0.05).

FIGURE 3 | The effects of dietary energy level on expression of hepatic genes related to inflammation in Yunnan semi-fine wool sheep. Real-time RT-PCR analysis for

mRNA expression of hepatic genes including (A) IL-1β; (B) IL-6; (C) NFKB; (D) nucleotide-binding oligomerization domain 2 (NOD2); (E) Toll-like receptors 2 (TLR2);

(F) Toll-like receptors 3 (TLR3); (G) Toll-like receptors 4 (TLR4); and (H) TNF-α. Values with different letters were significantly different (p < 0.05).

ME groups were significantly higher than those in the remaining
three groups (p < 0.05).

The assessment of the relative expression of inflammation-
related genes in the liver is provided in Figure 3. With an increase
in dietary energy levels, the expression of toll-like receptor-
2 (TLR-2) and tumor necrosis factor-α (TNF-α) in the liver
was downregulated and subsequently upregulated (p < 0.05;
Figures 3F,H). The expression of interleukin-6 (IL-6) gene in the
liver was upregulated in the MLE and HE groups, followed by
LE, ME, and MHE groups (p < 0.05; Figure 3B). The dietary
energy level had no significant effect on the expression of IL-6,
nuclear factor-kappa B (NFKB), TLR-3, TLR-4, and nucleotide-
binding oligomerization domain-containing protein 2 (NOD-2)
in the liver (p > 0.05; Figures 3C–E,G).

Metabolomic Profiling of Liver Samples
As demonstrated in Supplementary Figure 1, the
overlap degree of total ion chromatography (TIC) of
quality control (QC) samples was significantly high in
both positive (Supplementary Figure 1A) and negative
(Supplementary Figure 1B) modes, indicating that the
LC-MS/MS system was highly stable.

All liver samples were subjected to PCA as demonstrated
in Figure 4. In the negative ion mode (Figure 4A), the five
groups were separated from each other, and in the positive mode
(Figure 4B), the five groups were separated more clearly.

PLS-DA was performed to analyze the differences among
the groups. The LE, MLE, MHE, and HE groups were
compared with the ME group for PLS-DA. The results of
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FIGURE 4 | The PCA score plots based on the liver metabolic profiling. (A) Positive mode. (B) Negative mode.

FIGURE 5 | The Venn diagram for illustrating the number of differential

metabolites among groups. (A) Positive mode. (B) Negative mode.

PLS-DA in the positive and negative modes are provided in
Supplementary Figures 2, 3, respectively.

Identification of Different Metabolites
Compared with the ME group, 67, 51, 50, and 54 differential
metabolites were detected in the LE, MLE, MHE, and HE groups,
respectively, in the positive mode (Figure 5A). Similarly, 75, 26,
15, and 54 differential metabolites were detected in the LE, MLE,
MHE, HE, and ME groups, respectively, in the negative mode
(Figure 5B). The metabolites related to hepatic metabolism and
health are listed in Table 4.

Integration of Key Different Metabolic
Pathways
The metabolic pathway analysis by the KEGG database and
literature showed that these differential metabolites were
involved in various biochemical pathways, such as amino
acid metabolism, glycolipid metabolism, bile acid metabolism,
nucleotide metabolism, and energy metabolism. In order to
visualize the correlation between these metabolites, the results
were finally combined, and a metabolic network diagram was
drawn (Figure 6).

DISCUSSION

Organ tissues only constitute 6%−10% of BW; however, their
energy consumption is as high as 50% of total energy in
ruminants (21). Therefore, organ development requires energy,
especially liver development (22). The organ weight and index
can reflect organ development to a certain extent. As shown in
Table 1, LW and LI were the highest in the ME group because
excess energy may not promote liver development once the
energy requirements have been fulfilled. However, an injury may
also be caused by increased energy levels.

We found that dietary energy levels induced significantly
different degrees of hepatic injury in semi-fine wool sheep. In
particular, the enzyme activity of ALT varied quadratically with
an increase in dietary energy level and was the lowest in the ME
group. Because the enzyme activity of transaminase is an effective
indicator of hepatic injury (23), both high and low dietary energy
intakes may cause hepatic injury. With regard to oxidative injury,
the effects of SOD and GSH-Px were similar, which increased
with an increase in dietary energy levels. However, MDA and
PCO concentrations demonstrated a quadratic trend similar
to that of ALT, which is the peroxide product. These results
indicated that the antioxidant function was increased with an
increase in dietary energy levels; however, the liver exhibited
more oxidative injury with high dietary energy levels. This may
be because excessive nutrient intake and absorption aggravate the
metabolism of the body, which inevitably produces products such
as reactive oxygen radicals (24). Similar results were obtained
in the expression of inflammation-related hepatic genes (TLR-
4 and TNF-α). Owing to TLR signaling, a large number of
inflammatory mediators such as IL-1β, IL-6, and TNF-α reacted
on the organism and produced a series of inflammatory responses
(25), demonstrating that sheep in the LE and HE groups were
more likely to exhibit inflammation.

The liver is a core organ in the regulation of lipid metabolism.
Limited production of very-low-density lipoproteins (VLDL)
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TABLE 4 | Identification of different metabolites in the liver.

Metabolites LE vs. ME MLE vs. ME ME vs. MHE ME vs. HE

P VIP FC P VIP FC P VIP FC P VIP FC

6-Phosphogluconic acid <0.001 1.34 0.12 0.048 1.05 4.21 – – – – – –

d-Glucose 6-phosphate – – – 0.002 1.25 1.65 0.003 1.23 0.65 0.011 2.29 0.33

d-Erythrose 4-phosphate – – – – – – – – – 0.004 2.16 0.47

N-Acetyl-d-galactosamine <0.001 2.21 0.2 0.002 1.3 0.41 – – – 0.001 1.54 3.36

d-Sedoheptulose-7-phosphate – – – 0.013 2.34 1.77 – – – 0.019 1.54 0.64

Citraconic acid 0.035 1.46 1.52 – – – – – – 0.017 1.83 0.59

Citric acid 0.038 1.39 1.53 0.042 1.88 1.62 – – – – – –

l-Asparagine – – – – – – – – – 0.018 1.69 0.63

dl-Malic acid 0.009 1.67 1.77 0.034 1.49 1.53 – – – – – –

Hexanoic acid 0.035 1.62 2.03 – – – – – – 0.024 1.67 0.48

Acetoacetate 0.002 1.77 1.68 – – – – – – 0.001 2.1 0.55

Oxoadipic acid 0.006 2.03 2.25 – – – – – – 0.032 1.08 0.66

Uridine 0.008 1.53 0.48 0.035 1.17 0.63 0.031 2.54 2.37 0.006 1.7 2.26

d-Ribose 0.017 1.59 1.88 0.017 1.93 1.89 0.039 1.9 0.58 0.023 1.89 0.47

Ala–leu 0.038 1.61 2.4 – – – 0.026 1.77 0.44 – – –

Adenylosuccinic acid 0.05 1.38 1.5 0.048 1.71 1.53 – – – – – –

Glutaric acid 0.011 1.54 1.58 – – – – – – 0.006 2.12 0.53

dl-Glutamine 0.028 1.58 0.66 – – – – – – – – –

l-Glutathione – – – 0.014 1.91 0.43 – – – – – –

Cys-gly 0.027 1.4 3.07 – – – – – – 0.04 1.24 0.38

Cystamine 0.005 1.74 2.73 0.008 1.56 2.35 – – – 0.003 1.86 0.31

Cystine – – – 0.001 1.25 1.62 – – – – – –

S-Adenosylmethionine – – – – – – 0.003 1.71 0.49 0.001 2.09 0.33

Taurine – – – – – – – – – 0.002 1.93 0.5

Cholic acid 0.024 1.09 3.26 – – – – – – – – –

Taurodeoxycholic acid 0.019 1.25 0.19

Taurochenodeoxycholic acid 0.027 1.23 0.46 – – – – – – – – –

Glycodeoxycholic acid 0.001 2.56 3.31 0.033 1.29 2.28

Hydrocortisone 0.008 1.18 0.2 – – – – – – – – –

N-acetylmannosamine 0.014 1.63 0.36 0.015 1.56 0.45 – – – 0.004 1.99 3.39

GDP 0.01 1.37 1.53 0.004 2.28 1.79 – – – 0 1.77 0.58

Acetyl phosphate – – – 0.034 1.73 1.71 – – – 0.005 1.76 0.53

4-Methylphenol – – – 0.018 2.13 0.5 0.045 1.83 1.69 0.034 1.79 1.96

3-Indoxyl sulfate 0.002 1.07 0.54 0.04 1.89 0.43 0.002 2.18 2.44 0.017 2.04 3.05

NAD+ – – – – – – 0.012 1.27 0.65 0.001 2.07 0.41

Methylamino-l–alanine 0.001 2.22 0.22 – – – 0.013 1.14 1.93 – – –

l-ergothioneine 0.021 1.42 0.58 0.032 1.39 0.61 – – – – – –

l-adrenaline 0.018 1.62 1.71 – – – – – – 0.008 1.98 0.49

Glycolithocholic acid 0.017 1.7 0.51 0.005 2.17 0.45 0.005 2.5 2.26 0.014 1.65 2

Betaine 0.023 1.58 1.51 0.004 2.13 1.68 – – – – – –

ADP – – – – – – 0.032 1.16 0.64 0.004 1.83 0.4

(5–l-glutamyl)-l-amino acid 0.01 1.72 2.12 0.006 2.14 2.41 0.017 1.96 0.48 0.021 1.71 0.44

Ala–Leu, alanine—leucine; Cys–Gly, cysteine—glycine; GDP, guanosine diphosphate; NAD+, nicotinamide adenine dinucleotide.

in ruminants results in low export of triglycerides. Delayed
export of triglycerides produced by hepatocytes may lead to
lipid deposition in the liver, thus triggering fatty liver and
hepatic injury (26, 27). In this study, lipid deposition was
reflected by the AOD of lipid droplets, which demonstrated
significantly higher hepatic lipid deposition in the LE, MLE,

and HE groups than that in the ME and MHE groups.
Based on the AOD of liver lipid droplets, both low and high
dietary energy levels have the potential to develop fatty liver
disease. Mitochondria in cows with fatty liver produce more
superoxide anions and hydrogen peroxide, leading to chronic
oxidative stress (24), which is consistent with our assessment of
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FIGURE 6 | Different metabolic pathways from the sheep of five groups. The red mark means that the concentration of the former group is higher than that of the latter

group. The black mark means the difference is not significant, and the green mark means the concentration of the former group is lower than that of the latter group.

oxidative injury. Therefore, hepatic injury may be induced by
lipid accumulation.

Because hepatic injury is confirmed, hepatic lipid
accumulation may be one of the causes. However, other
factors may affect liver health as well. Therefore, we investigated
differences in the global metabolic profiles of five dietary
energy levels.

In this study, we employed LC-MS/MS to determine
differences in the metabolic profiles of the liver. A huge number
of differential metabolites were detected, which were involved in
various biochemical pathways, such as amino acid metabolism,
glycolipid metabolism, bile acid metabolism, nucleotide
metabolism, and energy metabolism. We have described below
the involvement of these pathways in hepatic injury.

Glucose Metabolism
We found that the MHE and HE groups exhibited a
significantly higher concentration of glucose 6-phosphate than
that exhibited by the ME group. The concentration of N-
acetyl-D-galactosamine (a precursor of fructose 6-phosphate)
was significantly lower in the LE group than in the ME group,
which was consistent with previous studies, suggesting that the
glycolysis pathway is enhanced in the presence of adequate
energy substrates (28). The concentration of glucose 6-phosphate
was also significantly lower in the MLE group than in the ME
group, which may be due to inflammation. The proinflammatory
cytokines IL-6, TNF-α, and IL-1β were found to enhance

glycolysis (29), which was consistent with the assessment of
inflammation-related gene expression.

Lipid Metabolism
The liver tissues of the LE, MLE, and HE groups exhibited more
severe lipid deposition. Metabolomic results revealed that the
concentration of hexanoic acid, as a free fatty acid (FFA), was
significantly higher in the LE group than in the ME group,
confirming that liver lipid deposition in the LE group may
be caused by the reesterification of FFA in the liver owing to
lipid mobilization, which results from insufficient energy intake.
The assessment of acetoacetic acid, one of the intermediate
metabolites of fatty acid oxidation in the liver (30), and acetic
acid yielded similar results, suggesting that they supplied energy
through fatty acid oxidation in the LE group. Owing to a
sufficient energy intake in the HE group, the level of fatty acid
oxidation in the liver should be lower (31), and lipid synthesis
metabolism should be enhanced (32). As a result, lipid deposition
was higher in the HE group than in the ME group. As amounts
of very low-density lipoproteins (VLDLs) were restricted, their
ability to export triglycerides is extremely limited. Therefore,
sheep fed diets with both high and low energy levels are at a
higher risk for developing fatty liver disease.

Energy Metabolism
In this study, the three intermediate metabolites of the
tricarboxylic acid cycle, namely, citric acid, malic acid, and
adenylosuccinic acid (one of the precursors of ferredoxin),
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exhibited significantly higher concentrations in the LE group
than that exhibited by the ME group, which is inconsistent with
Wu’s study (30). Combined with lipid metabolism, this may be
due to the higher concentration of acetyl coenzyme generated by
FFA β-oxidation in the LE and MLE groups.

Nicotinamide adenine dinucleotide (NAD+), guanosine
diphosphate (GDP), and adenosine diphosphate (ADP) are
involved in energy metabolism (33). The concentrations of
NAD+, GDP, and ADP were significantly higher in the HE
group than those in the ME group, which indicates that the
sheep in the HE group were more likely to exhibit metabolic
injury compared with those in the ME group owing to a high
energy intake. High dietary energy levels significantly enhanced
the levels of substrate energy metabolism and bio-oxidation (34,
35). In addition, it has been demonstrated that some metabolic
intermediates produced during the tricarboxylic acid cycle, such
as citric acid, are inflammatory signals (36), suggesting that there
is a greater possibility of inflammation in the LE group than
in the ME group, which is consistent with the assessment of
inflammation-related gene expression.

Nucleotide Metabolism
Nucleotides are important components of cells; they are
not only involved in the synthesis of genetic material but
also play a significant role in energy metabolism, function
regulation, and immunity (37). In addition, nucleotides can
particularly affect the growth, structure, morphology, and
function of the liver. Researchers have demonstrated that
exogenous nucleotides or endogenous nucleosides promote
the growth of liver cells (38). Uridine, a component of
uridine monophosphate (UMP), is naturally produced by
the liver. In this study, uridine concentration in the LE,
MLE, HE, and MHE groups was significantly lower than
that in the ME group, indicating that the liver of the
ME group exhibited a better growth potential, which is
consistent with the assessment of liver growth provided in
Table 1. Furthermore, uridine phosphorylase disrupts hepatic
pyrimidine nucleotide metabolism by expressing or inhibiting
dihydroorotate dehydrogenase, leading to liver steatosis.
Uridine supplementation can inhibit liver steatosis caused by
dihydroorotate dehydrogenase (39). The results were consistent
with the trend of hepatic steatosis scores provided in Table 2,
indicating that the degree of hepatic steatosis may be minimum
in the ME group.

Bile Acid Metabolism
Bile acid is an important component of bile, which is
important for digestion and lipid metabolism (40). In recent
years, researchers have demonstrated that bile acids affect and
regulate physiological processes such as glucolipid metabolism
and inflammatory reaction by activating downstream signals
through their receptors (41). It has been reported that
primary and some secondary bile acids can inhibit the
release of TNF, suggesting that bile acids exert an anti-
inflammatory effect (42). Therefore, the LE and HE groups
were more likely to exhibit an inflammatory reaction, which

is consistent with the assessment of inflammation-related
gene expression.

Other Metabolites
Owing to different dietary energy levels, in addition to the
above-mentioned liver metabolites, other differential metabolites
are related to hepatic health as well, including glutathione,
ergothioneine, p-cresol, betaine, and cortisol.

Glutathione is a tripeptide of glutamic acid, cysteine, and
glycine, which contains γ-amide bonds and sulfhydryl groups.
It is involved in converting harmful toxic substances into
harmless substances (43, 44), thereby maintaining the normal
immune functions of an organism (45). In this study, glutathione
concentration was significantly lower in theMLE group than that
in the ME group, suggesting that the ME group exhibited better
immune function. The results were partially consistent with
those of antioxidant analysis because glutathione is a component
of GSH-Px.

Ergothioneine is a natural antioxidant with anti-inflammatory
and cytoprotective effects (46, 47), which is distributed in
certain tissues and organs of mammals. Melville reported
that ergothioneine is also found in cereal plants (48). In
this study, ergothioneine concentration in the ME group
was significantly higher than that in the LE and MLE
groups, which may be owing to differences in the intake of
maize. However, compared with the ME group, ergothioneine
concentration did not increase in the MHE and HE groups,
suggesting that its uptake was limited. However, further
investigation is required. Owing to the natural antioxidant
function of ergothioneine, the antioxidant activity in the ME
group was better than that in the LE and MLE groups,
which is partially consistent with the results of oxidative
stress analysis.

Oxoadipate is metabolized by lysine through the zymocin and
pipecolic acid pathways. If lysine, tryptophan, and hydroxylysine
are metabolized incorrectly, oxoadipate production is greatly
increased (49). In this study, oxoadipate concentration was
significantly higher in the LE and HE groups than that in the
LME and MHE groups, indicating that low or high dietary
energy levels may cause disorders in the lysine, tryptophan,
and hydroxylysine metabolism. This is not conducive to
liver health.

CONCLUSION

In conclusion, based on apparent and molecular evidence,
we confirmed that hepatic injury may be induced by lipid
accumulation and other altered metabolites. In particular, both
high and low dietary energy levels cause hepatic injury in Yunnan
semi-fine wool sheep. Based on our research findings, the dietary
metabolic energy requirement of Yunnan semi-fine wool sheep is
9.2–9.8 MJ/kg (ME and MHE groups). This study also provides
useful information regarding the effect of dietary energy level on
the hepatic health of growing sheep at themetabolic level, thereby
providing guidance for improving the production efficiency of
the sheep.
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