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Abstract

The purpose of this study was to compare parameter estimates for the 2-compartment and

diffusion kurtosis imaging models obtained from diffusion-weighted imaging (DWI) of aqua-

porin-4 (AQP4) expression-controlled cells, and to look for biomarkers that indicate differ-

ences in the cell membrane water permeability. DWI was performed on AQP4-expressing

and non-expressing cells and the signal was analyzed with the 2-compartment and diffusion

kurtosis imaging models. For the 2-compartment model, the diffusion coefficients (Df, Ds)

and volume fractions (Ff, Fs, Ff = 1-Fs) of the fast and slow compartments were estimated.

For the diffusion kurtosis imaging model, estimates of the diffusion kurtosis (K) and cor-

rected diffusion coefficient (D) were obtained. For the 2-compartment model, Ds and Fs

showed clear differences between AQP4-expressing and non-expressing cells. Fs was also

sensitive to cell density. There was no clear relationship with the cell type for the diffusion

kurtosis imaging model parameters. Changes to cell membrane water permeability due to

AQP4 expression affected DWI of cell suspensions. For the 2-compartment and diffusion

kurtosis imaging models, Ds was the parameter most sensitive to differences in AQP4

expression.

Introduction

We have previously reported that diffusion-weighted imaging (DWI) signal is sensitive to the

cell membrane water permeability of aquaporin-4 (AQP4) expressing and non-expressing cells

[1]. Aquaporin is a membrane protein that passively facilitates the transport of water molecules

between the inside and outside of the cell according to the osmotic gradient [2]. Aquaporin
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channels are distributed throughout the body and maintain the distribution of water. Thirteen

types of channels have been identified in mammals, with each type distributed in specific tis-

sues and performing a particular physiological function. Aquaporin channels are known to be

associated with various diseases. For example, neuromyelitis optica (NMO) is an autoimmune

disease targeting AQP4 [3]. AQP4 is also associated with brain tumors [4] and neurodegenera-

tive diseases including Alzheimer’s disease [5]. It is also known that changes to the expression

of AQP4 can alter the accumulation of brain edema in ischemia [6, 7]. Other aquaporin sub-

types are involved in various diseases such as tumors [8], cataracts [9], and nephrogenic diabe-

tes insipidus [10, 11]. Unfortunately, a clinical imaging method that can evaluate aquaporin

expression in vivo has not yet been established. Moreover, as there are many subtypes of aqua-

porin with diverse functions, it is probably more reasonable to evaluate the cell membrane

water permeability rather than the expression of aquaporin itself. It is therefore expected that

an imaging technique that can quantitatively evaluate changes in cell membrane water perme-

ability will be useful in disease diagnosis.

Various models have been proposed to analyze DWI, but the relationship between the bio-

logical tissue structure and the signal remains unclear. The most common model for the quan-

titative analysis of DWI is the apparent diffusion coefficient (ADC) model, where the ADC is

estimated by fitting the DWI signal to a mono-exponential signal equation with respect to b-

value. However, as the signal deviates from mono-exponential decay at high b-values, a bi-

exponential 2-compartment signal model (2Comp) is often used as an alternative. In this

model, water molecules are divided into fast and slow diffusion compartments with volume

fractions (Ff, Fs) and diffusion coefficients (Df, Ds) corresponding to each compartment [12].

The ADC model assumes that the diffusion of water molecules is Gaussian, but in biological

tissues the diffusion is non-Gaussian due to restriction of molecular motion by microstruc-

tures such as the cell membrane. In that case, the diffusion kurtosis (K) parameter of the diffu-

sion kurtosis imaging model (DKm) may be useful for characterizing the degree of deviation

from Gaussian behavior [13]. K increases as the complexity of the tissue structure increases

and provides information that differs from that given by the ADC [13–15]. However, because

there is no clear well-established connection between the DKm model and the biological real-

ity, the mechanism by which changes in the tissue affect the DKm parameters is uncertain.

The purpose of this study was to compare parameter estimates for the 2Comp and DKm

models obtained from DWI of AQP4 expressing and non-expressing cells, and to look for bio-

markers that indicate differences in cell membrane water permeability.

Materials and methods

Subjects

Chinese hamster ovary (CHO) cells (RCB0285, obtained from RIKEN BRC) stably transfected

with either the AQP4 expression vector pIRES2-EGFP, where a unique AflII site had been

modified to an EcoRI by linker ligation containing mAQP4M1 cDNA (AQP4), or the empty

vector (Control) were prepared as described in a previous study [1]. The cells were centrifuged

at 78.7 x g for 5 min at 4˚C and suspended in phosphate buffered saline (PBS) in PCR tubes. A

suspension of 0.2 ml contained 2.5x107 cells.

DWI acquisition

A 7T animal MRI system (Kobelco with Bruker BioSpin, Japan) was used. Cell suspensions

were placed upright in the center of the scanner. DWI was performed using a pulsed-gradient

spin-echo (PGSE) sequence with multi-shot echo planar imaging (EPI) acquisition (repetition

time (TR): 3000ms; echo time (TE): 90ms; matrix: 128x128; spatial resolution: 0.2x0.2 mm2;
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slice thickness: 2mm). The separation of the onset of the motion probing gradient (MPG)

lobes (Δ) and the duration of the lobes (δ) were 25ms and 7ms, respectively. The b-value was

increased from 0 to 8000 s/mm2 in 14 steps (0, 2, 250, 500, 750, 1000, 1500, 2000, 3000, 4000,

5000, 6000, 7000, and 8000 s/mm2).

A set of cell samples (AQP4 and Control) were selected for each experiment. DWI was per-

formed on 6 sets of samples.

DWI analysis

The data was analyzed with both the 2Comp and DKm models.

For the 2Comp model, the diffusion coefficients (Df, Ds) and the volume fraction of the

slow compartment, Fs, were used as the unknown parameters in the fitting procedure, and

afterwards the volume fraction of the fast compartment, Ff, was estimated using the relation-

ship Fs + Ff = 1. Nonlinear least squares was used to fit the following bi-exponential equation

SðbÞ ¼ S0ðFf e
� bDf þ Fse

� bDsÞ ð1Þ

where S(b) and S0 are the signals with and without an applied MPG, respectively, and b is the

b-value.

Fitting to the DKm model was performed using DW images with b-values in the range

from 250 to 2000 s/mm2. Outside of this range, the low b-value in vivo images may be affected

by the intravoxel incoherent motion of blood, and high b-value images decrease the precision

of the fitting [16]. The data was fitted to the following quadratic equation

S bð Þ ¼ S0e
� bDþ1

6
b2D2Kð Þ ð2Þ

and pixel-by-pixel estimates of K and the corrected diffusion coefficient (D) were obtained.

Statistical analysis

The DWI parameter estimates obtained for each model were compared with respect to AQP4

expression.

As the ratio of the intra- to extra-cellular volumes (i.e. cell density) depends on position in

the PCR tube after centrifuging, the dependence of the parameter estimates on depth was also

evaluated [1]. Eight rectangular (6 pixels x 2 pixels) regions-of-interest (ROIs) were drawn on

each cell sample (Fig 1), and the mean signal intensity was calculated for each ROI. The ROIs

were numbered I, II, III. . .VIII from top to bottom.

Statistical analyses were performed with MATLAB version R2015a (Math Works Inc.,

Natick, MA). Analysis of covariance (ANCOVA) was used to compare the DWI parameter

estimates between the AQP4 and Control samples using the depth as a covariate. P<0.05 was

considered to be statistically significant.

Results

A good signal-to-noise ratio of about 4.44 at b = 8000 s/mm2 was obtained for all of the sam-

ples. There was a clear difference in the b-value-dependent signal of the AQP4 and Control

samples (Fig 2). Separate ADC maps were calculated for a low b-value range of 0–1500 s/mm2

and a high b-value range of 4000–8000 s/mm2 (Fig 3). There is no clear difference in the maps

with respect to cell type for the low b-value range, but there is a contrast in the vertical direc-

tion that probably corresponds to cell density. On the other hand, for the high b-value range

map there is no dependence on depth, but there is a clear difference between the cell types (Fig

3).

PLOS ONE Diffusion-weighted imaging of expression-controlled aquaporin-4 cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0266465 April 19, 2022 3 / 9

https://doi.org/10.1371/journal.pone.0266465


The b-value-dependent signal changes were analyzed with the 2Comp and DKm models

for each of the separate ROIs (Fig 4 and Table 1).

For the 2Comp model parameters Ds and Fs there was a significant difference between the

AQP4 and Control samples (P<0.05). There was also a significant dependence on depth for Fs

(P<0.0001). For the DKm model parameters K and D there was no significant difference

between the AQP4 and Control samples (P = 0.232 for K and P = 0.403 for D). However, there

was a significant dependence on depth for both D and K (P<0.0001). For K, there was also a

significant interaction between the cell type and depth (P = 0.029).

Discussion

Summary

In this study, the 2Comp model parameters Ds and Fs showed a clear difference with respect to

cell type. However, as Fs was also affected by the depth, this suggests that Ds may be a more

reliable biomarker for cell-type-related differences. For the DKm model parameters, there was

no significant difference in the estimates corresponding to cell type.

Fig 1. Regions-of-interest (ROIs). Eight rectangular (6 pixels x 2 pixels) ROIs were drawn on images of each cell

sample, and the mean signal intensity was calculated for each ROI. The ROIs were labeled as I, II, III. . .VIII from top

to bottom.

https://doi.org/10.1371/journal.pone.0266465.g001
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2Comp model

In the framework of the 2Comp model water diffusion is divided into fast and slow compart-

ments. The slow compartment is thought to correspond to intracellular and para-cell-mem-

branous water molecules, and molecular diffusion is restricted by intracellular micro-

structures and the cell membrane [12]. It might therefore be expected that a difference in cell

membrane water permeability due to the presence or absence of AQP4 expression would most

affect Ds. It could also be anticipated that a change in the intra-/extra-cellular volume ratio as a

function of depth would most affect Fs. The observations of this study were consistent with

these expectations as the estimates of Ds were significantly different for the AQP4 and Control

samples (P = 0.0003, Table 1), while Fs increased with depth (P<0.0001, Table 1). It is possible

that Ds might be an effective biomarker for quantitatively evaluating cell membrane water per-

meability. In contrast, even though the results suggest that Fs could be useful as a means to

characterize cell density after centrifuging, it should be remembered that Fs also had a signifi-

cant dependence on cell type (P = 0.005, Table 1). This result is difficult to explain with the

2Comp model and further studies are required.

DKm model

The DKm model parameter K increases as the tissue structure becomes more complex.

Changes in K have been reported in diseases including tumors, cerebral ischemia, and neuro-

degenerative diseases [16–18]. In this study, no clear dependence on cell type was detected for

Fig 2. Diffusion-weighted imaging (DWI) signal versus b-value for the aquaporin-4-expressing (AQP4) and -non-

expressing (Control) cell samples. The data was normalized by the b = 0 data. The solid and dashed lines indicate the

AQP4 and Control data, respectively. The circles and triangles indicate the average signals across samples with the

error bars corresponding to standard deviation. There is a clear difference in the decay of the AQP4 and Control data

with respect to b-value.

https://doi.org/10.1371/journal.pone.0266465.g002
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both DKm model parameters K and D. On the other hand, K and D both varied with the

depth (P<0.0001). There was also an interaction between the depth and cell type for K

(P = 0.029). These results suggest that there are problems in independence and specificity

when describing the data with this model.

This study was performed to test the suitability of two models in describing multi-b-value

DWI of monoclonal cells. Although there are many DWI analysis models that could be applied

to the data, as described by Novikov et al. [19], they are often just “representations” that fit the

b-value-dependent signal change well but do not relate to the biology. Both models applied in

this study have been widely used, but there have been many arguments about how they link

with the biology. The DKm model is derived from a mathematical approximation to the signal

without any biological information inserted, so it is reasonable that the parameter estimates do

Fig 3. Apparent diffusion coefficient (ADC) maps calculated for a low and high b-value ranges. Apparent diffusion

coefficient (ADC) maps of the samples are calculated for a low b-value range of 0–1500 s/mm2 and a high b-value

range of 4000–8000 s/mm2. The low-b ADC map appears to depend on depth within the tube, while the high-b ADC

map may be more sensitive to aquaporin-4 (AQP4) expression. Profiles along lines drawn on the ADC-maps (x 10-

3mm2/s) of aquaporin-4-expressing (AQP4, solid line) and -non-expressing cells (Control, dashed line) in PCR tubes

are shown on the right.

https://doi.org/10.1371/journal.pone.0266465.g003
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Fig 4. Mean diffusion-weighted imaging (DWI) parameter estimates with standard deviations plotted against

depth. Mean DWI parameter estimates (Df, diffusion coefficient of the fast compartment; Ds, diffusion coefficient of

the slow compartment; Fs, volume fraction of the slow compartment; K, diffusion kurtosis; D, corrected diffusion

coefficient) with standard deviations are plotted against depth (i.e. ROI number). The solid and dotted lines

correspond to the aquaporin-expressing (AQP4) and -non-expressing (Control) cells, respectively. There is a

significant difference between the AQP4 and Control samples for Ds (P = 0.0003) and Fs (P = 0.005). Also, Fs, K and D

have a significant dependence on depth (P<0.0001). A significant interaction between the cell type and the depth was

observed for K (P = 0.029).

https://doi.org/10.1371/journal.pone.0266465.g004

Table 1. Analysis-of covariance (ANCOVA) results (F-values and P-values) for the DWI parameter estimates.

2-compartment model Diffusion kurtosis imaging model

Df Ds Fs K D

Cell type effect 0.014(0.908) 29.6(0.0003)� 12.8(0.005)� 1.62(0.232) 0.763(0.403)

Depth effect 0.420(0.886) 1.59(0.152) 27.9(<0.0001)� 11.3(<0.0001)� 10.1(<0.0001)�

Cell type x Depth 0.438(0.875) 0.667(0.699) 0.558(0.787) 2.40(0.029)� 0.138(0.995)

P-values are shown in parenthesis. Values less than 0.05 are considered significant (�). Df, diffusion coefficient of the fast compartment; Ds, diffusion coefficient of the

slow compartment; Fs, volume fraction of the slow compartment; K, diffusion kurtosis; D, corrected diffusion coefficient.

https://doi.org/10.1371/journal.pone.0266465.t001
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not correlate well with the cell type and cell density. On the other hand, based on the hypothe-

sis that there are two major in vivo water compartments and diffusion in each compartment is

Gaussian for the b-value range used in this study, there seems to be a link with the biology for

the 2Comp model. However, there are a number of problems that might arise when perform-

ing bi-exponential curve fitting, so it should be used with extreme caution [19]. Although the

samples used for this study were monoclonal cells, which are biologically much simpler than

in vivo tissue, it is interesting that the parameter estimates of the 2Comp model were clearly

linked to aspects of the biology (i.e. cell type and cell density). Although care should be taken

when applying this model to complex in vivo structures, it might be useful for evaluating the

state of tissues with a relatively simple structure.

Limitations

There were some limitations in this study. First, AQP4 expression was not measured quantita-

tively. The AQP4 expression level can be measured with immunohistochemistry. It would be

useful if a precise correlation between the expression level of AQP4 and one of the DWI

parameters could be determined. A second limitation is that this study was an in vitro experi-

ment. For in vivo DWI, the effect of perfusion at low b-values cannot be ignored. Further in
vivo studies will be needed to clarify the relationship between the DWI parameters and the cell

membrane water permeability, as well as the possible effects of perfusion.

Conclusions

Differences in AQP4 expression affected DWI of cell suspensions. The 2Comp model was the

more suitable model for our experiments on monoclonal cells. Ds might be an effective bio-

marker for quantitatively evaluating cell membrane water permeability.
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