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Introduction
The average cost of developing a new drug ranges in billions of dollars, and it takes 
9–15 years to bring a new drug to the market [1]. Hence, finding new uses for already 
approved drugs is of major interest to the pharmaceutical industry. This practice, termed 
drug repositioning or drug repurposing, is attractive because of its potential to speed up 
drug development, reduce costs, and provide treatments for unmet medical needs [2]. 
Central to drug discovery and repositioning are drug-target interactions (DTI), meaning 
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the qualitative, quantitative, and relative interactions of drugs with the molecules that 
regulate cellular functions.

DTIs are catalogued in public databases, which classify DTIs as binary (contains both 
active and inactive interactions), unary (only active interactions) or as quantitative (in 
terms of IC50, Kd, Ki etc.) [3]. The most well-known databases for quantitative bio-
activity interactions are ChEMBL [4], BindingDB [5], PubChem [6], GtopDB [7] and 
DrugTargetCommons [8], 8]. These resources contain experimental data for millions of 
compounds across thousands of protein targets. The quantitative DTI data in these data-
bases is manually extracted from experimental articles. None of these drug-target data-
bases provide target coverage for approved drugs at the whole proteome level, and only 
11% of the human proteome are targeted by small molecules [10]. The combined non-
overlapping articles covered by these five databases numbered less than 0.1 million, and 
contain around 3,000 protein targets with an average of 7.33 interactions per target [11].

To overcome the limited coverage of DTI profiles in the public databases, several in-
silico DTI prediction studies are proposed. For instance, the IDG-DREAM Challenge is 
based on crowdsourcing-based AI and ML methods to predict target activities for kinase 
inhibitors [12]. Thafar et  al., predicted new DTIs using graph embedding and similar-
ity based approaches [13]. Similarly, Zheng et  al., used multiple kernels into a tripar-
tite heterogeneous drug–target–disease interaction spaces to predict DTIs [14]. Several 
other computational approaches have been developed over the past decade, providing 
systematic means for predicting potential DTIs [15–17]. These in-silico methods provide 
a deeper understanding of the factors affecting DTI prediction and have opened novel 
strategies for computational drug repurposing.

Another alternative strategy is the curation of DTIs from experiment-based articles, 
adapted by several major databases such as ChEMBL, BindingDB and DrugTargetCom-
mons. However, each resource focuses only on specific journals for data curation. For 
instance, ChEMBL and DrugTargetCommons primarily focus on Medicinal chemistry, 
Nature biotechnology and a few other journals. However, there are more than 7000 jour-
nals and 32 M articles on PubMed [18]. A large fraction of the non-curated articles may 
contain experimentally tested DTIs. However, curating the whole PubMed manually 
is not efficient. Therefore, there is a need to develop semi-automated text classifiers to 
identify the most relevant articles.

Text classification is a well-known problem in natural language processing (NLP). The 
objective is to assign predefined categories to a given text sequence (in this case, it could 
be an abstract, title or full text for the article). One of the pre-processing step is to map 
textual data into numerical features [19], to make it understandable by the prediction 
model. Mapping of textual information into numerical features can be performed using 
pre-trained models on a large corpus of texts. Pre-trained language models on large text 
corpora are proven to be adequate for the task of text classification with a decrease in 
computational costs at runtime [20]. Among those are the word embedding based mod-
els, such as word2vec [21] and GloVe [22], as well as contextualized word embedding 
models, such as CoVe [23] and ELMo [24]. Others are sentence-level models, such as 
ULMFiT [25]. More recently, pre-trained language models are shown to be helpful in 
learning common language representations by utilizing a large amount of un-labelled 
data, e.g., OpenAI GPT [26] and BERT [27]. Bidirectional Encoder Representations from 
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Transformers (BERT) is based on a multi-layer bidirectional Transformer and is trained 
on large plain texts for masked word prediction and next sentence prediction tasks.

PubTator [28] and BEST [29] are currently the two most comprehensive web platforms 
that can automatically mine drug and target proteins from PubMed or PubMed Central 
(PMC). However, these tools did not capture the DTIs, and the resulting output may or 
may not contain experimental data. To solve these shortcomings, we set out to construct 
a pipeline using a BERT-based text classifier to identify articles containing DTIs and 
extract the associated data from PubTator. We trained several BERT models (i.e., BERT, 
SciBERT [20], BioBERT [30], BioMed-RoBERTa [31] and BlueBERT [32]) on known arti-
cles containing DTIs and used majority voting of five BERT models to predict 0.6 M new 
articles. The identified articles are further linked with mined drug and protein entities 
provided by PubTator. Furthermore, the BERT models predicted the assay format used 
in the experiment with an F1 micro of 88%. The resulting predicted and integrated data-
sets are freely available at https://​datas​et.​drugt​arget​commo​ns.​org/. The script for gener-
ating these models is freely available at: https://​github.​com/​Jehad​Aldah​dooh/​DTIs.

Materials and methods
Drug and protein annotations for PubMed articles

We downloaded drug and protein annotations for the abstracts of 24 M documents (75% 
of the PubMed) using PubTator’s API [28]. We define here document as a merged text 
containing titles and abstracts for the articles. Approximately a quarter of the articles in 
PubTator missed the abstract information. We considered only those articles for which 
both abstract and title information is present in PubTator, after which 18.5 M docu-
ments remained.

Known articles for drug‑target bioactivity data

Data used for the model training contains 28,075 positive examples (articles contain-
ing drug-target bioactivity data) and 28,075 negative examples (other biological arti-
cles), which is available at: https://​datas​et.​drugt​arget​commo​ns.​org/​Train​ing_​DTIs_​
data/. We considered only those articles in the positive dataset that contain both drug 
and protein annotations in PubTator. Drug-target articles are extracted from DrugTar-
getCommons and ChEMBL (27th release), whereas data for other biological documents 
is extracted from DisGeNET [33]. We used DisGeNET as a negative dataset mainly 
because it is a comprehensive and manually curated database for disease and gene asso-
ciations. Trained models are then used to predict documents that are likely to contain 
DTIs. Finally, the predicted documents likely to contain DTIs are associated with drug 
and protein entities as identified by PubTator.

Assay formats for drug‑target bioactivity data

Furthermore, we trained our models to predict the assay format most likely used in the 
documents. Assay format annotations are extracted from DrugTargetCommons for 
28,102 documents with 14,109 focusing on cell-based assays, 12,845 having organism 
based and 1,148 as other assay formats (e.g., biochemical (93), cell-free (66), tissue-based 
(424) and physiochemical (565)). The training data for assays is available at https://​datas​
et.​drugt​arget​commo​ns.​org/​Train​ing_​assay_​data/.

https://dataset.drugtargetcommons.org/
https://github.com/JehadAldahdooh/DTIs
https://dataset.drugtargetcommons.org/Training_DTIs_data/
https://dataset.drugtargetcommons.org/Training_DTIs_data/
https://dataset.drugtargetcommons.org/Training_assay_data/
https://dataset.drugtargetcommons.org/Training_assay_data/
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Proposed methods

BERT base is a masked language model (MLM) with 12 layers of architecture, pre-
trained on > 2.5B words from English Wikipedia. We used BERT base and other BERT 
models (SciBERT, BioBERT, BioMed-RoBERTa and BlueBERT) to identify new articles 
on PubMed likely to contain DTIs. SciBERT is an MLM pre-trained model trained on 
1.14 M full-texts from Semantic Scholar corpus with 82% from the biomedical domain 
[34]. SciBERT uses a different vocabulary (SCIVOCAB), whereas BERT, in general, is 
based on BASEVOCAB. In this study, we adapted uncased SciBERT. BioBERT is an 
MLM pre-trained language model based on the BERT representation for the biomedi-
cal domain. We used BioBERT-v1.1, pre-trained on PubMed for 200 K steps and 270 K 
steps on PMC. The model is pre-trained using the same hyper-parameter settings as 
for the original BERT model. BioMed-RoBERTa is a MLM pre-trained language model 
based on the RoBERTa [31]. Finally, BlueBERT is pre-trained on approximately 4B words 
extracted from PubMed.

To fit the training data into the BERT models, we preprocessed it by applying the 
tokenization to break up the text into tokens. We used the class AutoTokenizer from 
the HuggingFace Transformers package [35]. It allows to instantiate a tokenizer for the 
selected BERT model and format the text by adding the special [CLS] token at the begin-
ning of each text and [SEP] token at the end of the sentences. It also pads or truncates 
the resulting vectors to a standardized length limit of BERT model (512 tokens at a time).

We used the BERT representations for the classification task by fine-tuning the BERT 
variants with minimal changes applied during the training phase. All the BERT models 
used in this analysis comprised of 12 layers of transformer encoder with hidden state 
dimensions equal to 768 and having > 110 M parameters as adopted in [36]. In our archi-
tecture, we have used the embedding vector of the BERT [CLS] token from the last hid-
den layer as a representation of each textual sequence. It is further processed by two 
fully connected layers and a SoftMax activation function.

The BERT variants are fine-tuned using NVIDIA Tesla V100 SXM2 32 GB GPU, with 
a batch size of 32, a maximum sequence length of 512, a learning rate of 2e-5 for DTIs 
task, 5e-5 for assay classification task, a maximum epoch size of 3 for DTI prediction 
task, and 9 for assay prediction task. We used Adam with β1 = 0.9 and β2 = 0.999, slanted 
triangular learning rates as in [25], warm-up portion to 0.1, and ensured that GPU 
memory is fully utilized. The model architecture for all the BERT models in this study is 
shown in Fig. 1.

Next, we divided the overall workflow into three modules:

1.	 To identify whether a PubMed article is likely to contain bioactivity data for drug-
target interactions.

2.	 To extract drug and protein information by taking advantage of already extracted 
entities by PubTator.

3.	 To predict assay format for positively identified articles.

For module 1, we used the fine-tuned BERT models to predict whether PubMed’s arti-
cle contains a drug-target relationship or not. The BERT models are trained on 28,075 
positive and 28,075 negative documents as explained in the previous section. Each 
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document is mapped into 768 numerical features with minor differences in the archi-
tecture of the five models. After training, individual BERT models are merged in a 
majority voting to identify new articles possibly containing DTIs. We used the majority 
voting because different BERT models performed differently on the external test data-
sets (Table 2) and the majority voting may reduce the risk of false positives. For module 
2, we then matched and linked positively predicted documents with annotated drug and 
protein entities using the PubTator dataset. Finally, for module 3, using the same model 
architecture, we tried to predict assay formats (cell-based, organism based or other 
assays) for the positively predicted documents in module 2. We emphasized on the assay 
format prediction because assay formats are critical in defining the confidence scores for 
DTIs [37]. We reported these predicted articles in https://​datas​et.​drugt​arget​commo​ns.​
org/​New_​predi​ctions/. The workflow of the proposed strategy is shown in Fig. 2.

Results and discussions
Ten‑fold cross‑validation results using BERT models

The BERT text classifiers are trained using tenfold cross-validation. Our analyses showed 
that all the BERT models reached accuracies higher than 99%. Furthermore, we tested 
BERT models on three independent datasets i.e. DrugProt [38] (a positive dataset), Med-
line (a negative dataset) used by Papadatos et al., [39], and non-overlapping articles from 
ChEMBL (a positive dataset). As shown in Table 1, BioBERT achieved an accuracy of 
71.5% on the DrugProt dataset, while BlueBERT was able to correctly identify negative 
articles from Medline with 100% accuracy, and SciBERT successfully identified positive 
articles from ChEMBL with 93.2% accuracy. Using manual curation, we also validated 
100 DTIs articles (from 0.316 M articles at PubTator that are predicted as DrugTarget 
articles and contain both drug and protein entities). We confirmed that all the articles 

Fig. 1  Architecture for all the BERT models, where Wi represents input word token and Oi represents 
contextual embeddings at the output layer. The O[CLS] is first token of output sequence and contains class 
label

https://dataset.drugtargetcommons.org/New_predictions/
https://dataset.drugtargetcommons.org/New_predictions/
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contain relationship words (such as inhibition or binding) in the abstracts of the articles. 
These 100 articles are provided in Additional file 1. As the model was primarily trained 
on the subset of PubTator showing 99% accuracy, that is why we obtained 100% accuracy 
on those 100 articles. Articles in DrugProt datasets are more complex and are differ-
ent from PubTator (0.31 M articles). Especially, DrugProt focusses on several types of 
relationships (including substrate, up regulators, down regulators, and others) which are 
not in the scope of current study. Therefore, we did not include those types of articles in 
model training, resulting in slightly reduced accuracy for the DrugProt dataset. How-
ever, high performance at Medline and ChEMBL datasets depicts the generalizability of 
BERT models to identify drug-target like articles with great precision.

We also compared the top frequently occurring words in both positive and negative 
documents. As shown in Fig.  3, the most frequently occurring words in drug target 
documents are ‘compounds’, ‘activity’ and ‘potent’, whereas the most frequent words for 

Fig. 2  Workflow for identifying new articles containing drug-target bioactivity data

Table 1  Accuracy of BERT models on three independent datasets. DrugProt is the dataset 
containing 2788 positive articles based on DTIs (positive class) and 1215 from negative articles class. 
Medline is a completely negative dataset, and ChEMBL is a completely positive dataset containing 
DTIs

Bold values indicate the top results for a dataset

Dataset Articles BERT SciBERT BioBERT BioMed-
RoBERTa

BlueBERT Majority voting

DrugProt 4003 68 65.9 71.5 71.4 67.5 69.6

Medline 55,056 99.7 98.6 75.2 99.9 100 100

ChEMBL 876 89.6 93.2 91.2 83.4 88.7 90.3
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other biological documents are ‘patients’, ‘gene’, and ‘expression’. The word distribution 
analysis can demonstrate developing a simple model based on word frequencies to iden-
tify drug-target or other biological documents. Simple model can have good time com-
plexity but at the cost of lower accuracy.

Identify new drug‑target articles and associate drug and protein pairs using PubTator 

dataset

After successfully training the BERT models, we tried to identify new articles on Pub-
Med that possibly contain bioactivity data for drug-target pairs. For this purpose, we 
used 18.5 M documents downloaded from PubTator. Table 2 shows the number of posi-
tively predicted documents out of these documents. The third column (articles contain-
ing drugs or proteins on PubTator) shows how many among positively predicted articles 
have either drug or protein entities annotated by PubTator. Finally, the last column indi-
cates the number of articles for which PubTator annotated both drug and the protein 
entities. These two columns validate those articles that are identified as drug-target 
articles.

Fig. 3  Top word frequencies for A Drug-target documents, and B Other biological documents

Table 2  Prediction of drug-target like documents from PubMed articles. The third column shows 
the number of documents that contain either drug or protein entities as identified by PubTator. In 
contrast, the fourth column indicates the number of documents that contain both drug and protein 
entities

Bold value indicates the top result for a dataset

BERT model Predicted as drug-
target articles

Articles containing drugs or 
proteins on PubTator

Articles containing both 
drugs and proteins on 
PubTator

BERT 688,206 682,150 342,902

SciBERT 594,999 589,999 321,831

BioBERT 636,091 630,132 340,638

BioMed-RoBERTa 725,748 720,030 385,015
BlueBERT 570,284 564,220 297,834

Majority voting 597,844 592,789 316,794
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We obtained a superior performance on unseen articles. For example, using the 
majority voting, 99% (597,844) of the articles were identified as drug-target like (posi-
tive) containing either drugs or proteins entity identified by PubTator. Out of these 
positively predicted documents, 53% (316,794) contain both drug and protein enti-
ties according to PubTator. The result (53%) is likely an underestimation, as drug and 
protein entities may not appear in the main text of an article but may be deposited as 
supplementary data, which are not captured by PubTator’s back-end algorithm. It is 
also possible that drug, and protein entities are present in the main text but were not 
captured by PubTator. This means that even though the article is positively predicted 
by our model, we might not be able to capture drug or protein entities in some cases, 
leaving the task for manual curators to check the supplementary material. Indeed, 
many high throughput drug-target profiling articles do not mention drug or protein 
names in the main text but instead provide these in the supplementary material, e.g. 
[40]. Of the BERT models, BioMed-RoBERTa identified more drug-target like docu-
ments compared to the other models, with at least 385,015 articles containing both 
drugs and proteins in PubTator.

We also analyzed the publication journals and years for these predicted articles. We 
found that Journal of Medicinal Chemistry, Bioorganic & Medicinal Chemistry Letters 
and Biological Chemistry are the top three journals based on our prediction (Fig. 4A). 
These three journals are also among the leading journals for bioactivity data extraction 
in ChEMBL [39]. Furthermore, most drug-target articles are from recent years, with the 
year of 2020 containing the most significant number of articles (Fig. 4B).

Fig. 4  A Top 15 journals for the articles that are predicted as drug-target based articles, B Top 15 years for 
articles predicted as drug-target articles
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The output of our analysis can be used as a starting point to further extract the quanti-
tative drug-target bioactivity values from the identified articles. We hope that our output 
will significantly ease the job of manual curators as we are providing the actual PubMed 
ID, drugs, and protein entities, as well as assay formats for newly identified DTI articles.

Predict assay format for drug‑target articles

After successfully identifying DTI articles, the next task is to predict the assay format 
that was reported. For that purpose, we separately trained each BERT model with 14,109 
articles based on cell-based assay, 12,845 articles based on organism-based assay, and 
1148 with the other assay formats. We used the same fine-tuning settings as for the 
drug-target article identification task and used F1 macro and F1 micro metrics to evalu-
ate the performance of the models. We observed better accuracy improvements when 
using the weighted cross entropy (each class with a different weight based on effective 
number of samples) defined as:

where y is the target and w is the weight and the predicted class label 
∼
y is the index of the 

maximum predicted probability score among the three classes.
Table 3 shows tenfold cross-validation performances for the BERT models. We found 

that BioMed-RoBERTa outperforms the other models, with F1 micro of 88.1 ± 0.5, and 
F1 macro of 87.8 ± 0.5. The superior performance of BioMed-RoBERTa could be due to 
the additional pre-training over more data consisting of 2.68  M full-text papers from 
S2ORC [41] and the additional pre-training for longer steps.

After successful finetuning of BERT models to predict assay formats (of known arti-
cles), we used the best model (i.e., BioMed-RoBERTa) to predict assay formats for 
597,844 articles (identified as drug-target articles using majority voting in Table  2). 
BioMed-RoBERTa predicted that 243,828 (out of 597,844) articles are cell based, 220,357 
articles are organism-based articles, and 133,659 articles are others assays.

Discussions and conclusions
More than 80% of the approved drugs target only two protein classes: enzymes or 
receptors [42]. There are 25 000 genes in humans, but only 600 disease-modifying 
protein drug targets exist [43]. Therefore, target identification has recently shifted 
to other macromolecules, such as RNAs. Due to their involvement in gene regula-
tion, miRNAs have been identified as high-value targets for therapy. There are 

WCE y, ỹ = −

N

n

wyn .yn log ỹn

Table 3  The tenfold cross validation results for identifying assay formats

Bold values indicate the top results for a dataset

BERT model F1 macro F1 micro

BERT 81.0 ± 1 81.5 ± 1

SciBERT 85.2 ± 1.1 85.6 ± 1.1

BioBERT 86 ± 1.3 86.4 ± 1.3

BioMed-RoBERTa 87.8 ± 0.5 88.1 ± 0.5
BlueBERT 87.0 ± 1 87.5 ± 1
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approximately 2000 miRNAs in humans (www.​mirba​se.​org). They regulate 30% of all 
genes which are crucial in many biological processes [44, 44]. Therefore, traditionally 
‘undruggable’ proteins can be targeted via their miRNA gene regulators, enabling the 
treatment of incurable diseases [46]. Recently in-silico methods have been developed 
to predict drugs for miRNA. For instance, Chen et  al. proposed a bounded nuclear 
norm regularization method [47]. Niu et  al. adapted graph neural network-based 
method to predict drug resistance for miRNAs [48]. Several more methods are pub-
lished on in-silico drug associations with miRNA [49–51].

However, in this study, our focus is mainly on protein targets due to (1) insufficient 
miRNA targets available in the public databases and ‘(2) Lack of miRNAs annotations 
at PubTator [28], which is the main source of our pipeline. Therefore, we omitted 
miRNAs and focused only on protein targets in the present study. However due to the 
growing importance of miRNAs as emerging drug targets, in future, we aim to also 
include miRNA in text-mining based drug-target relationship extraction and combine 
it with machine learning-based prediction method to identify novel drug associations 
with miRNA.

In target centric drug discovery, a large number of compounds are tested across a 
particular target protein, resulting in the lack of DTI profiles at the proteomics level 
for many compounds. Curating quantitative drug-target bioactivity values reported 
in an article is therefore a critical task for establishing a more comprehensive drug-
target profiles. Semi-automated NLP based methods can assist in identifying such 
articles and easing the workload for the data curators. BERT is recently proposed as a 
state-of-the-art model for several NLP tasks, including text classification. Therefore, 
in this research, we investigated several models of BERT to identify new articles likely 
containing DTIs.

Furthermore, we developed these models to predict the assay formats most likely 
used in the articles. Assays formats are critical in evaluating the quality for DTIs. We 
found that BioMed-RoBERTa performed slightly better than the other models for 
both drug-target article identification and assay format prediction.

Using the majority voting based on BERT models, we identified 597,844 articles 
from which 316,794 are confirmed to have both drug and protein entities in PubTa-
tor. Most of these articles are not reported in any of the manually curated bioactivity 
databases as the combined non-overlapping articles curated by commonly used DTI 
databases are around 0.1 M. These identified DTIs (along with annotations) are freely 
available at https://​datas​et.​drugt​arget​commo​ns.​org/. We hope that the identified arti-
cles and drug and protein entities will ease the job of manual curators and improve 
protein target coverage across investigational and approved compounds. Lastly, 
increased target coverage for investigational and approved drugs will enhance the 
understanding of drug mechanism of action and open new drug repurposing oppor-
tunities. The manual curation team of DrugTargetCommons will take advantage of 
these newly identified articles and curate bioactivity data. Meanwhile, we will try to 
extend our recently published method on drug target relationship extraction [52] to 
automatically identify DTI relationships from these articles.

http://www.mirbase.org
https://dataset.drugtargetcommons.org/
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