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Abstract: Predictive observation and real-time analysis of the values of biomedical signals and
automatic detection of epileptic seizures before onset are beneficial for the development of warning
systems for patients because the patient, once informed that an epilepsy seizure is about to start, can
take safety measures in useful time. In this article, Daubechies discrete wavelet transform (DWT)
was used, coupled with analysis of the correlations between biomedical signals that measure the
electrical activity in the brain by electroencephalogram (EEG), electrical currents generated in muscles
by electromyogram (EMG), and heart rate monitoring by photoplethysmography (PPG). In addition,
we used artificial neural networks (ANN) for automatic detection of epileptic seizures before onset.
We analyzed 30 EEG recordings 10 min before a seizure and during the seizure for 30 patients with
epilepsy. In this work, we investigated the ANN dimensions of 10, 50, 100, and 150 neurons, and we
found that using an ANN with 150 neurons generates an excellent performance in comparison to a
10-neuron-based ANN. However, this analyzes requests in an increased amount of time in comparison
with an ANN with a lower neuron number. For real-time monitoring, the neurons number should be
correlated with the response time and power consumption used in wearable devices.

Keywords: EEG; PPG; EMG; epilepsy; signal processing; brain monitoring; artificial neural network;
predictive analysis

1. Introduction

1.1. Aim of the Work

Epilepsy is a disease that affects about 1% of the world’s population. Crisis identification involves
multi-channel EEG monitoring for 24–72 h. Crisis detection (grand mal) is essential for the diagnosis
of epilepsy, the control of the crisis, and warning the patients in sufficient time before the seizure.
Moreover, the observation and investigation of the biomedical signals values before an epileptic seizure
are beneficial for developing prevention and support systems for patients because by informing the
patient that an epilepsy seizure is about to occur, he or she can take his or her safety measures promptly.
The correlations and covariance between the biomedical signals that EEG, PPG, and EMG collect from
sensors are essential because, in the case of the patients with epilepsy, the heart rate increases, and
uncontrolled tremors of the muscles or their stiffening may occur.

In the case of the patients with epilepsy, the real-time monitoring based on wearable devices
with EEG, PPG, EMG integrated, and biomedical signals predictive analysis based on neural network
systems with reduced processing time and low power computing is essential for warning before a
seizure, and patients fall prevention.
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1.2. State-of-the-Art

There are scientific studies that specify the use of artificial intelligence, using methods such as
deep neural networks for patients’ ECG-based authentication [1], ResNet-based signal recognition [2],
arrhythmia detection [3,4], or learning feed-forward and recurrent neural networks [5]. The automatic
signal detection was used in studies based on the discrete wavelet transform (DWT) for automated
detection [4] or automated heartbeat classification [6].

The electrical activity of the brain monitoring by EEG (electroencephalogram) is useful to study
the disease pathologies by analyzing the numerical distribution of data and correlating the brain
signals (EEG) with other types of biomedical signals such as electrical activity of the heart obtained by
electrocardiogram (ECG), heart rate monitoring by photoplethysmograph (PPG), and electrical activity
produced by muscles by electromyography (EMG) [7–9].

To analyze the pathology of chronic diseases, the researchers also used the multivariate analysis
of EEG, ECG, and PPG signals [10,11].

Mainly for predictive analysis of influence factors that generate a pathology or of the biomedical
signal changes that could anticipate the existence of pathology are software applications for signal
acquisition from sensors (EEG, ECG, PPG, or EMG), correlations [12], univariate, bivariate [13–15]
or multivariate analyzes [16,17] of numerical data used, but computational methods [18] based on
mathematical models are also used. Thus, computational models use studies on large populations (e.g.,
274 patients [19]) and a large volume of data (e.g., 183 seizures recorded in 3565 h [20]). These analyses
aim to find valid patterns [21] for a large population with similar independent variables (age, gender).

For the prediction of epileptic seizures, researchers used technologies such as machine
learning, data mining, artificial neural networks [22] (backpropagation algorithm-for recognition
and classification of EEG signals [23,24]), fuzzy systems [25], and predictive analysis statistics
(multivariate [26], bivariate or univariate).

The study of the correlations between various electrical signals captured (e.g., EEG, ECG, PPG,
and EMG) from the human body is essential because, in the case of patients with neurological disorders,
the phenomenon of comorbidity exists and consists of overlapping of several diseases.

The electroencephalogram (EEG) represents a set of fluctuating field potentials produced by
the simultaneous activity of a large number of neurons [27] and captured by electrodes located on
the scalp. The EEG system consists of 10–20 metal electrodes distributed on the skin surface of
the head and connected by 36 wires to the recording device. It measures the electrical potential
detected by each electrode. EEG can be used in monitoring the brain during anesthesia [28], surgical
procedures [29], and investigations of brain disorders (psychoses [30], meningoencephalitis [31],
Parkinson [9], Alzheimer [32–37], dementia [38], epilepsy [39–42], central motor neuron syndrome [43],
cerebral palsy [44–46], and muscular dystrophy [47]). Mainly, EEG systems are used to diagnose and
monitor patients with neuropathology, especially in diagnosis of epilepsy and in studying the seizures,
as well as the monitoring of treatment and evolution.

Electroencephalographic reactivity is evaluated using simple tests: eye-opening, hyperpnea
(slow and full breathing), and intermittent light stimulation obtained with short and intense light
discharges with gradually increasing frequency. The EEG assessment takes approximately 20 min and
does not require hospitalization [48].

In the case of an electroencephalogram, the risks are minimal. Still, intermittent light stimulation
or hyperventilation can produce epileptic seizures. Therefore, the examination is performed under the
supervision of a physician who can recognize the crisis and immediately establish appropriate safety
and therapeutic measures.

Epilepsy is a chronic disease of the brain that manifests through partial (focal) or generalized
seizures due to spontaneous electrical discharges that occur in the brain.

Manifestations consist of involuntary movements of different body segments and abnormal
neuro-vegetative sensations in the body. EEG analysis can be used to diagnose and monitor the patient
in various stages of the disease (focal or generalized seizures, sleep) [38–41].
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1.3. Contribution

In this paper, we present an efficient method for the detection of seizures based on artificial neural
networks and correlations between biomedical signals.

Our study included 30 subjects from the CAP Sleep Database [49,50]. Our selected records were
sampled at 160 Hz. The records consisted of both normal EEG and EEG spikes specific to epileptic
seizures. The signals captured were from 13 EEG channels, submentalis and bilateral anterior tibialis
EMG, and an earlobe PPG sensor. We used the artificial neural network and the Levenberg–Marquardt
backpropagation optimization algorithm in MATLAB for implementing the classification and 3D plots.
Data pre-processing and feature extraction were implemented using MATLAB 2019a (Mathworks,
Santa Clara, CA, USA). All the experiments were carried out in Windows 8.1, 8 GB RAM, and 64-bit
operating system.

The rest of the paper is structured as follows: the methods for signals decomposition, filtering,
EEG biomedical signals, and theoretical methodology are presented in Section 2. Section 3 presents the
predictive analysis of the signals using artificial neural networks. Aspects concerning the biomedical
signals covariance are discussed in Section 4. The conclusions of the work are presented in Section 5.

2. Materials and Methods

The proposed method was tested using the CAP Sleep Database. The CAP Sleep Database
comprises 40 recordings of patients (male and female) diagnosed with nocturnal frontal lobe epilepsy.
The record duration is 8 h, approximately.

Our study included 30 subjects from the CAP Sleep Database. Our selected records were sampled
at 160 Hz. The records consist of both normal EEG and EEG spikes specific to epileptic seizures. We
analyzed 30 EEG recordings 10 min before a seizure and during the seizure in 30 patients with epilepsy.
The signals analyzed are from 13 EEG channels, submentalis and bilateral anterior tibialis EMG, and
an earlobe PPG sensor.

Within this research, the topic has used the detection of electrical signals from the brain using
the EEG head with non-invasive electrodes (for the available biomedical signals in the PhysioNet
databases).

In the discrete-time domain, digital filters (low-pass filter for signals with a frequency lower than
a selected cutoff frequency and a high-pass filter that passes signals with a frequency higher than a
cutoff frequency chosen) have been used for signal analysis.

Discrete wavelet transformation (DWT) [48] is calculated by additional high-pass and successive
low-pass filters and sub-sampling using the Mallat algorithm [51]. Additional filtering applied to a
real EEG signal leads to double the number of data from the original one being requested after each
filtration to reduce the number of samples by sub-sampling of the EEG signal. DWT uses the dyadic
variant. In the wavelet analysis, approximations (a (n)) and details (d (n)) are used (Figures 1 and 2):

1. Approximations (a (n)) are the components at high scales and low frequencies;
2. Details (d (n)) are components at low levels and high rates.
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Figure 1. Electroencephalogram (EEG) from a patient with no seizure-signal filtering and decomposition
using the discrete wavelet transform (DWT) method.
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Figure 2. EEG from a patient with epileptic seizure-signal filtering and decomposition using the
DWT method.

To reduce the continuous-time signal to a discrete-time signal, the EEG signals were sampled
with a sampling frequency (f s = 160 Hz). EEG signals were filtered by a low-pass filter (60 Hz) and
a high-pass filter (0.1 Hz) and decomposed using the discrete wavelet transform [52,53] for patients
without epilepsy (Figure 1).

In the case of epilepsy, seizures detection consists of finding EEG segments with seizures and
onset and offset points [53]. For pattern profiling, it is necessary to monitor a large population of
patients with epilepsy for 24–48 h. Because gamma frequency oscillations (30–120 Hz) often precede
interictal epileptiform spike discharges (IEDs) [54], we used DWT with Daubechies function, and we
considered the low-pass filter 120 Hz to observe the gamma wave specific to an epileptic seizure. Some
scientific papers report the values around 100–600 Hz for gamma waves—that is, not associated with
IEDs, but occurring during epileptic seizures [54,55]. However, other researchers [54,56] reported the
fluctuation of gamma wave values.

EEG signals were filtered by a low-pass filter (120 Hz) and a high-pass filter (0.1 Hz) and
decomposed using the discrete wavelet transform for patients with epileptic seizures (Figure 2).

x (n)—signal (0.1–60 Hz), respective for patient with seizure x (n)—signal (0.1–120 Hz);
h(n)—low-pass filter (LPF);
g (n)—high-pass filter (HPF);
d (n)—the signal of the detail produced by HPF, e.g., d1, 1, d2, 1, d3, 1, d4, 1;
a (n)—the signal produced by LPF, is a rough approximation, e.g., a1, 1, a2, 1, a3, 1, a4, 1;
↓2—down sampling by two.

The wavelet transform is a way to implement a particular type of signal representation called
multi-resolution analysis [57,58]. The analyzed signal is described by a succession of details and
approximations that contain more information. Each level of approximation (Figures 1 and 2) contains
information available at the previous level, which is an added component of detail. In Figure 3, the
signal processed by discrete wavelet transform and Daubechies method using four decomposition
levels for a patient before and after a short seizure is presented. In Figure 3, detail d1 represents gamma
waves, detail d2 represents beta waves, detail d3 represents alpha waves, detail d4 represents theta
waves, and the approximation a4 represents delta waves.

In Figure 4, the signal processed by discrete wavelet transform and Daubechies method using
four decomposition levels for a patient with epileptic seizures is presented. In Figure 4, the detail d1
represents gamma waves, detail d2 represents beta waves, detail d3 represents alpha waves, detail d4
represents theta waves, and the approximation a4 represents delta waves. From Figure 4, it is evident
that the presence of the gamma waves with values equal to or greater than 120 shows that a seizure
phase is present. Moreover, the epileptic spikes are very evident in Figure 4.
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Figure 3. Patient before and after the seizure, signal decomposition on four levels using DWT.

Figure 4. Patient with epileptic seizure, signal decomposition on four levels using DWT.
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In Figure 5, the 3D spectrogram of the signals from all 13 channels of electro-cap used for
monitoring a patient with an epileptic seizure is presented. The epileptic gamma waves spikes
(with the yellow-red color market on the graphic) that are over 200 or 400, indicating abnormal
frequencies for gamma waves that occur on seizures, are also evident from Figure 5.

Figure 5. 3D spectrogram of EEG signals from 13 channels.

3. Biomedical Signal Selection

To analyze the correlation and covariance between signals, signals such as EEG (related to the
frontal lobes FP1-F3, FP2-F4), EMG, and PPG from a patient n1 with no epileptic seizures and a patient
n2 with epileptic seizures were selected.

The purpose of using PPG and EMG signals in correlation with EEG was to find a modification of
the biomedical signals collected from wearable devices that could anticipate an epilepsy seizure and to
use a software system to send medical alerts in advance [59–65]. From the CAP Sleep Database, the
biomedical signals taken from 2 patients (n1 and n2) were used for the actual study. In Figures 6 and 7,
the 3D spectrograms for the EEG signals (Fp2-F4, F4-C4, C4-P4, P4-O2, F8-T4, T4-T6, FP1-F3, F3-C3, C3
-P3, P3-O1, F7-T3, T3-T5, C4-A1) taken from patients n1 and n2 are presented. In the case of patient n1,
the epileptic spikes for gamma waves cannot be observed (Figure 6), but in the case of patient n2, these
spikes are evident, marked with yellow-orange in the 3D spectrogram (Figure 7) and being above the
120 Hz threshold.
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Figure 6. 3D spectrogram of signals EEG from 13 channels for patient n1 with no epileptic seizures.

Figure 7. 3D spectrogram signals EEG from 13 channels for patient n2 with epileptic seizures.

4. Results Based on Predictive Analysis of the Signals Using Artificial Neural Networks

For predictive analysis of EEG signals, artificial feed-forward neural networks are used based on
the Levenberg–Marquardt backpropagation optimization algorithm.

The functional units within the neural networks consisted of:

• Input units represented by the values of the EEG matrix for patients with epilepsy seizures.

Hidden groups (data) given by the number of neurons (10, 50, 100, and 150 neurons, respectively).

• Outputs are represented by the values of the EEG matrix for patients who do not have seizures.

For optimization, the Levenberg–Marquardt algorithm was used, which approximates the Hessian
matrix (H) as follows (1):

H = JT J (1)

where:
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• J is the Jacobian matrix containing the derivatives of the error function concerning weights (w)
and biases (b);

• JT is the transposed Jacobian matrix;
• e is the vector of errors.

The Levenberg–Marquardt algorithm uses the following parameter updating rule (Equation (2)):

xk+1 = xk −
[
JT J + µI

]−1
JTe (2)

For this purpose, four neural networks were designed with n hidden neurons (Figure 8), where
n ∈ {10, 50, 100, 150}, to estimate the occurrence of epilepsy seizures, compared with EEG signals
taken from a healthy patient, respectively, with EEG signals received from the patient with no seizures.
The artificial neural network (ANN) architecture models (with 10, 50, 100, and 150 respective hidden
neurons) used for the prediction of the epileptic seizures have a two-layer feed-forward network
with hidden sigmoid neurons and linear output neurons, and allow the training and evaluation of
the performance using mean square error (MSE) and regression analysis (R). The proposed ANNs
structures are based on the principal elements:

• input data (matrix 13 × 5120 samples);
• hidden layer with n neurons, n ∈ {10, 50, 100, 150};
• output (target) data (matrix 13 × 5120 samples);
• train set (70% of samples) that is used to provide an independent measure of network performance

during and after training;
• test set (15% of samples) that is used during training, and the network is adjusted according to

its error;
• validation set (15% of samples) is used to measure network generalization, and to halt training

when generalization stops improving.

Figure 8. Artificial neural network (ANN) with n neurons, n ∈ {10, 50, 100, 150}.

In Table 1, the principal parameters for ANNs with 10, 50, 100, and 150 neurons are presented.

Table 1. ANN parameters.

Neurons No. Input Data [Samples
EEG3]

Output (Target) Data
[Samples EEG1]

Train Set
[Samples]

Test Set
[Samples]

Validation Set
[Samples]

10 Matrix 13 × 5120 Matrix 13 × 5120 3584 768 768
50 Matrix 13 × 5120 Matrix 13 × 5120 3584 768 768

100 Matrix 13 × 5120 Matrix 13 × 5120 3584 768 768
150 Matrix 13 × 5120 Matrix 13 × 5120 3584 768 768

Prediction and optimization were made with a feed-forward backpropagation multi-layer
neural network.

The input data-independent variables (matrix input) X1 = EEG signal (EEG3) taken when the
patient does not have seizures.
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The target data-dependent variables (matrix target) Y1 = EEG signal (EEG1) taken from a patient
with epilepsy. The target (Y1) represents the desired output for the given input, X1. We consider the
real output matrix (D).

The continuous training of neural networks is based on extensive datasets; 70% (3584 samples) of
the total data generated by the ANNs were used to train the model, while 15% (768 samples) of the
data was used for testing and 15% (768 samples) for validation (Figures 9–12). Regression analysis of
the ANN model showed the R2 (regression) values for training between 0.57316 for the ANN with ten
neurons, 0.65267 for the ANN with 50 neurons, 0.85089 for the ANN with 100 neurons, and 0.81819 for
the ANN with 150 neurons, showing the higher accuracy and significance of the ANN model for the
ANN with 100 neurons, respective to the ANN with 150 neurons.

Figure 9. Regression (R2) for validation, test, and training—ANN with ten neurons.

Figure 10. Regression (R2) for validation, test, and training—ANN with 50 neurons.

Figure 11. Regression (R2) for validation, test, and training—ANN with 100 neurons.
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Figure 12. Regression (R2) for validation, test, and training—ANN with 150 neurons.

MATLAB libraries were used to perform the functions and the code sequences within the neural
networks. The regression plots (9–12) show a regression between network outputs and network targets.
The parameterized linear regression model is given by mathematical relation (3). The R (Equation (3))
value indicates the relationship between the outputs (y) and targets. If R = 1, this indicates that there is
an exact linear relationship between outputs and targets. If the R-value is close to zero, then there is no
linear relationship between the outputs and targets.

R = D =
M∑

j=1

w jx j + ε ⇔ R = wTx + ε (3)

where:

• ε is the error;
• wj is synaptic weight;
• x is the input matrix;
• M is the model order;
• T denotes matrix transposition (Equations (4) and (5)).

w = [w1, w2, . . . , wM]T (4)

x = [x1, x2, . . . , xM]T (5)

From the regression graphs for testing, training, and validation for neural networks with 10, 50,
100, and 150 neurons (Figures 9–12), and from values presented on Table 1, it is evident that the value
of the R regression for training, validation, and testing is in a direct relationship with the number of
neurons of the network. The regression value R close to zero indicates that is no linear relationship
between outputs and targets. Moreover, if R is very close to 1, it shows a good match and an exact
linear relationship between the outputs and targets. From the regression graphs, it is observed that
the value of the regression for test, training, and validation is close to the value 1, which indicates a
good match between inputs, outputs, and objectives. From Figure 9, it can be observed that, in the
case of the neural network with ten hidden neurons, the values of the regression for test, validation,
and training are in the inequality report RTest < RTraining < RValidation, the regression is lower than 1,
and the higher one is the regression for validation (RValidation = 0.63855). From Figure 10, we observed
that, in the case of the neural network with 50 hidden neurons, the values of the regression for test,
validation, and training are in the inequality report RTest < RValidation < RTraining, the regression is lower
than 1, and the higher one is the regression for training (RTraining = 0.65267). In Figure 11, it can be
observed that, in the case of the neural network with 100 hidden neurons, the values of the regression
for test, validation, and training are in the inequality report RValidation < RTest < RTraining, the regression



Sensors 2020, 20, 3346 11 of 21

is lower than 1, and the higher one is the regression for training (RTraining = 0.85089). From Figure 12, it
is evident that, in the case of the neural network with 150 hidden neurons, the values of the regression
for test, validation, and training are in the inequality report RTest < RValidation < RTraining, the regression
is lower than 1, and the higher one is the regression for training (RTraining = 0.81819).

From the histograms of errors (Figures 13 and 14), it can be observed that the increase in the
number of neurons in the network leads to a decrease in the percentage of errors generated. The error
histograms (Figures 13 and 14) show normal distributions with residuals (errors), indicating that many
of the residuals fall on or near zero in the case of the ANN with 150 neurons. Analyzing Figures 13
and 14, we can conclude that the ANN model with 150 neurons used for the prediction can generate an
excellent prediction of epileptic seizures.

Figure 13. Error histograms—ANN with 10, 50, and 100 neurons.

Figure 14. Error histogram—ANN with 150 neurons.

In Table 2 are presented for each neural network developed, the number of hidden neurons
allocated, the processing time [seconds] of the neural network, and the values of the regression for
training (RTraining), test (RTest), and validation (RValidation). In Table 2, the processing time represents the
total time allocated for training, test, and validation.

In the proposed ANN with n (10, 50, 100, and 150) neurons, we defined the training set, test
set, and validation set to check over-optimization. The validation set was used to measure network
generalization, and to halt training when generalization stopped improving. The evaluation of the
performance was done using mean square error (MSE) and regression analysis (R).
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Table 2. Value R = f (neural network neurons).

Neurons No. R Training R Validation R Test Processing Time [s]

10 0.57316 0.63855 0.49103 42
50 0.65267 0.60571 0.60182 745

100 0.85089 0.74129 0.82255 913
150 0.81819 0.77345 0.67324 2784

In Figures 15 and 16, the performances of the neural networks with 10 and 150 neurons, respectively,
are presented. In Figures 15 and 16, error vs. epoch is plotted for the validation. The best validation is
taken from the epoch with the lowest validation error. On the y axis of the charts, the mean squared
error (MSE) (Equation (6)) is presented. The best validation is taken from the epoch with the lowest
validation error. Mainly, the error reduces after more epochs of training.

MSESE =
1
n

n∑
i=1

(yi − ŷi)
2 (6)

where:

yi is the vector of observed values;
ŷi is the vector of predicted values.

Figure 15. Neural network (10 neurons) best validation performance.

However, the best validation performance was generated in 40 epochs, whereas 47 epochs were
run to confirm the model accuracy for the ANN with ten neurons (Figure 15). The best validation
performance was generated in 9 epochs, whereas 15 epochs were run to confirm the model accuracy
for the ANN with 150 neurons (Figure 16). In comparison with the ANN with ten neurons, the ANN
with 150 neurons shows higher performance.
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Figure 16. Neural network (150 neurons) best validation performance.

5. Discussion

5.1. Biomedical Signals Covariance Analysis

In order to evaluate if the previously presented biomedical signals (EMG, PPG, and EEG) can
be used to predict epileptic seizures, it is necessary to investigate the covariance between all the
analyzed signals. Mainly, for two discrete signals, x(k) and y(k), correlation is a discrete function in
time (Equation (7)), defined by:

rxy(k) =
+∞∑

n=−∞
x(n)y(n− k) (7)

where k = 0, 1, 2, . . . .
Using the correlation function of two signals, the similarity between the signals can be appreciated.

The autocorrelation function has a maximum in origin when k = 0 and can be used to determine the
periodicity of real signals. The autocorrelation function (Equation (8)) is defined by:

rxx(k) =
+∞∑

n=−∞
x(n)y(n− k) (8)

where: k = 0, 1, 2, . . . .
The signals EEG1 (no seizure) and EEG3 (with seizure) collected from patient n1, respective to the

signals EEG2 (with seizure) and EEG4 (no seizure) collected from patient n2, were sampled at a rate
of 160 Hz and filtered using high-pass (0.1 Hz) and low-pass filters (60 Hz for EEG with no seizure
activity, respective to 120 Hz for EEG with seizure).

By analyzing the covariance matrix for EEGi, EEGj (Equations (9), (11), (13), (15), (17) and (19)),
and correlation coefficients (Equations (10), (12), (14), (16), (18) and (20)), we found that:

• between EEG1 and EEG3 is a negative covariance; this means that they are not in a linear
dependence (Equation (9)). Because the correlation coefficient is negative (Equation (10)), it
follows that EEG1 and EEG3 are in an inverse proportionality relationship.

• between EEG2 and EEG4 is a negative covariance, which means that EEG2 and EEG4 are not in a
linear dependence (Equation (11)). Because the correlation coefficient is negative (Equation (12)),
it follows that EEG1 and EEG3 are in an inverse proportionality relationship.
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• between EEG1 and EEG4 is a positive covariance, which means that EEG1 and EEG4 are in a
linear dependence (Equation (13)), and because the correlation coefficient is positive (Equation
(14)), it follows that EEG1 and EEG4 are in a direct proportionality relationship.

• between EEG1 and EEG2 is a negative covariance (Equation (15)), which means that EEG1 and
EEG2 are not in a linear dependence, and because the correlation coefficient is negative (Equation
(16)), it follows that EEG1 and EEG2 are in an inverse proportionality relationship.

• between EEG2 and EEG3 is a positive covariance, which means that EEG2 and EEG3 are in a
linear dependence (Equation (17)), and because the correlation coefficient is positive (Equation
(18)), it follows that EEG1 and EEG4 are in a direct proportionality relationship.

• between EEG3 and EEG4 is a negative covariance (Equation (19)), which means that EEG3 and
EEG4 are not in a linear dependence, and because the correlation coefficient is negative (Equation
(20)), it follows that EEG3 and EEG4 are in an inverse proportionality relationship.

cov(EEG1, EEG3) = 1.0e + 05 ∗

∣∣∣∣∣∣ 0.7206 −0.0369
−0.0369 0.7206

∣∣∣∣∣∣ (9)

REEG1, EEG3 =

∣∣∣∣∣∣ 1.0000 −0.0272
−0.0272 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = −0.0272 (10)

cov(EEG2, EEG4) = 1.0e + 05 ∗

∣∣∣∣∣∣ 0.5555 −0.0900
−0.0900 5.7909

∣∣∣∣∣∣, (11)

REEG2,EEG4 =

∣∣∣∣∣∣ 1.0000 −0.0502
−0.0502 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = −0.0502, (12)

cov(EEG1, EEG4) = 1.0e + 05 ∗

∣∣∣∣∣∣ 0.7206 0.0196
0.0196 5.7909

∣∣∣∣∣∣, (13)

REEG1, EEG4 =

∣∣∣∣∣∣ 1.0000 0.0096
0.0096 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = 0.0096, (14)

cov(EEG1, EEG2) = 1.0e + 04 ∗

∣∣∣∣∣∣ 7.2061 −0.5302
−0.5302 5.5551

∣∣∣∣∣∣, (15)

REEG1, EEG2 =

∣∣∣∣∣∣ 1.0000 −0.0838
−0.0838 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = −0.0838, (16)

cov(EEG2, EEG3) = 1.0e + 05 ∗

∣∣∣∣∣∣ 0.5555 0.3163
0.3163 2.5545

∣∣∣∣∣∣, (17)

REEG2,EEG3 =

∣∣∣∣∣∣ 1.0000 0.2655
0.2655 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = 0.2655, (18)

cov(EEG3, EEG4) = 1.0e + 05 ∗

∣∣∣∣∣∣ 2.5545 −0.2580
−0.2580 5.7909

∣∣∣∣∣∣, (19)

REEG3, EEG4 =

∣∣∣∣∣∣ 1.0000 −0.0671
−0.0671 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = −0.0671 (20)

Using the Shapiro–Wilk test (Figure 17) to evaluate the distribution of EEG1, EEG2, EEG3, and
EEG4 signals in the Brainstorm application, it can be seen that the values for WEEG1 = 0.9378, WEEG2 =

0.9236, WEEG3 = 0.9133, and WEEG4 = 0.8299, are very close to 1, which means that the signals have a
distribution close to the normal distribution.
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Figure 17. Distribution probabilities (Shapiro–Wilk test, Brainstorm).

The analysis of the covariances and correlations between EMG2 and EEG2 (Equations (21) and
(22)) and PPG3 and EEG3 (Equations (23) and (24)), respective of those between EMG3 and EEG3
(Equations (25) and (26)), shows that there is a positive correlation and a direct covariance between
signal pairs ((PPG3, EEG3) and (EMG3, EEG3)), respective of those between signal pairs (EMG2, EEG2),
which could be exploited in anticipation of epilepsy seizures by predictive analysis using an ANN and
a support decision system.

cov(EMG2, EEG2) = 1.0e + 04 ∗

∣∣∣∣∣∣ 0.6864 0.0422
0.0422 9.2137

∣∣∣∣∣∣, (21)

REMG2,EEG2 =

∣∣∣∣∣∣ 1.0000 0.0168
0.0168 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = 0.0168, (22)

cov(PPG3, EEG3) = 1.0e + 05 ∗

∣∣∣∣∣∣ 0.2690 0.0909
0.0909 4.9304

∣∣∣∣∣∣, (23)

RPPG3, EEG3 =

∣∣∣∣∣∣ 1.0000 0.0789
0.0789 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = 0.0789 (24)

cov(EMG3, EEG3) = 1.0e + 05 ∗

∣∣∣∣∣∣ 2.1729 0.0122
0.0122 4.9304

∣∣∣∣∣∣, (25)

REMG3,EEG3 =

∣∣∣∣∣∣ 1.0000 0.0037
0.0037 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = 0.0037, (26)

In conclusion, the correlations and covariances between the biomedical signals (EEG, PPG, and
EMG) collected from sensors are significant because, in the case of the patients with epilepsy, the heart
rate increases and may generate uncontrolled tremors of the muscles or their stiffening. Furthermore,
to patients having epilepsy, the comorbidity phenomena are present [66–68] and consist of overlapping
of several diseases (diabetes, cardiovascular diseases, etc.)

5.2. Comparative Analysis

To observe the performance of our proposed methodology, we compared our methods (DWT and
ANN), validation, and accuracy of the results with the existing methods based on machine learning
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from the literature. Comparison is presented in Table 3, which contains the feature extraction methods,
the machine learning methods, the validation methods, and also the classification accuracy.

Table 3. Methodology description of recent state-of-the-art compared with our results.

Literature Features Extraction
Method

Learning Machine
Method Validation Classification Accuracy

[69]

Method 1 -
Convolutional neural
network (CNN) with

3 layers
6-fold cross validation 83.8–95%

[70]

Method 2 spectral and spatial
features SVM - 96%

[71]

Method 3 wavelet transform for
decomposition ANN and genetic algorithm - -

[72]

Method 4 wavelet transform for
decomposition

negative correlation
learning (NCL) and a

mixture of experts (ME)

25% of the train
set was randomly

selected for the
validation set

96.92%

[73]
Method 5 Multi-wavelet Transform ANN - 90%

[74]

Method 6 - pyramidal one-dimensional
CNN (P-1D-CNN) 10-fold cross validation 99.1%

[75]
Method 7 - 13-layer CNN 10-fold cross-validation 88.67%

[76]
Method 8 DWT SVM 96%

[77]

Method 9

Minimum redundancy
maximum relevance
(mRMR), Principal

component analysis (PCA)

SVM, k-nearest neighbors
(k-NN), and discriminant

analysis

Leave-one-out
cross-validation

51% (SVM)
80% (k-nn with mRMR)

[78]

Method 10 - CNN 20-fold and 10-fold
cross-validation 84.26%

[79]

Method 11 - U-Time—convolutional
encoder-decoder network 5-fold cross-validation -

Our work DWT ANN
15% of the samples were

selected for the
validation set

91.1%

5.3. Limitation and Future Scope

The proposed methods give significant results, but the ratio between best validation performance
and processing time exhibits an inverse relationship and generates the limitation in real-time data
processing because the neural network with 150 neurons has the best validation performance,
but the increasing the number of neurons in the ANN generates an increase in the time required for
data processing.

The other state-of-the-art methods do not analyze the problem of real-time processing through
the perspective of the ratio between best performance validation and time.

However, an investigation for a new set of parameters and to learn algorithms to improve this is
needed. Moreover, analyzing other physiological signals such as the heart’s electrical activity (ECG)
along with EMG, PPG, and EEG may improve the investigations to detect biomedical parameters
changes before or during the seizures.

6. Conclusions

In this work, we used artificial neural networks (ANN) for automatic detection of epileptic seizures
before onset. We used DWT with Daubechies function for decomposing the signals and analyzing
EEG recordings before onset and during the seizure for patients with epileptic seizures and with no
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epileptic seizures. To design the model, we used the predictive analysis of EEG signals, artificial
feed-forward neural networks based on the Levenberg–Marquardt backpropagation optimization
algorithm. In addition, we analyzed the covariance between biomedical signals (EEG, PPG, and EMG)
to select the signals that can be used on predicting epileptic seizures.

We can conclude that using the ANN with 150 neurons has an excellent performance in comparison
with the ANN with ten neurons. However, this ANN analyzes requests an increased time in comparison
with an ANN with a lower neuron number (e.g., ten neurons). Even if the use of an ANN with a large
number of neurons gives more precision, it requires a very long time for data processing, and it is
preferable to choose neural networks that provide an adequate solution about the issues regarding the
accuracy of the outputs and the time allocated for processing [80].

The analysis of the covariance and correlation between signals allows the identification of
biomedical signals that can be used in the predictive ANN applications for medical alert systems to
send alerts if the regression at time t has a different value from the regression recorded in the analysis
of signals taken from patients with no seizures activity [80].

The proposed methods showed promising results compared to other state-of-the-art methods.
Our method opens new perspectives to the successful automatic detection of epileptic seizures before
onset, enabling a real-time brain monitoring wearable system.

In the future, we plan to apply this method to epileptic signal detection on wearable devices.
Our next research object is to develop a successful seizure forecasting model by analyzing, in addition,
heart electrical activity (ECG).
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