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Abstract: Variational inference is a powerful framework, used to approximate intractable posteriors
through variational distributions. The de facto standard is to rely on Gaussian variational families,
which come with numerous advantages: they are easy to sample from, simple to parametrize,
and many expectations are known in closed-form or readily computed by quadrature. In this
paper, we view the Gaussian variational approximation problem through the lens of gradient flows.
We introduce a flexible and efficient algorithm based on a linear flow leading to a particle-based
approximation. We prove that, with a sufficient number of particles, our algorithm converges linearly
to the exact solution for Gaussian targets, and a low-rank approximation otherwise. In addition to
the theoretical analysis, we show, on a set of synthetic and real-world high-dimensional problems,
that our algorithm outperforms existing methods with Gaussian targets while performing on a par
with non-Gaussian targets.

Keywords: variational inference; Gaussian; particle flow; variable flow

1. Introduction

Representing uncertainty is a ubiquitous problem in machine learning. Reliable
uncertainties are key for decision making, especially in contexts where the trade-off between
exploitation and exploration plays a central role, such as Bayesian optimization [1], active
learning [2], and reinforcement learning [3]. While Bayesian inference is a principled tool to
provide uncertainty estimation, computing posterior distributions is intractable for many
problems of interest. Most sampling methods struggle to scale up to large datasets [4],
while the diagnosis of convergence is not always straightforward [5]. On the other hand,
Variational Inference (VI) methods can rely on well-understood optimization techniques
and scale well to large datasets, at the cost of an approximation quality depending heavily
on the assumptions made. The Gaussian family is by far the most popular variational
approximation used in VI [6,7]. This is for several reasons. First, Gaussian variational
families are easy to sample from, reparametrize, and marginalize. Second, they are easily
amenable to diagonal covariance approximations, making them scalable to high dimensions.
Third, most expectations are either easily computable by quadrature or Monte Carlo
integration, or known in closed-form.

A large body of work covers different approaches to optimize the Variational Gaussian
Approximation (VGA), with the speed of convergence and the scalability in dimensions
as the main concerns. From the perspective of convergence speed, the major bottleneck
when computing gradients with stochastic estimators is the estimator variance [8]. Particle-
based methods with deterministic paths do not have this issue, and have been proven to
be highly successful in many applications [9–11]. However, can we use a particle-based
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algorithm to compute a VGA? If so, what are its properties and is it competitive with other
VGA methods?

In this paper, we attempt to answer these questions by introducing the Gaussian Particle
Flow (GPF), a framework to approximate a Gaussian variational distribution with particles.
GPF is derived from a continuous-time flow, where the necessary expectations over the
evolving densities are approximated by particles. The complexity of the method grows
quadratically with the number of particles but linearly with the dimension, remaining
compatible with other approximations such as structured mean-field approximations.
Using the same dynamics, we also derive a stochastic version of the algorithm, Gaussian
Flow (GF). To show convergence, we prove the decrease in an empirical version of the free
energy that is valid for a finite number of particles. For the special case of D–dimensional
Gaussian target densities, we show that D + 1 particles are enough to obtain convergence
to the true distribution. We also find, for this case, that convergence is exponentially fast.
Finally, we compare our approach with other VGA algorithms, both in fully controlled
synthetic settings and on a set of real-world problems.

2. Related Work

The goal of Bayesian inference is to carry out computations with the posterior dis-
tribution of a latent variable x ∈ RD given some observations y. By Bayes theorem, the
posterior distribution is p(x|y) = p(y|x)p(x)

p(y) , where p(y|x) and p(x) are, respectively, the
likelihood and the prior distribution. Even if the likelihood and the prior are known ana-
lytically, marginalizing out high-dimensional variables in the product p(y|x)p(x) in order
to compute quantities such as p(y) is typically intractable. Variational Inference (VI) aims to
simplify this problem by turning it into an optimization one. The intractable posterior is
approximated by the closest distribution within a tractable family, with closeness being
measured by the Kullback-Leibler (KL) divergence, defined by

KL [q(x)||p(x)] = Eq[log q(x)− log p(x)],

where Eq[ f (x)] =
∫

f (x)q(x)dx denotes the expectation of f over q. Denoting by Q a
family of distributions, we look for

arg min
q∈Q

KL [q(x)||p(x|y)].

Since p(y) is not computable in an efficient way, we equivalently minimize the upper
bound F :

KL[q(x)||p(x|y)] ≤ F [q] = −Eq[log p(y|x)p(x)]−Hq, (1)

where Hq is the entropy of q (−Eq[log q(x)]). Here,F is known as the variational free energy
and −F is known as the Evidence Lower BOund (ELBO). A diverse set of approaches to
perform VI with Gaussian families Q have been developed in the literature, which we
review in the following.

2.1. The Variational Gaussian Approximation

The VGA is the restriction ofQ to be the family of multivariate Gaussian distributions
q(x) = N (m, C), where m ∈ RD is the mean and C ∈ {A ∈ RD×D|x>Ax ≥ 0, ∀x ∈ RD} is
the covariance matrix, for which the free energy is found to be

F [q] = −1
2

log |C|+Eq[ϕ(x)]. (2)

where ϕ(x) = − log(p(y|x)p(x)). A standard descent algorithm based on gradients of
Equation (2) with respect to variational parameters m, C give rise to some issues. First,
naively computing the gradient of the expectation with respect to the covariance matrix
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C involves unwanted second derivatives of ϕ(x) [12], which may not be available or
may be computationally too expensive in a black-box setting. Second, the gradient of the
entropy term Hq entails inverting a non-sparse matrix, which we would like to avoid
for higher-dimensional cases. Finally, the positive-definiteness of the covariance matrix
leads to non-trivial constraints on parameter updates, which can lead to a slowdown of
convergence or, if ignored, to instabilities in the algorithm.

To solve these issues, a variety of approaches have been proposed in the literature.
If we focus on factorizable models, we can make a simplification: for problems with
likelihoods that can be rewritten as p(y|x) = ∏D

d=1 p(y|xd), the number of independent
variational parameters is reduced to 2D [12,13]. In this special case, the Gaussian expec-
tations in the free energy (2) split into a sum of 1-dimensional integrals, which can be
efficiently computed by using numerical quadrature methods. To extend to the general
case, gradients of the free energy are estimated by a stochastic sampling approach, which
also forms the starting point of our method. This relies on the so-called reparametrization
trick, where the expectation over the parameter-dependent variational density qθ is replaced
by an expectation over a fixed density q0 instead. This facilitates the gradient computation
because unwanted derivatives of the type ∇θqθ(x) are avoided. For the Gaussian case,
the reparametrization trick is a linear transformation of an arbitrary D dimensional Gaus-
sian random variable x ∼ qθ(x) in terms of a D-dimensional Gaussian random variable
x0 ∼ q0 = N (m0, C0):

x = Γ(x0 −m0) + m, (3)

where Γ ∈ RD×D and m ∈ RD are the variational parameters. We assume that the co-
variance C0 is not degenerate and, for simplicity, we set it as the identity. For instance,
the gradient of the expectation given q over a function f given the mean m becomes
∇mEq[ f (x)] = Eq0

[
∇m f (Γ(x0 −m0) + m)

]
. This can be simply proved by using the

reparametrization (3) inside the integral and passing the gradient inside; for more de-
tails, see [14].

Given this representation, the free energy is easily obtained as a function of the
variational parameters:

F (q) = − log |Γ|+Eq0

[
ϕ(Γ(x0 −m0) + m)

]
. (4)

Other representations are possible. Challis and Barber [13] and Ong et al. [15] use a different
reparametrization with a factorized structure of the covariance C = Γ>Γ + diag(d), where
Γ ∈ RD×P and d ∈ RD, with P ≤ D is the rank of Γ>Γ. Other representations assume
special structures of the precision matrix Λ = C−1, which allow you to enforce special
properties, such as sparsity in [16,17].

In general, these methods tend to scale poorly with the number of dimensions, as one
needs to optimize D(D + 3)/2 parameters. The (structured) Mean-Field (MF) [18,19] approach
imposes independence between variables in the variational distribution. The number of
variational parameters is then 2D, but covariance information between dimensions is lost.

2.2. Natural Gradients

Besides the issue of expectations, more efficient optimizations directions, beyond
ordinary gradient descent, have been considered. These can help to deal with constraints
such as those given for the covariance matrix. Natural gradients [20] are a special case of
Riemannian gradients and utilize the specific Riemannian manifold structure of variational
parameters. They can often deal with constraints of parameters (such as the positive
definiteness of the covariance), accelerate inference, and improve the convergence of
algorithms. The application of such advanced gradient methods typically requires an
estimate of the inverse Fisher information matrix as a preconditioner of ordinary gradients.
Khan and Nielsen [21] and Lin et al. [22] propose a solution that requires extra second
derivatives of the log–posteriors. Salimbeni et al. [23] developed an automatic process to
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compute these without the second derivatives but with instability issues. Lin et al. [17]
solved these issues by using geodesics on the manifold of parameters, at the price of having
to compute inverse matrices as well as Hessians.

2.3. Particle-Based VI

Stochastic gradient descent methods compute expectations (and gradients) at each
time step with new independent Monte Carlo samples drawn from the current approxi-
mation of the variational density. Particle-based methods for variational inference draw
samples only once at the beginning of the algorithm instead. They iteratively construct
transformations of an initial random variable (having a simple tractable density) where the
transformed density leads to the decrease and finally to the minimum of the variational free
energy. The iterative approach induces a deterministic temporal flow of random variables
which depends on the current density of the variable itself. Using an approximation by the
empirical density (which is represented by the positions of a set of ’particles’) one obtains a
flow of interacting particles which converges asymptotically to an empirical approximation
of the desired optimal variational density.

The most popular approach is Stein Variational Gradient Descent (SVGD) [24], which
computes a nonparametric transformation based on the kernelized Stein discrepancy [9].
SVGD has the advantage of not being restricted to a parametric form of the variational
distribution. However, using standard distance-based kernels like the squared exponential
kernel (k(x, y) = exp(−‖x− y‖2

2/2)) can lead to underestimated covariances and poor per-
formance in high dimensions [11,25]. Hence, it is interesting to develop particle approaches
that approximate the VGA. We provide a more thorough comparison between our method
and SVGD in Section 3.6.

2.4. GVA in Bayesian Neural Networks

There has been increased interest in making Bayesian Neural Networks (BNN) by adding
priors to Neural Networks parameters. The true form of the posterior is unknown but
VGA has been used due to its ease of use and scalability with the number of dimensions
(typically D � 105). Most of the aforementioned methods apply to BNN, but techniques
have been specifically tailored with BNN in mind. [26] use the low-rank structure of [13]
but exploit the Local Reparametrization Trick, where each datapoint yi gets a different sample
from q in order to reduce the stochastic gradient estimator variance. Stochastic Weight
Averaging-Gaussian (SWAG) [27], in which a set of particles obtained via stochastic gradient
descent represent a low-rank Gaussian distribution, approximating the true posterior with
a prior posterior produced by the network’s regularization. While easy to implement,
SWAG does not allow you to incorporate an explicit prior, and the resulting distribution
does not derive from a principled Bayesian approach.

2.5. Related Approaches

The closest approach to our proposed method is the Ensemble Kalman Filter (EKF) [28].
It assumes that the posterior is computed in a sequential way, where, at each time step, only
single (or smaller batches) of data observations, represented by their likelihoods, become
available. An ensemble of particles, representing a Gaussian distribution is iteratively
updated with every new batch of observations. EKF allows us to work on high-dimensional
problems with a limited amount of particles but is restricted to factorizable likelihoods for
which a sequential representation is possible. While EKF maintains a representation of a
Gaussian posterior, it is not clear how this relates to the goal of minimizing the free energy
or the KL divergence.

3. Gaussian (Particle) Flow

We introduce Gaussian Particle Flow (GPF) and Gaussian Flow (GF), two computation-
ally tractable approaches, to obtain a Variational Gaussian Approximation (VGA). In the
following, we derive deterministic linear dynamics, which decreases the variational free
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energy. We additionally give some variants with a Mean-Field (MF) approach and prove
theoretical convergence guarantees.

In the following, d(·)
dt indicates the total derivative given time, ∂(·)

∂t partial derivatives
given time, ∇x(·) gradients given a vector x.

3.1. Gaussian Variable Flows

We next discuss an alternative approach to generate the desired transformation of
random variables, leading from a simple (prior) Gaussian density to a more complex
Gaussian, which minimizes the variational free energy. It is based on the idea of variable
flows, i.e., recursive deterministic transformations of the random variables defined by a
mapping xn+1 = xn + ε f n(xn) where f n : RD → RD. Well-known examples of flows
are Normalizing Flows [29], where f n are bijections, or Neural ODEs [30] where f n = f is
defined by a neural network and x0 is the input. For simplicity, we will consider small
changes ε→ 0 and work with flows in the continuous-time limit (t = nε), which follow a
system of Ordinary Differential Equation (ODE). For the Gaussian case, in the spirit of the
reparametrization trick (3), we choose a linear corresponding map f and write

dxt

dt
= f t(xt) = At(xt −mt) + bt, (5)

where At is a matrix and mt .
= Eqt [x] (which is no longer interpreted as an independent

variational parameter). When the initial random variable x0 is Gaussian distributed, the
vectors xt are also Gaussian for any t. To construct a flow that decreases the free energy
over time, we can either compute the time derivative of the specific free energy (2) induced
by the ODE (5), or simply derive the general result valid for smooth maps f (see, e.g., [24]).
To be self contained, we briefly repeat the main steps: We first compute the change of the
free energy in terms of the time derivative of qt:

dF [qt]

dt
=

d
dt

∫
qt(x)

(
log qt(x) + ϕ(x)

)
dx

=
∫

∂qt(x)
∂t

(
log qt(x) + ϕ(x)

)
dx +

∫
qt(x)

(
∂qt(x)

∂t
1

qt(x)
+

∂ϕ(x)
∂t

)
dx

=
∫

∂qt(x)
∂t

(
log qt(x) + ϕ(x)

)
dx

where we have used the fact that
∫ ∂qt(x)

∂t dx = d
dt

∫
qt(x)dx = 0 and ∂ϕ(x)

∂t = 0. We next use
the continuity equation for the density

∂qt(x)
∂t

= −∇x ·
(
qt(x) f t(x)

)
,

related to the deterministic flow to obtain

dF [qt]

dt
=
∫
∇x ·

(
qt(x) f t(x)

)(
log qt(x) + ϕ(x)

)
dx

=−
∫ (

qt(x) f t(x)
)
· ∇x

(
log qt(x) + ϕ(x)

)
dx

=
∫ (
∇x · (qt(x) f t(x)) + qt(x) f t(x) · ∇x ϕ(x)

)
dx

=
∫
∇xqt(x) · f t(x) + qt(x) f t(x) · ∇x ϕ(x)dx

=−Eqt
[
∇x · f t(x)− f t(x) · ∇x ϕ(x)

]
where we have applied Green’s identity twice and used the fact that limx→∞ qt(x) = 0.
Specializing to the linear flow (5), we obtain
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dF [qt]

dt
= −tr[At(At

?)
>]− (bt)>bt

?, (6)

where

At
?

.
=I −Eqt

[
∇x ϕ(x)(x−mt)>

]
bt
?

.
=−Eqt [∇x ϕ(x)] (7)

Equation (6) represents the change in the free energy F for an infinitesimal change in the
variables x given by the flow (5). Obviously, the simplest choices

At ≡ At
? bt ≡ bt

? (8)

lead to a decrease in the free energy dF [qt ]
dt ≤ 0. More detailed derivations are given in

Appendix A. Additionally, equality only happens, when

I −Eq

[
∇x ϕ(x)(x−m)>

]
= 0

Eq[∇x ϕ(x)] = 0 (9)

Using Stein’s lemma [31], we can show that these fixed-point solutions are equal to the
conditions for the optimal variational Gaussian distribution solution given in [12]. In
Appendix C, we show that our parameter updates can be interpreted as a Riemannian
gradient descent method for the free energy (4). This is based on the metric introduced by
([20], Theorem 7.6) as an efficient technique for learning the mixing matrix in models of
blind source separation. This gradient should not be confused with the so-called natural
gradient obtained by pre-multiplying with the inverse Fischer-information matrix.

Of course, there are other choices for At and bt, which lead to a decrease in the free
energy and the same fixed-point equations. In Section 3.6, we discuss how SVGD, with a
linear kernel, can lead to the same fixed points but with different dynamics.

3.2. From Variable Flows to Parameter Flows

Before we introduce the particle algorithm, we show that the results for the variable
flow can also be converted into a temporal change of the parameters Γt, mt, as defined
for Equation (3). From this, a corresponding Gaussian Flow (GF) algorithm can be eas-
ily derived. By differentiating the parametrisation xt = Γt(x0 − m0) + mt (with mt now
considered as free variational parameter) with respect to time t and using (5), we obtain

dxt

dt
=

dΓt

dt
(x0 −m0) +

dmt

dt
= At(xt −mt) + bt (10)

By inserting xt = Γt(x0 −m0) + mt into the right hand side of (10), and using the optimal
parameters from (7), we obtain

dΓt

dt
=Γt −Eq0

[
∇x ϕ(xt)(x0 −m0)>

]
Γt(Γt)>

dmt

dt
=−Eq0

[
∇x ϕ(xt)

] (11)

Note that the expectations are over the probability distribution of the initial random
variable x0. Discretizing Equations (11) in time, and estimating the expectations by drawing
independent samples from the fixed Gaussian q0 at each time step, we obtain our GF
algorithm to minimize the variational free energy in the space of Gaussian densities.
We summarize the steps of GF in Algorithm 1. Remarkably, this scheme differs from
previous VGA algorithms with Riemannian gradients based on the Fisher information
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metric (see, e.g., [17,32]) because no matrix inversions or second order derivatives of the
function ϕ are required.

GF also allows for the computation of a low-rank VGA by enforcing Γ ∈ RD×K and
x0 ∈ RK. This algorithm scales linearly in the number of dimensions and quadratically in
the rank K of the covariance.

It is interesting to note that the reverse construction of a variable flow from a parameter
flow is, in general, not possible. This would require the ability to eliminate all variational
parameters and the initial variables x0 in the resulting differential equation for xt, and
replace them with functions of xt alone. For instance, if we eliminate the initial variables x0

in terms of (Γt)−1 and xt the algorithm of [14], the resulting expression still depends on Γt.

3.3. Particle Dynamics

The main idea of the particle approach is to approximate the Gaussian density qt in (7)
by the empirical distribution

q̂t .
=

1
N

N

∑
i=1

δ(x− xt
i ) (12)

computed from N samples xt
i , i = 1, . . . , N. These are initially sampled from the density q0

at time t = 0 and are then propagated using the discretized dynamics of the ODE (5):

dxt
i

dt
= −ηt

1Eq̂t [∇x ϕ(x)]− ηt
2 Ât(xt

i − m̂t) (13)

where

Ât = I − 1
N

N

∑
i=1
∇x ϕ(x)(xt

i − m̂t)>

b̂t =
1
N

N

∑
i=1
∇x ϕ(xt

i ), m̂t =
1
N

N

∑
i=1

xt
i

where ηt
1 and ηt

2 are learning rates (We further comment on the use of different optimization
schemes in Section 4.4). Note that although Eq̂t

[
∇x ϕ(x)(x− m̂t)>

]
is a D × D matrix,

changing the matrix multiplication order leads to a computational complexity of O(N2D)
with a storage complexity of O(N(N + D)), since neither the empirical covariance matrix
or At need to be explicitly computed.

Relaxation of Empirical Free Energy and Convergence

We have shown that the continuous-time dynamics (10) of the random variables leads
to a decay of the free energy F (qt) with time t. Assuming that the free energy is bounded
from below, one might conjecture that this property would imply the convergence of the
particle algorithm to a fixed point when learning rates are sufficiently small such that the
discrete-time dynamics are approximated well by the continuous limit. Unfortunately, the
finite number N of particles poses an extra problem. The definition of the free energy F (q)
by the KL–divergence (1) for continuous random variables such as assumes that both q(·)
and p(·|y) are densities with respect to the Lebesgue measure. Hence, F (q̂) is not defined
if we take q ≡ q̂, (12) as the empirical distribution of the finite particle approximation.
Nevertheless, we define a finite N approximation to the Gaussian free energy, which is
also then found to decay under the finite N dynamics. Let us first assume that N > D
and define

F̃ (q̂t)
.
= −1

2
log |Ĉt|+Eq̂t [ϕ(x)] (14)



Entropy 2021, 23, 990 8 of 34

with the empirical covariance matrix

Ĉt =
1
N

N

∑
i=1

(
xt

i −mt)(xt
i −mt)> (15)

The definition (14) is chosen in such way that in the large N limit, when the empirical
distribution q̂t converges to a Gaussian distribution qt, we will also obtain the convergence

of the approximation (14) to F (qt). It can be shown (see Appendix B) that dF̃ (q̂t)
dt ≤ 0, with

equality only at the fixed points of the dynamics.
In applications of our particle method to high-dimensional problems, the limitations

of computational power may force us to restrict particle numbers to be smaller than the
dimensionality D. For N < D + 1, the empirical covariance Ct will be singular, and
typically contain only N − 1 non-zero eigenvalues, which leads to the − log

∣∣Ĉ∣∣ = ∞ and
makes Equation (14) meaningless. We resolve this issue through a regularisation of the
log–determinant term in (14), replacing all zero eigenvalues of Ĉ by the values 1, i.e.,
λi = 0→ λ̃i = 1. We show in Appendix B that the free energy still decays, provided that
the dynamics of the particles stay the same. This regularisation step can be formally stated
as a replacement of the empirical covariance (15) in (14) by

Ĉt → Ĉt + ∑
i:λt

i=0

et
i (e

t
i )
>

where et
i = ith eigenvector of Ĉt.

3.4. Algorithm and Properties

The algorithm we propose is to sample N particles {x0
1, . . . , x0

N} where x0
i ∈ RD from

q0 (which can be centered around the MAP for example), and iteratively optimize their
positions using Equation (13). Once convergence is reached, i.e., dF

dt = 0, we can easily
make predictions using the converged empirical distribution q̂(x) = 1

N ∑N
i=1 δ(x − xi),

where δ is the Dirac delta function, or, alternatively, the Gaussian density it represents,
i.e., q(x) = N (m, C), where m = 1

N ∑N
i=1 xi and C = 1

N ∑N
i=1(xi −m)(xi −m)>. To draw

samples from q̂, no inversions of the empirical covariance C are needed, as we can obtain
new samples by computing:

x =
1√
N

N

∑
i=1

(xi −m) ◦ ξi + m, (16)

where ξi are i.i.d. normal variables: ξi ∼ N (0, ID). This can be shown by defining D,
the deviation matrix, a matrix which columns equal to Di = xi−m√

N
. We naturally have

DD> = C which makes D the Cholesky decomposition of C.
All the inference steps are summarized in Algorithm 2 and an illustration in two

dimensions is provided in Figure 1.
We summarize the principal points of our approach:

• Gradients of expectations have zero variance, at the cost of a bias decreasing with the
number of particles and equal to zero for Gaussian target (see Theorem 1);

• It works with noisy gradients (when using subsampling data, for example);
• The rank of the approximated covariance C is min(N − 1, D). When N ≤ D, the

algorithm can be used to obtain a low-rank approximation.
• The complexity of our algorithm is O(N2D) and storing complexity is O(N(N + D)).

By adjusting the number of particles used, we can control the performance trade-off;
• GPF (and GF) are also compatible with any kind of structured MF (see Section 3.5);
• Despite working with an empirical distribution ,we can compute a surrogate of the

free energy F (q) to optimize hyper-parameters, compute the lower bound of the
log-evidence, or simply monitor convergence.



Entropy 2021, 23, 990 9 of 34

Figure 1. Illustration of the Gaussian Particle Flow algorithm, with q0(x) and p(x) representing the
initial and target distribution respectively. Particles are iteratively moved according to the gradient
flow starting from q0(x), approximating a new Gaussian distribution qt(x) at each iteration t.

Algorithm 1: Gaussian Flow (GF)

Input: Number of samples N, initial distribution q0 = N (µ0, Γ0(Γ0)>), target
p(x) ∝ e−ϕ(x), learning rates ηt

1, ηt
2

Output: Variational dist. q(x) = N
(
µ, ΓΓ>

)
for t in 0 : T do
{x0

i }
N
i=1 ∼ q0 # Sample N initial particles from q0

xi = Γt(x0
i − µ0) + µt, ∀i # Reparametrize

gi = ∇x ϕ(xi), ∀i # Compute gradients
µt+1 = µt − ηt

1
1
N ∑N

i=1 ϕ(xi) # Update µ

A = 1
N ∑i gi(x0

i − µ0)>(Γt)> # Compute matrix
Γt+1 = Γt − ηt

2 AΓt # Update Γ

Algorithm 2: Gaussian Particle Flow (GPF)

Input: Number of particles N, initial distribution q0, target p(x) ∝ e−ϕ(x), learning
rates ηt

1, ηt
2

Output: Empirical dist. q(x) = 1
N ∑N

i=1 δx,xi

Init: Sample N particles from q0 : {x0
i }

N
i=1

for t in 0 : T do
gi = ∇x ϕ(xt

i ), ∀i # Compute gradients
m = 1

N ∑i xi, g = 1
N ∑i gi # Compute means

A = 1
N ∑i gi(xt

i −m)> − I # Compute matrix
xt+1

i = xt
i − ηt

1g− ηt
2 A(xt

i −m), ∀i # Update particles

3.4.1. Relaxation of Empirical Free Energy

The definition of the free energy F (q) from the KL–divergence (1) for a continuous
random variables assumes that both q(·) and p(·|y) are densities with respect to the
Lebesgue measure. Hence, it is not a priori clear that a specific approximation F (q̂t), based
on an empirical distribution q̂t(x) .

= 1
N ∑N

i=1 δ(x − xt
i ) with a finite number of particles N,

will decrease under the particle flow. Thus we may not be able to guarantee convergence
to a fixed point for finite N. Luckily, as we show in Appendix D, we find that:
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dF (q̂t)

dt
=

d(Eq̂t [ϕ(x)]− 1
2 log

∣∣Ct
∣∣)

dt
≤ 0. (17)

For N < D + 1, the empirical covariance Ct will typically contain N − 1 non-zero eigenval-
ues and lead to − log|C| = ∞, making Equation (17) meaningless. We resolve this issue
by introducing a regularized free energy F̃ where log

∣∣Ct
∣∣ is replaced by ∑i:λi>0 log λi where

{λi}D
i=1 are the eigenvalues of Ct. We show in Appendix D that, given the dynamics from

Equation (5), F̃ is also guaranteed to not increase over time. It can, therefore, be used
as a regularized proxy for the true F and used to optimize over hyper-parameters or to
monitor convergence. Note that similar proofs exist for SVGD [33] and were proven to be
highly non-trivial.

3.4.2. Dynamics and Fixed Points for Gaussian Targets

We illustrate our method by some exact theoretical results for the dynamics and the
fixed points of our algorithm when the target is a multivariate Gaussian density. While such
targets may seem like a trivial application, our analysis could still provide some insight
into the performance for more complicated densities.

Theorem 1. If the target density p(x) is a D-dimensional multivariate Gaussian, only D + 1
particles are needed for Algorithm 2 to converge to the exact target parameters.

Proof. The proof is given in Appendix E.

Theorem 2. For a target p(x) = N (x | µ, Λ−1), i.e., with precision matrixΛ, where x ∈ RD,
and N ≥ D + 1 particles, the continuous time limit of Algorithm 2 will converge exponentially fast
for both the mean and the trace of the precision matrix:

mt − µ =e−Λt(m0 − µ),

tr(
(
Ct)−1 −Λ) =e−2ttr(

(
C0
)−1
−Λ),

where mt and Ct are the empirical mean and covariance matrix at time t and exp(−Λt) is the
matrix exponential.

Proof. The proof is given in Appendix F.

Our result shows that convergence of the mean mt directly depends on Λ. How-
ever, we can also precondition the gradient on m by Ct, i.e., using the natural gradient
approximation in the Fisher sense, and eventually get rid of the dependency on Λ when(
Ct)−1 ≈ Λ.

The exponential relaxation of fluctuations also manifests itself in the decay of the free
energy towards its minimum. For the Gaussian target, the free energy exactly separates
into two terms corresponding to the mean and fluctuations. We can write F (mt, Ct) =
1
2 (m

t − µ)>Λ(mt − µ) + D
2 +F f l(Ct), where the nontrivial fluctuation part (subtracted by

its minimum) is given by

F f l(Ct) = −1
2

log
∣∣Ct∣∣+ 1

2
tr(ΛCt − I).

We can show that

− lim
t→∞

d lnF f l(Ct)

dt
≥ 4,

indicating an asymptotic decrease in F f l(Ct) faster than e−4t, independent of the target.
We can also prove the finite time bound
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F f l(Ct) ≤ F f l(C0)e
−
[

2t
tr(Λ−1)(tr(Λ)+|tr((C0)−1−Λ)|)

]
.

The degenerate case N < D + 1

Additionally, we can show the following result for the fixed points:

Theorem 3. Given a D-dimensional multivariate Gaussian target density p(x) = N (x|µ, Σ),
using Algorithm 2 with N < D + 1 particles, the empirical mean converges to the exact mean µ.
The N − 1 non-zero eigenvalues of Ct converge to a subset of the target covariance Σ spectrum.
Furthermore, the global minimum of the regularised version F̃ of the free energy (17) corresponds
to the largest eigenvalues of Σ.

Proof. The proof is given in Appendix G.

This result suggests that Ct might typically converge to an optimal low-rank ap-
proximation of Σ. We show an empirical confirmation in Section 4.2 for this conjecture.
This suggests that it makes sense to apply our algorithm to high-dimensional problems
even when the number of particles is not large. If the target density has significant
support close to a low-dimensional submanifold, we might still obtain a reasonable ap-
proximation.

3.5. Structured Mean-Field

For high-dimensional problems, it may be useful to restrict the variational Gaus-
sian approximation to the posterior to a specific structure via a structured mean-field
approximation. In this way, spurious dependencies between variables that are caused by
finite-sample effects could be explicitly removed from the algorithms. This is most easily
incorporated in our approach by splitting a given collection of latent variables x into M
disjoint subsets x(i). We reorder the vector indices in such a way that the first components
correspond to x(1), x(2), and so on. Hence, we obtain x = {x(1), x(2), . . . , x(M)}. A struc-
tured mean-field approach is enforced by imposing a block matrix structure for the update
matrix AMF = A(1) ⊕ · · · ⊕ A(M), where ⊕ is the direct sum operator. It is easy to see that
this construction corresponds to a related block structure of the Γ matrix in Equation (3).
This means that the subsets of the random vectors are modeled as independent. Hence,
when the number of particles grows to infinity, one recovers the fixed-point equations
for the optimal MF structured Gaussian variational approximation from our approach.
As previously, as the number of particles grows to infinity, we recover the optimal MF
Gaussian variational approximation. Note that using a structured MF does not change the
complexity of the algorithm but requires fewer particles to obtain a full-rank solution.

3.6. Comparison with SVGD

Given the similarities with the SVGD methods [24],one could question the differences
of our approach. The model proposed by [10] using a linear kernel k(x, x′) = x>x′ + 1 has
similar properties to our approach. The variable update becomes:

dx
dt

=
1
N

N

∑
i=1

(−k(xi, x)∇ϕ(xi) +∇xi K(xl , xi))

= Eq̂

[
I −∇ϕ(x)x>

]
x−Eq̂[∇ϕ(x)]

The fixed points are

0 =Eq̂[∇ϕ(x)]

I =Eq̂

[
∇ϕ(x)x>

]
= Eq̂

[
∇ϕ(x)(x−m)>

]
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where the last equality holds since Eq̂[∇ϕ(x)] = 0. This is the same as our algorithm fixed
points (9). Similarly to Theorem 1, D + 1 particles will converge to the exact D-dimensional
multivariate Gaussian target. However, the generated flows are different. The main
difference is that we normalize our flow via the L2 norm, whereas [10] rely on the reproducing
kernel Hilbert space (RKHS) norm, i.e., ‖ϕ‖2

k = ϕ>K−1 ϕ where ϕi = ϕ(xi) and Kij = k(xi, xj).
For a full introduction on RKHS, we recommend [34]. Remarkably, centering the particles
on the mean, namely, using the modified linear kernel k(x, x′) = (x −m)>(x′ −m) + 1,
leads to the same dynamics. Additionally, when using SVGD, there is no direct possibility
of computing the current KL divergence between the variational distribution and the target,
unless some values are accumulated [35]. There is also no clear theory explaining what
happens when the number of particles is smaller than the number of dimensions, for both
distance-based kernels and the linear kernel.

4. Experiments

We now evaluate the efficiency of GPF and GF. First, given a Gaussian target, we
compare the convergence of our approach with popular VGA methods, which are all
described in Section 2. Second, we evaluate the effect of varying the number of particles
for both Gaussian targets and non-Gaussian targets, especially with a low-rank covariance.
Then, we evaluate the efficiency of our algorithm on a range of real-world binary classifi-
cation problems through a Bayesian logistic regression model and a series of BNN on the
MNIST dataset.

All the Julia [36] code and data used to reproduce the experiments are available
at the Github repository: https://github.com/theogf/ParticleFlow_Exp (accessed on
27 July 2021).

4.1. Multivariate Gaussian Targets

We consider a 20-dimensional multivariate Gaussian target distribution. The mean is
sampled from a normal Gaussian µ ∼ N (0, ID) and the covariance is a dense matrix defined
as Σ = UΛU>, where U is a unitary matrix and Λ is a diagonal matrix. Λ is constructed as

log10(Λii) =
log10(κ)(i−1)

D−1 − 1 where κ is the condition number, i.e., κ = Λmax/Λmin. This
means that, for κ = 1, we obtain a Σ = 0.1I, and for κ = 100, we obtain eigenvalues ranging
uniformly from 0.1 to 10 in log-space.

We compare GPF and GF to the state-of-the art methods for VGA described in
Section 2, namely Doubly Stochastic VI (DSVI) [14], Factor Covariance Structure (FCS) [15]
with rank p = D, iBayes Learning Rule (IBLR) [17] with a full-rank covariance and their
Hessian approach, and Stein Variational Gradient Descent with both a linear kernel (Linear
SVGD) [10] and a squared-exponential kernel (Sq. Exp. SVGD) [24]. For all methods, we
set the number of particles or, alternatively, the number of samples used by the estimator,
as D + 1, and use standard gradient descent (xt+1 = xt + ηϕt(xt)) with a learning rate
of η = 0.01 for all particle methods. We use RMSProp [37] with a learning rate of 0.01
for all stochastic methods. We run each experiment 10 times with 30,000 iterations, and
plot the average error on the mean and the covariance with one standard deviation. For
GPF, we additionally evaluate the method with and without using natural gradients for
the mean (i.e., pre-multiplying the averaged gradient with Ct), indicated, respectively,
with a dashed and solid line. Figure 2 reports the L2 norm of the difference between the
mean and covariance with the true posterior over time for the target condition number
κ ∈ {1, 10, 100}.

https://github.com/theogf/ParticleFlow_Exp
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Figure 2. L2 norm of the difference between the target mean µ (left side) and target covariance
Σ (right side) with the inferred variational parameters mt and Ct against time for 20-dimensional
Gaussian targets with condition number κ. We use D + 1 particles/samples and show the mean over
10 runs as well as the 68% credible interval. Methods with dashed curves use natural gradients on
the mean. Note that DSVI, GF and FCS are overlapping and are, at this scale, indistinguishable from
one another.

As Theorem 1 predicts, GPF converges exactly to the true distribution, regardless of the
target. GF and other methods based on stochastic estimators cannot obtain the same precision
as their accuracy is penalized by the gradient noise. IBLR approximate the covariance
perfectly, despite the stochasticity of its estimator; however IBLR needs to compute the true
Hessian at each step. When using a Hessian approximation instead, IBLR performed just like
DSVI; the true benefit of IBLR appears when second-order functions are computed, which
is naturally intractable in high-dimensions. SVGD with a linear kernel, achieves a good
performance but is highly unstable: most of the runs (ignored here) diverge. This is due to
the dot computation x>x which can become extremely high, especially for non-centered data.
For this reason, we do not consider this method for the later experiments. SVGD with a sq.
exp. kernel obtains a good estimate for the mean but fails to approximate the covariance.
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Perhaps surprisingly, GF does not perform much better than DSVI or FCS. This is
potentially due to the benefit of Riemannian gradients being canceled by the gradient noise [38]
providing a strong argument for particle-based methods over stochastic estimators.

Remarkably, we also confirm Theorem 2, that the convergence speed of Ct is indepen-
dent of the target Σ, while the convergence speed of mt has this dependency unless the
natural gradient is used (see the dashed curves). The case κ = 1 highlights that natural
gradient do not necessarily improve convergence speed.

4.2. Low-Rank Approximation for Full Gaussian Targets

We explore the effect of the number of particles for both Gaussian and non-Gaussian
targets. We use the same Gaussian target from the previous experiment in 50 dimensions
with a full-rank covariance determined by their condition number κ = λmax

λmin
. The covariance

eigenvalues λi in log-space range uniformly from 0.1 to 0.1κ. For a given target multivariate
Gaussian, we vary the number of particles from 2 to D + 1 and look at the absolute
difference of |tr(C− Σ)|. The results in D = 50, as well as the corresponding predictions
(in dashed-black), from Theorem 3, are shown on Figure 3.

The empirical results perfectly match the theoretical predictions, confirming that, for
Gaussian targets, the particles determine a low-rank approximation whose spectrum is
equal to the largest eigenvalues from the target.

Figure 3. Trace error for a Gaussian target with D = 50 and condition numbers κ for a varying
number of particles with GPF. Predictions from Theorem 3 are shown in dashed-black.

4.3. High-Dimensional Low-Rank Gaussian Targets

We consider a typical low-rank target case where the dimensionality is high but the
effective rank of the covariance is unknown. The target is given by p(x) = N (µ, Σ) where
µ ∼ N (0, ID), the covariance is defined by Σ = UΛU>, where U is a D×D unitary matrix
and Λ is a diagonal matrix defined by

Λii =

{
N (2, 1), if i ≤ K
10−8, otherwise

where K is the effective rank of the target. We pick D = 500 and vary K ∈ {10, 20, 30} to
simulate a true problem where the correct K is not known. We test all methods allowing
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for low-rank structure, namely, GPF, GF, FCS and SVGD (Linear and Sq. Exp.). We fix the
rank (or the number of particles) to be 20; therefore, we obtain three cases where the rank is
exact, under-estimated, and over-estimated. For all methods, we use RMSProp [37] for the
stochastic methods, or a diagonal version of it (see Section 4.4) for the particle ones. The
error of the mean and the covariance is shown in Figure 4. Note that the difference in the
initial error on the covariance is due to the difficulty of starting with the same covariance
between particle and stochastic methods.

Figure 4. Convergence plot of low-rank methods for a 500-dimensional multivariate Gaussian target
with effective rank K ∈ {10, 20, 30}. The rank of each method is fixed as 20. The difference in the
starting point for the covariance is due to the initialization difference between each method. We show
the mean over 10 runs for each method with shadowed areas representing the 68% credible interval.

We observe once again that the SVGD with a linear kernel fails to converge due to the
large gradients. All methods perform equally in the estimation of the mean while being
non-influenced by the rank of the target. As expected, the approximation quality for the
covariance degrades when the rank gets bigger, but all algorithms still converge to good
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approximations. SVGD with a sq. exp. kernel performs much worse than the rest of the
methods. This is a known phenomenon where, for high dimensions, the covariance SVGD
is either over- or underestimated.

4.4. Non-Gaussian Target

We now investigate the behavior of our algorithm with non-Gaussian target distribu-
tions. We built a two-dimensional banana distribution: p(x) ∝ exp(−0.5(0.01x2

1 + 0.1(x2 +
0.1x2

1 − 10)2)), varied the number of particles used for GPF in {3, 5, 10, 20, 50} and com-
pared it with a standard full-rank VGA approach. We also showed the impact of replacing
a fixed η with the Adam [39] optimizer for 50 particles. The results are shown in Figure 5.
As expected, increasing the number of particles madesthe distribution obtained via GPF
increasingly closer to the optimal standard VGA, even in a non-Gaussian setting. However,
using a momentum-based optimizer such as Adam breaks the linearity assumption of the
original flow (5) and leads to a twisted representation of the particles. (We observed the
same behavior with other momentum-based optimizers). A simple modification of the
most known optimizers allows the linearity to be maintained while correctly adapting
the learning rate to the shape of the problem. Most optimisers accumulate momentum
or gradients element-wise, and end up modifying the updates as xt+1 = xt + Pt � ϕt(xt),
where Pt ∈ RD×D is the preconditioner obtained via the optimiser and � is the Hadamard
product. By instead taking the average over each dimensions, we obtained the updates
xt+1 = xt + Pt ϕt(xt), where Pt is a D× D diagonal matrix. The details of the dimension-
wise conditioners for ADAM, AdaGrad and AdaDelta are given in Appendix H.

Figure 5. Two-dimensional Banana distribution. Comparison of GPF using an increasing number of
particles and a different optimizer (ADAM) with the standard VGA (rightmost plot).

4.5. Bayesian Logistic Regression

Finally, we considered a range of real-world binary classification problems mod-
eled with a Bayesian logistic regression. Given some data {(xi, yi)}N

i=1 where xi ∈ RD

and y ∈ {−1, 1}, we defined the model yi ∼ Bernoulli(σ(w>xi)) with weight w ∈ RD,
and with σ being the logistic function. We set a prior on w: w N (0, 10ID). We bench-
marked the competing approaches over four datasets from the UCI repository [40]: spam
(N = 4601, D = 104), krkp (N = 351, D = 111), ionosphere (N = 3196, D = 37) and
mushroom (N = 8124, D = 95). We ran all algorithms discussed in Section 4.1, both with
and without a mean-field approximation; SVGD was omitted since it is too unstable. All
algorithms were run with a fixed learning rate η = 10−4, and we used mini-batches of size
100. We show alternative training settings in Appendix I. Note that FCS, for mean-field,
simplifies to DSVI Additionally, we did not consider full-rank IBLR, as it is too expensive,
and we used their reparametrized gradient version for the Hessian. Figure 6 shows the
average negative log-likelihood on 10-fold cross-validation with one standard deviation
for each dataset. While, as expected, the advantages shown for Gaussian targets do not
transfer to non-Gaussian targets, GPF and GF are consistently on par with competitors. On
the other hand, IBLR tends to be outperformed. It is also interesting to note that mean-field
does not seem to have a negative impact on these problems, and performance remains the
same even with a full-rank matrix.
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(a) Mean-field approximation

(b) No mean-field approximation

Figure 6. Average negative log-likelihood vs. time on a test-set over 10 runs against training time
for a Bayesian logistic regression model applied to different datasets. Top plots use a mean-field
approximation, while bottom plots use a low-rank structure for the covariance with rank L = 100.
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4.6. Bayesian Neural Network

We ran our algorithm on a standard network with two hidden layers each, with
L = 200 neurons and tanh activation functions (we additionally tried ReLU [41], but
some baselines failed to converge). We trained on the MNIST dataset [42] (N = 60,000,
D = 784) and used an isotropic prior on the weights p(w) = N (0, αID) with α = 1.0.
We additionally compared these with Stochastic Weight Averaging-Gaussian (SWAG) [27]
with an SGD learning rate of 10−6 (selected empirically) and Efficient Low-Rank Gaussian
Variational Inference (ELRGVI) [26]. We varied the assumptions on the covariance matrix to
be diagonal (Mean-Field), or to have rank L ∈ {5, 10}. Additionally, we showed, for GPF,
the effect of using a structured mean-field assumption by imposing the independence of
the weights between each layer (GPF (Layers)).

We trained each algorithm for 5000 iterations with a batchsize of 128(∼10 epochs)
and reported the final average negative log-likelihood, accuracy and expected calibration
error [43] on the test set (N = 10,000) on Table 1. The predictive distribution is given by

p(y = k|x∗,D) =
∫

p(y = k|x∗, w)p(w|D)dw ≈
∫

p(y = k|x∗, w)q(w)dw,

where D is the training data, and x∗ is a test sample. We computed the accuracy and the
average negative test log-likelihood as:

Acc =
1
N

N

∑
i=1

1yi (argk max p(y = k|x∗i ,D))

NLL = − 1
N

N

∑
i=1

log p(y = yi|x∗i ,D)

where 1y(x) is the indicator function (equal to 1 for y = x, 0 otherwise). For the definition
of expected calibrated error, we refer the reader to [43]. Additional convergence and
uncertainty calibration plots can be found in Appendix I.

Table 1. Negative Log-Likelihood (NLL), Accuracy (Acc), and Expected Calibration Error (ECE)
for a Bayesian Neural Networks (BNN) on the MNIST dataset. We varied the rank of the variational
covariance from mean-field (all variables are independent) to a low-rank structure with L ∈ {5, 10}.
Bold numbers indicated the best performance, and italic bold numbers indicate the best performance
when restricted to VGA methods. Convergence and calibration plots can be found in Appendix I.

Alg. Mean-Field L = 5 L = 10
NLL Acc ECE NLL Acc ECE NLL Acc ECE

GPF 0.183 0.95 0.0384 0.166 0.96 0.0918 0.172 0.955 0.0869
GPF (Layers) - - - 0.147 0.958 0.0181 0.178 0.952 0.0395

GF 0.178 0.953 0.0706 0.185 0.956 0.136 0.171 0.952 0.0455
DSVI 0.204 0.945 0.11 - - - - - -

SVGD (Sq. Exp) - - - 0.139 0.965 0.0732 0.133 0.967 0.0879
SWAG - - - 0.257 0.957 0.0662 0.287 0.956 0.0878

ELRGVI - - - 0.453 0.901 0.53 0.537 0.882 0.777

Overall, the SVGD method performed best in terms of both accuracy and negative
log-likelihood. However, SVGD is not in the same category as others, since it is not a
VGA. For VGAs, we observed that a low-rank approximation improves upon mean-field
methods. In particular, assuming independence between layers provides a large advantage
to GPF. GPF and GF generally perform equally or better than all the other VGA methods.
Note that, although not reported here, all methods needed approximately the same time
for the 5000 iterations, except for SWAG, which only needed the MAP and a few thousand
iterations of SGD afterward, making it generally faster but also less controlled (a grid
search was needed to find the appropriate learning for SGD).
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5. Discussion

We introduced GPF, a general-purpose and theoretically grounded, particle-based
approach, to perform inference with variational Gaussians as well as GF its parameter
version. We were able to show the convergence of the particle algorithm based on an
empirical approximation of the free energy. We also showed that we can approximate
high-dimensional targets by allowing for low-rank approximations with a small number
of particles. The results for Gaussian targets suggest that the convergence of posterior
covariance approximation may relax asymptotically fast, with small dependence on the
target. This work is the first step in analyzing convergence speed and guarantees in
inference with variational Gaussians, and future work could extend guarantees to non-
Gaussian problems. One could also take advantage of existing particle-based VI methods
to accelerate inference further or reach a better optima [44,45].
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Appendix A. Derivation of the Optimal Parameters

In Section 3, we considered the optimization problem:

min
At ,bt∈B

dF [qt]

dt
where B = {At, bt : ‖At‖2

F = 1, ‖bt‖2 = 1},

where we have introduced ‖A2‖2
F = tr(AA>), the Froebius norm and ‖bt‖, the L2 norm and

dF [qt]

dt
= −tr

[
At(At

?)
>
]
− (bt)>bt

? (A1)

To solve this problem, we used the Lagrange multiplier method. We write the La-
grangian as:

L(At, bt) =
dF [qt]

dt
− λAg(At)− λbh(bt),

where g(A) = tr(AA>) − 1 and h(b) = ‖b‖2
2 − 1. For simplicity we can divide the

problem as:

L(At) =− tr
[

At(At
?)
>
]
− λAg(At)

L(bt) =− (bt)>bt
? − λbh(bt)

For At, we have the constraints:
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∇At tr
[

At(At
?)
>
]
=λA∇At g(At)

g(At) =0

Computing the gradients is straightforward:

At
? =2λA At

⇒ At =
At
?

2λA

⇒ 1
4λ2

A
tr(At

?(At
?)
>) =1

⇒ λA =

√
tr(At

?(At
?)
>)

4
.

which gives us the result At = At
?

‖At
?‖F

. Similarly for bt:

∇bt(bt)>bt
? =λb∇bt h(bt)

h(bt) =0.

Replacing the gradients gives:

bt
? =2λbbt

⇒ bt =
bt
?

2λb

⇒ 1
4λ2

b
‖bt

?‖2
2 = 1

⇒ λb =
2
‖bt

?‖2

which gives us the result bt = bt
?

‖bt
?‖2

.

Appendix B. Relaxation of the Empirical Free Energy

We prove the decrease in the empirical free energy (17) under the particle flow when
the covariance C is nonsingular. We define the empirical distribution q̂(x) = 1

N ∑N
i=1 δx,xi

with a finite number N of particles. The empirical free energy is defined as

F [q̂] = Eq̂[ϕ(x)]− 1
2

log |C|.

We are interested in the temporal change of the free energy, when particles move under a
general linear dynamics

dxi
dt

= b + A(xi −m).

The induced dynamics for F are:

dF
dt

= Eqt

[
∇x ϕ(x)>

dx
dt

]
− 1

2
tr(C−1 dC

dt
)

For notational simplicity, we introduce g(x) = ∇x ϕ(x) and ẋ = dx
dt (similarly ṁ = dm

dt ).
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dC
dt

=
d
dt
Eq

[
(x−m)(x−m)>

]
=Eq

[
(ẋ− ṁ)(x−m)>

]
+Eq

[
(x−m)(ẋ− ṁ)>

]
=Eq

[
ẋx> + xẋ> − ṁm> −mṁ>

]
=Eq

[
ẋ(x−m)>

]
+Eq

[
(x−m)ẋ>

]

dF
dt

=Eq

[
g(x)> ẋ

]
−

1
2
Eq

[
tr(C−1 ẋ(x−m)>) + tr(C−1(x−m)> ẋ>)

]
=Eq

[
ẋ>
(

g(x)− C−1(x−m)
)]

(A2)

where we used the permutation properties of the trace.
Plugging the dynamics into Equation (A2), we obtain:

dF
dt

=b>Eq[g(x)] +Eq

[
(x−m)>A>g(x)

]
−Eq

[
(x−m)>A>C−1(x−m)

] (A3)

where we used the fact that b>C−1Eq[x−m] = 0.
We next look for conditions on b and A, under which dF

dt < 0, i.e., the dynamics will
lead to a decrease in the free energy. We pick b = −β1Eq[g(x)], where β1 > 0, and we
obtain, for the first term in (A3):

−β1‖Eq[g(x)]‖2 ≤ 0.

For A, let us first define ψ = Eq
[
g(x)(x−m)>

]
and rewrite the second and last term

of the Equation (A3) as:

Eq

[
(x−m)>A>g(x)

]
=tr
(
Eq

[
A>g(x)(x−m)>

])
=tr
(

A>ψ
)

Eq

[
(x−m)>A>C−1(x−m)

]
=tr
(

A>C−1C
)

=tr(A)

Combining both, we get tr
(

A>(ψ− I)
)
. Similarly to the previous step, we pick A =

−β2(ψ− I), where β2 ≥ 0, which leads to another negative term:

−β2tr((ψ− I)>(ψ− I)) ≤ 0,

where we use the fact that X>X is a positive semi-definite matrix for any real valued X.
Note that different forms of A (e.g., β2 are replaced by a positive definite matrix) could

be used, as long as the trace of the product stays positive. Inserting b and A, the free energy
dynamics become

dF
dt

=− β1‖Eq[g(x)]‖2 − β2tr((ψ− I)>(ψ− I))

The variable dynamics are given by
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dx
dt

=− β1Eq[g(x)]− β2(ψ− I)(x−m)

=− β1Eq[g(x)]

− β2

(
Eq

[
g(x)(x−m)>

]
− I
)
(x−m),

which is equivalent to Equation (5), for β1 = β2 = 1. Our result shows that the empirical
approximation of the free energy decreases under the particle flow.

Appendix C. Riemannian Gradient for Matrix Parameter Γ

The parameter flow for the matrix Γ in (11) is given by

dΓt

dt
=Γt −Eq0

[
∇x ϕ(xt)(x0 −m0)>

]
Γt(Γt)>.

This is easily rewritten in terms of the parameter gradient as dΓt

dt = ∂F
∂Γ ΓΓ>

Similar to natural gradients, which are defined by the metric, which is induced by
the Fisher–matrix, we can rewrite the parameter change in terms of a different Riemannian
gradient. This gradient is the direction of change dΓ = Γ(t + dt) − Γ(t), which yields
the steepest descent of the free energy over a small time interval dt. As an extra con-
dition, one keeps the length of dΓ (measured by a ’natural’ metric, which has specific
invariance properties) fixed. This is defined by an inner product (the squared length)
〈dΓ, dΓ〉Γ in the tangent space of small deviations dΓ from the matrix Γ. Hence, dΓ is
found by minimising F (Γ(t) + dΓ, m) (for small dΓ) under the condition that 〈dΓ, dΓ〉Γ(t) is
fixed. Following [20] (Theorem 6), a natural metric in the space of symmetric nonsingular
matrices can be defined as

〈dΓ, dΓ〉Γ
.
= tr

(
(dΓ Γ−1)>dΓ Γ−1

)
.

This metric is invariant against multiplications of Γ and dΓ by matrices Y, i.e., 〈dΓ, dΓ〉Γ =
〈dΓ Y, dΓ Y〉ΓY and reduces to the Euclidian metric at the unit matrix Γ = I.

The direction of the natural gradient is obtained by expanding the free energy for
small dΓ and introducing a Lagrange–multiplier λ for the constraint. One ends up with the
quadratic form

∂F
∂Γ

dΓ + λtr
(
(dΓ Γ−1)>dΓ Γ−1

)
to be minimised by dΓ. By taking the derivative with respect to dΓ, one finds that the
direction of dΓ agrees with the right equation of the flow (11).

Appendix D. Regularised Free Energy for N ≤ D

The problem of defining an empirical approximation for N ≤ D particles is that the
empirical covariance becomes singular and typically has N − 1 nonzero eigenvalues, and
thus |C| = 0. Note that the extra 0 eigenvalue is derived from the fact that the empirical
sum of fluctuations must be zero, which provides an additional linear constraint.

We can regularise the log determinant term by replacing the zero eigenvalues of C:
λi = 0→ λ̃i = 1. The new covariance C̃ becomes

log |C̃| = ∑
i:λi>0

log λi,

since log 1 = 0. The dynamics of the particles stays the same. To rewrite this formally in
terms of matrices, we define

C̃ = C + C⊥
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where

C⊥ = ∑
i:λi=0

eie>i

and ei = ith eigenvector of C. This replaces all 0 eigenvalues by 1. C⊥ is a projector:
C2
⊥ = C⊥ and C⊥(I − C⊥) = 0. We also have tr(C⊥) = D − (N − 1). In the following,

it is useful to introduce the D× N matrix of fluctuations Z, such that C = ZZ>/N. The
column vectors of Z span the subspace of eigenvectors ei with λi > 0. Hence, it follows
that C⊥Z = 0.

We want to show that the regularised free energy F̃ decreases under the particle
dynamics for N ≤ D. Since the part of the time derivative of F̃ that depends on dm

dt is not
changed, we will only discuss the fluctuation part in the following.

It is useful to introduce the matrix:

Ã .
= I − C⊥ − gZ>/N = A− C⊥,

with g = ∇x ϕ(x) is the D× N matrix of the gradient.

Eq

[
g(x)>

dx
dt

]
=tr(A)− tr(A>A)

=tr(Ã + C⊥)− tr((Ã + C⊥)>(Ã + C⊥))

=tr(Ã)− tr(Ã> Ã).

To obtain this result, we need

tr(C⊥ Ã) =tr(C⊥ Ã>)

=tr(C⊥(I − C⊥)− C⊥Zg>/N) = 0.

We need to work out

−1
2

d ln |C̃|
dt

=− 1
2

tr

(
dC̃
dt

C̃−1

)

=− 1
2

tr
(

dC
dt

C̃−1
)

where we have used the fact that the eigenvalues λi = 1 of C̃ have a zero time derivative
and can be omitted. We use the linear dynamics dZ

dt = AZ to obtain:

dC
dt

= = CA> + AC

=(C̃− C⊥)(Ã> + C⊥) + (Ã + C⊥)(C̃− C⊥)

=C̃Ã> + ÃC̃ + C⊥C̃ + C̃C⊥ − ÃC⊥ − C⊥ Ã> − 2C⊥
=C̃Ã> + ÃC̃,

where we have used C2
⊥ = C⊥ and C⊥ Ã> = 0. Hence

−1
2

tr

(
dC̃
dt

C̃−1

)
=− tr(Ã).
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Finally, the temporal change in the free energy due to the fluctuations is given by

dF̃
dt

= −tr(Ã> Ã) ≤ 0.

Note that this proof is not only valid for N ≤ D, but also for N > D, as the overall
computations are simplified with C⊥ = 0. A more detailed proof for N > D is, furthermore,
given in Appendix B.

Efficient Computation of log
∣∣∣C̃∣∣∣

A practical way to compute log |C̃| without performing an eigenvector expansion is
to define the N × N matrix

R .
= Z>Z/N + JN,N/N,

where JN,N is the N×N all-ones matrix. Z>Z/N shares the N− 1 nonzero eigenvalues with
C and has an additional eigenvalue 0 corresponding to the constant eigenvector (eN)i =
1/
√

N. Adding an all-ones matrix preserves all existing eigenvalues while replacing the 0
one with a constant. This leads to the following result:

−1
2

log |R| = −1
2

N−1

∑
i=1

log λi.

Appendix E. Proof of Theorem 1: Fixed Points for a Gaussian Model (N > d)

Theorem A1 (1). If the target density p(x) is a D-dimensional multivariate Gaussian, only D + 1
particles are needed for Algorithm 2 to converge to the exact target parameters.

The general fixed-point condition for the dynamics (13) of the position xi for particle i
is given by:

(I −Eq̂

[
g(x)(x−m)>

]
)(xi −m)−Eq̂[g(x)] = 0.

for i = 1, . . . , N. By taking the expectation over all particles, we obtain:

Eq̂[g(x)] = 0, (A4)

where q̂ is the empirical distributions of particles at the the fixed point. Note that this result
is independent of N, i.e., it is also valid for N = 1.

For a D-dimensional Gaussian target p(x) = N (µ, Σ), we will show that empirical
mean and covariance given by the particle algorithm converge to the true mean and
covariance matrix of the Gaussian when we use N ≥ D + 1 particles. In this setting, we
have ϕ(x) = 1

2 x>Σ−1x− x>Σ−1µ. For simplification, we use the precision matrix Λ = Σ−1

and get

ϕ(x) =
1
2

x>Λx− x>Λµ.

The gradient g(x) becomes:

g(x) = Λ(x− µ)
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At the fixed points, we have that dm
dt and dΓ

dt are equal to 0. For the mean m:

dm
dt

= Eq̂[g(x)] =0

ΛEq̂[x− µ] =0

Λm =Λµ

m =µ

For the matrix Γ, we have

dΓ
dt

= −AΓ =0

Γ−Eq0

[
g(x)(x−m)>

]
Γ =0

Eq0

[
Λ(x− µ)(x−m)>

]
Γ =Γ

−2η2Eq0

[
(x−m)(x−m)>

]
Γ =Γ

ΛCΓ =Γ

ΛC2 =C

where we use the result for the mean m = µ and right multiplied by Γ> as C = ΓΓ>. Now,
we can only simplify, as C = Λ−1 = Σ if C is not singular. This is true only if its rank is
equal to D, needing D + 1 particles.

Appendix F. Proof of Theorem 2: Rates of Convergence for Gaussian Targets

Theorem A2 (2). For a target p(x) = N (x | µ, Λ−1), where x ∈ RD, and N ≥ D + 1 particles,
the continuous time limit of Algorithm 2 will converge exponentially fast for both the mean and the
trace of the precision matrix:

mt − µ =e−Λt(m0 − µ),

tr(
(
Ct)−1 −Λ) =e−2ttr(

(
C0
)−1
−Λ),

where mt and Ct are the empirical mean and covariance matrix at time t and exp(−Λt) is the
matrix exponential.

In the following, we assume the target p(x) = N (µ, Σ) We use the notation Λ .
= Σ−1

and δCt = Ct − Σ.

Appendix F.1. Convergence of the Mean

Given our target p(x), similarly to Appendix E we have g(x) = Λ(x − µ), where
η1 = Σ−1µ and η2 = − 1

2 Σ−1. This transform the first of Equations (11) into

dm
dt

=−Λ(Eq̂[x]− µ)

=−Λ(m− µ)

If now consider the error on m : δm = m− µ we obtain:

dδm
dt

=
dm
dt

= −Λ(m− µ)

=−Λδm.
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Therefore, the mean converges exponentially fast to the true mean. The asymptotic rate
is governed by the largest eigenvalue of Λ, i.e., the inverse of the smallest eigenvalue of
Σ, λmin.

Appendix F.2. Convergence of the Covariance Matrix

Let z = x−m, we have from Equation (5), that

dz
dt

= −Az

where A = Eq0

[
g(x)z>

]
− I. This expectation can further be simplified as

Eq̂

[
Λ(x− µ)z>

]
=ΛC, (A5)

where q ∼ N (m, C). Hence, we have the exact result

dC
dt

= (I −ΛC)C + C(I − CΛ). (A6)

We know that the optimal target is C = Σ. Therefore, we define the error δC = C − Σ.
Linearizing Equation (A6) gives us

dδC
dt

=
dC
dt

=(I −Λ(δC + Σ))(δC + Σ)

+ (δC + Σ)(I − (δC + Σ)Λ)

=−ΛδC(δC + Σ)− (δC + Σ)δCΛ

≈−ΛδCΣ− ΣδCΛ

We were not yet able to find a general solution of this equation, but we can obtain a simple
result for the trace yt .

= tr(δC) at time t:

dyt

dt
' −2yt.

We, therefore, have a asymptotic linear convergence: yt ∝ e−2ty0 which is independent of
the parameters of the Gaussian model.

We can also equivalently obtain a non-asymptotic estimate of a specific error measure
for the precision matrix. Using equation (A6), we have the following dynamics for the
precision C−1:

dC−1

dt
=− C−1 dC

dt
C−1

=− C−1(I −ΛC)− (I −ΛC)C−1

Taking the trace

dtr(C−1)

dt
=− 2tr(C−1)− 2tr(Λ)

dtr(C−1 −Λ)

dt
=− 2tr(C−1 −Λ)

Hence we get the following exact result:

tr((Ct)−1 −Λ) = e−2ttr((C0)−1 −Λ)
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which is again independent of the parameters of the Gaussian model.
Additionally, this tells us that if the covariance C is non-singular at time t = 0, it will

remain non-singular for all t (tr(C−1) would be infinite). Hence, if we start with N > d
particles with a proper empirical covariance, they cannot collapse to make C singular.

Appendix F.3. Convergence of the Trace of the Covariance

The asymptotic result on traces obtained previously can be turned into an exact
inequality. We have

dδC
dt

= −ΛδCΣ− ΣΛδC−Λ(δC)2 − (δC)2Λ

Taking the trace, we get

dtr(δC)
dt

= −2tr(δC)− 2tr(δCΛδC)

Since δCΛδC is positive definite, we have −2tr(δCΛδC) ≤ 0 and thus

dtr(δC)
dt

≤ −2tr(δC)

leading to:

tr(δCt) ≤ tr(δC0)e−2t

by using by Grönwall’s lemma [46]:

Lemma A1 (Grönwall). For an interval I0 = [0, ∞) and a given function f differentiable
everywhere in I0 and satisfying:

f ′(t) ≤ β(t) f (t), t ∈ I0

then f is bounded by the corresponding differential equation g′(t) = β(t)g(t):

f (t) ≤ f (0)
∫ t

0
β(s)ds, t ∈ I0

The bound is nontrivial only if tr(δC) ≥ 0. This would be natural assumption
for a Bayesian model, if C0 is the prior covariance and the eigenvalues of Ct at t = ∞
(corresponding to the posterior) are reduced by the data.

Appendix F.4. Decay of Fluctuation Part of the Free Energy

Still focusing on the Gaussian model, we can further derive a bound on the free energy.
It is easy to see that for the Gaussian case, the free energy in Equation (4) separates into a
sum of two terms. The first one depends on the mean mt only and the second one on only
the fluctuations (i.e., Ct).

We will consider the second, nontrivial part only. We assume that the covariance
matrix is nonsingular (corresponding to N > D). The fluctuation part of the free energy
(minus its minimum) is given by

F f l = −
1
2

ln |I − B| − 1
2

tr(B)
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where we have introduced the matrix B .
= I −ΛC. One can show that its eigenvalues are

real and are upper bounded by 1. First, we can show from the equations of motion that

dF f l

dt
= −tr(BB>) (A7)

Second, using the elementary bound − ln(1− u) ≤ u
1−u valid for u ≤ 1 and applied to the

eigenvalues of B yields

F f l ≤
1
2

tr(B(I − B)−1 − B)

=
1
2

tr(B(I − B)−1 − B(I − B)(I − B)−1)

=
1
2

tr(B2(I − B)−1)

=
1
2

tr(B2C−1Λ−1) ≤ 1
2

tr(B>Λ−1BC−1)

The last two equalities used the definition B = I −ΛC. Since B>Λ−1B and C−1 are both
positive definite, we can bound the last term by (see ([47], Theorem 6.5))

F f l ≤
1
2

tr(B>Λ−1B)tr(C−1) ≤

1
2

tr(BB>)tr(Λ−1)tr(C−1)),

where, in the last line, we have bounded the trace of a product of p.d. matrices a sec-
ond time.

Combining with Equation (A7) we show that

dF f l

dt
≤ −

2F f l

tr(Λ−1)tr(C−1)

We can plug in our result from Theorem 2:

tr(C−1) =tr(Λ) + tr(C−1 −Λ)

=tr(Λ) + e−2ttr((C0)−1 −Λ)

≤tr(Λ) + e−2t|tr((C0)−1 −Λ)|
≤tr(Λ) + |tr((C0)−1 −Λ)|

We can plug this in and use Grönwall’s Lemma A1 to get an exponential bound

F f l(Ct) ≤ F f l(C0)e
−
[

2t
tr(Λ−1)(tr(Λ)+|tr((C0)−1−Λ)|)

]
.
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Appendix F.5. Asymptotic Decay of the Free Energy:

For large times t, we can do better. Let us analyse the asymptotic decay constant
F f l ' e−λ f reet defined by

λ f ree
.
= − lim

t→∞

d ln(F f l)

dt
= − lim

dF f l
dt
F f l

= lim
tr(BB>)

− 1
2 ln |I − B| − 1

2 tr(B)
≥

lim
tr(B2)

− 1
2 ln |I − B| − 1

2 tr(B)

In the last inequality, we used tr(BB>) ≥ tr(B2). Everything is expressed by traces of
functions of B, and thus by its eigenvalues. Since B → 0 as t → ∞ (this applies also
to its eigenvalues u), we can use Taylor’s expansion ln(1− u) + u = −u2/2 + O(u3) to
show that

λ f ree ≥ 4

which is independent of Λ.

Appendix G. Proof of Theorem 3: Fixed-Points for Gaussian Model (N ≤ D)

Theorem A3 (3). Given a D-dimensional multivariate Gaussian target density p(x) = N (x|µ, Σ),
using Algorithm 2 with N < D + 1 particles, the empirical mean converges to the exact mean µ.
The N − 1 non-zero eigenvalues of Ct converge to a subset of the target covariance Σ spectrum.
Furthermore, the global minimum of the regularised version F̃ of the free energy (17) corresponds
to the largest eigenvalues of Σ.

Applying Equation (A4) to our fixed point equation, we obtain

(I −Eq̂

[
g(x)(x−m)>

]
)(xi −m) = 0, ∀i = 1, . . . , N

Hence, the set of centered positions of the particles S = {xi −m}N
i=1, are all eigenvectors of

the matrix Eq̂
[
g(x)(x−m)>

]
with eigenvalue 1. S spans a N − 1 dimensional space (we

have ∑N
i=1(xi −m) = 0).

If we specialise to a Gaussian target p(x) = N (x | µ, Σ), (and Λ = Σ−1 we have
g(x) = Λ(x− µ) and can reuse the result from Equation (A5):

Eq̂

[
g(x)(x−m)>

]
= ΛEq̂

[
(x−m)(x−m)>

]
=ΛC.

Using the equality above, we get:

ΛC(xi −m) =(xi −m)

C(xi −m) =Σ(xi −m), ∀i = 1, . . . , N

which shows that the obtained low-rank covariance C and the target covariance Σ have
N − 1 eigenvectors and eigenvalues in common.
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However, are these the largest ones? We look at the modified free energy (17) (ignoring
the contribution of the mean):

min F̃ =min

{
−1

2 ∑
i:λi>0

ln λi + tr(ΛC)

}

where λi are the eigenvalues of the empirical covariance C. We first note that tr(ΛC) =
N− 1, independent of which eigenvalues are obtained at the fixed point. This is easily seen
by the following argument: If we use the index–set I for the common eigenvectors ei and
eigenvalues λi, i ∈ I , we can write

C = ∑
i∈I

eiλie>i

Σ = ∑
i

eiλie>i

From this we obtain

tr(ΛC) = tr(∑
i∈I

eiλ
−1
i λie>) = N − 1

From this result we obtain

min F̃ =max
1
2 ∑

i:λi>0
ln λi − (N − 1),

The term N − 1 is a constant, but the first term makes a difference: The absolute mini-
mum of F̃ is achieved, when the λi are N − 1 largest eigenvalues of Σ. Our simulations
empirically show that the algorithm usually converges to the absolute minimum.

Appendix H. Dimension-Wise Optimizers

Here, we list some of the most populars optimizers used and their dimension-wise
versions. In all algorithms, we consider ϕ the matrix created by the concatenation of the
flow of each particle : ϕ = [ϕ1, . . . , ϕN ], where ϕn = ϕ(xn) We additionally use the notation
ϕn,i for the i-th dimension of the flow of the n-th particle. The main differences between
the original algorithms and their modified version were put in red.

Appendix H.1. ADAM

The ADAM algorithm is given by:

Algorithm A1: ADAM

Input: ϕt, mt−1, vt−1, β1, β2, η
Output: ∆
mt

n,d = β1mt−1
n,d + (1− β1)ϕt

n,d

vt
n,d = β2vt−1

n,d + (1− β2)
(

ϕt
n,d

)2

∆n,d = η
mt

n,d

(1−βt
1)
(√

vt
n,d(1−βt

2)
−1+ε

)
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Algorithm A2: Dimension-wise ADAM

Input: ϕt, mt−1, vt−1, β1, β2, η
Output: ∆
mt

n,d = β1mt−1
n,d + (1− β1)ϕt

n,d;

vt
d = β2vt−1

d + (1− β2)
1
N ∑N

n=1

(
ϕt

n,d

)2
;

∆n,d = η
mt

n,d

(1−βt
1)
(√

vt
d(1−βt

2)
−1+ε

) ;

Appendix H.2. AdaGrad

The AdaGrad algorithm is given by:

Algorithm A3: AdaGrad

Input: ϕt, vt−1, η
Output: ∆

vt
n,d = vt−1

n,d +
(

ϕt
n,d

)2

∆n,d = η
ϕt

n,d√
vt

n,d+ε

Algorithm A4: Dimension-wise AdaGrad

Input: ϕt, vt−1, η
Output: ∆

vt
d = vt−1

d + 1
N ∑N

n=1

(
ϕt

n,d

)2

∆n,d = η
ϕt

n,d√
vt

d+ε

Appendix H.3. RMSProp

The RMSProp algorithm is given by:

Algorithm A5: RMSProp

Input: ϕt, vt−1, ρ, η
Output: ∆

vt
n,d = ρvt−1

n,d + (1− ρ)
(

ϕt
n,d

)2

∆n,d = η
ϕt

n,d√
vt

n,d+ε

Algorithm A6: Dimension-wise RMSProp

Input: ϕt, vt−1, ρ, η
Output: ∆

vt
d = ρvt−1

d + (1− ρ) 1
N ∑N

n=1

(
ϕt

n,d

)2

∆n,d = η
ϕt

n,d√
vt

d+ε
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Appendix I. Additional Figures

Appendix I.1. Bayesian Logistic Regression

Similarly to the previous section, we also show results with the RMSProp optimizer
with learning rate 1× 10−4.

(a) Mean-field approximation (b) No mean-field approximation

Figure A1. Similarly to Figure 6, we show the average negative log-likelihood on a test-set over
10 runs against training time on different datasets for a Bayesian logistic regression problem. The
dashed curve represents the low-rank approximation with RMSProp for methods based on stochas-
tic estimators.

Appendix I.2. Bayesian Neural Network

Figure A2. Convergence of the classification error and average negative log-likelihood as a function
of time.

Figure A3. Accuracy vs confidence. Every test sample is clustered in function of its highest predictive
probability. The accuracy of this cluster is then computed. A perfectly calibrated estimator would
return the identity.



Entropy 2021, 23, 990 33 of 34

References
1. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the human out of the loop: A review of Bayesian

optimization. Proc. IEEE 2016, 104, 148–175. [CrossRef]
2. Settles, B. Active Learning Literature Survey; Computer Sciences Technical Report 1648; University of Wisconsin–Madison: Madison,

WI, USA, 2009.
3. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; The MIT Press: Cambridge, MA, USA, 2018.
4. Bardenet, R.; Doucet, A.; Holmes, C. On Markov chain Monte Carlo methods for tall data. J. Mach. Learn. Res. 2017, 18, 1515–1557.
5. Cowles, M.K.; Carlin, B.P. Markov chain Monte Carlo convergence diagnostics: A comparative review. J. Am. Stat. Assoc. 1996,

91, 883–904. [CrossRef]
6. Barber, D.; Bishop, C.M. Ensemble learning for multi-layer networks. In Advances in Neural Information Processing Systems; MIT

Press: Cambridge, MA, USA, 1998; pp. 395–401.
7. Graves, A. Practical Variational Inference for Neural Networks. In Proceedings of the 24th International Conference on Neural

Information Processing Systems, Granada, Spain, 12–15 December 2011; Volume 24, pp. 2348–2356.
8. Ranganath, R.; Gerrish, S.; Blei, D. Black box variational inference. In Proceedings of the Seventeenth International Conference

on Artificial Intelligence and Statistics, Reykjavik, Iceland, 22–25 April 2014; pp. 814–822.
9. Liu, Q.; Lee, J.; Jordan, M. A kernelized Stein discrepancy for goodness-of-fit tests. In Proceedings of the 33rd International

Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 276–284.
10. Liu, Q.; Wang, D. Stein variational gradient descent as moment matching. In Proceedings of the 32nd International Conference

on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Volume 32, pp. 8868–8877
11. Zhuo, J.; Liu, C.; Shi, J.; Zhu, J.; Chen, N.; Zhang, B. Message Passing Stein Variational Gradient Descent. In Proceedings of the

35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 6018–6027.
12. Opper, M.; Archambeau, C. The variational Gaussian approximation revisited. Neural Comput. 2009, 21, 786–792. [CrossRef]

[PubMed]
13. Challis, E.; Barber, D. Gaussian kullback-leibler approximate inference. J. Mach. Learn. Res. 2013, 14, 2239–2286.
14. Titsias, M.; Lázaro-Gredilla, M. Doubly stochastic variational Bayes for non-conjugate inference. In Proceedings of the 31st

International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1971–1979.
15. Ong, V.M.H.; Nott, D.J.; Smith, M.S. Gaussian variational approximation with a factor covariance structure. J. Comput. Graph.

Stat. 2018, 27, 465–478. [CrossRef]
16. Tan, L.S.; Nott, D.J. Gaussian variational approximation with sparse precision matrices. Stat. Comput. 2018, 28, 259–275.

[CrossRef]
17. Lin, W.; Schmidt, M.; Khan, M.E. Handling the Positive-Definite Constraint in the Bayesian Learning Rule. In Proceedings of the

37th International Conference on Machine Learning, Virtual, 13–18 July 2020; Volume 119, pp. 6116–6126.
18. Hinton, G.E.; van Camp, D. Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights. In

Proceedings of the Sixth Annual Conference on Computational Learning Theory, Santa Cruz, CA, USA, 26–28 July 1993; COLT
’93; Association for Computing Machinery: New York, NY, USA, 1993; pp. 5–13.

19. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational inference: A review for statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877.
[CrossRef]

20. Amari, S.I. Natural Gradient Works Efficiently in Learning. Neural Comput. 1998, 10, 251–276. [CrossRef]
21. Khan, M.E.; Nielsen, D. Fast yet simple natural-gradient descent for variational inference in complex models. In Proceedings of

the International Symposium on Information Theory and Its Applications (ISITA), Singapore, 28–31 October 2018; pp. 31–35.
22. Lin, W.; Khan, M.E.; Schmidt, M. Fast and simple natural-gradient variational inference with mixture of exponential-family

approximations. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June
2019; pp. 3992–4002.

23. Salimbeni, H.; Eleftheriadis, S.; Hensman, J. Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian
Process Models. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, Lanzarote,
Canary Islands, 9–11 April 2018; pp. 689–697.

24. Liu, Q.; Wang, D. Stein variational gradient descent: A general purpose bayesian inference algorithm. arXiv 2016,
arXiv:1608.04471.

25. Ba, J.; Erdogdu, M.A.; Ghassemi, M.; Suzuki, T.; Sun, S.; Wu, D.; Zhang, T. Towards Characterizing the High-dimensional Bias
of Kernel-based Particle Inference Algorithms. In Proceedings of the 2nd Symposium on Advances in Approximate Bayesian
Inference, Vancouver, BC, Canada, 8 December 2019.

26. Tomczak, M.; Swaroop, S.; Turner, R. Efficient Low Rank Gaussian Variational Inference for Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems, Virtual, 6–12 December 2020; Volume 33.

27. Maddox, W.J.; Izmailov, P.; Garipov, T.; Vetrov, D.P.; Wilson, A.G. A simple baseline for bayesian uncertainty in deep learning.
In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
pp. 13153–13164.

28. Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error
statistics. J. Geophys. Res. Oceans 1994, 99, 10143–10162. [CrossRef]

http://doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1080/01621459.1996.10476956
http://dx.doi.org/10.1162/neco.2008.08-07-592
http://www.ncbi.nlm.nih.gov/pubmed/18785854
http://dx.doi.org/10.1080/10618600.2017.1390472
http://dx.doi.org/10.1007/s11222-017-9729-7
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1162/089976698300017746
http://dx.doi.org/10.1029/94JC00572


Entropy 2021, 23, 990 34 of 34

29. Rezende, D.; Mohamed, S. Variational inference with normalizing flows. In Proceedings of the 32nd International Conference on
Machine Learning, Lille, France, 7–9 July 2015; pp. 1530–1538.

30. Chen, R.T.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. Neural ordinary differential equations. In Proceedings of the 32nd
International Conference on Neural Information Processing, Montréal, QC, Canada, 3–8 December 2018; pp. 6572–6583.

31. Ingersoll, J.E. Theory of Financial Decision Making; Rowman & Littlefield: Lanham, MD, USA, 1987; Volume 3.
32. Barfoot, T.D.; Forbes, J.R.; Yoon, D.J. Exactly sparse gaussian variational inference with application to derivative-free batch

nonlinear state estimation. Int. J. Robot. Res. 2020, 39, 1473–1502. [CrossRef]
33. Korba, A.; Salim, A.; Arbel, M.; Luise, G.; Gretton, A. A Non-Asymptotic Analysis for Stein Variational Gradient Descent. In

Proceedings of the 32nd International Conference on Neural Information Processing, Virtual, 6–12 December 2020; Volume 33.
pp. 4672–4682.

34. Berlinet, A.; Thomas-Agnan, C. Reproducing Kernel Hilbert Spaces in Probability and Statistics; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2011.

35. Zaki, N.; Galy-Fajou, T.; Opper, M. Evidence Estimation by Kullback-Leibler Integration for Flow-Based Methods. In Proceedings
of the Third Symposium on Advances in Approximate Bayesian Inference, Virtual Event, January–February 2021.

36. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98.
[CrossRef]

37. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop, Coursera: Neural Networks for Machine Learning; Technical Report; University of
Toronto: Toronto, ON, USA, 2012.

38. Zhang, G.; Li, L.; Nado, Z.; Martens, J.; Sachdeva, S.; Dahl, G.; Shallue, C.; Grosse, R.B. Which Algorithmic Choices Matter at
Which Batch Sizes? Insights From a Noisy Quadratic Model. In Advances in Neural Information Processing Systems; Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA 2019;
Volume 32, pp. 8196–8207.

39. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
40. Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ml/datasets.php

(accessed on 28 July 2021).
41. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
42. LeCun, Y. The MNIST Database of Handwritten Digits. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 20

July 2021).
43. Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On calibration of modern neural networks. In Proceedings of the 34th International

Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1321–1330.
44. Liu, C.; Zhuo, J.; Cheng, P.; Zhang, R.; Zhu, J. Understanding and accelerating particle-based variational inference. In Proceedings

of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 4082–4092.
45. Zhu, M.H.; Liu, C.; Zhu, J. Variance Reduction and Quasi-Newton for Particle-Based Variational Inference. In Proceedings of the

37th International Conference on Machine Learning, Virtual, 13–18 July 2020.
46. Gronwall, T.H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann.

Math. 1919, 20, 292–296. [CrossRef]
47. Zhang, F. Matrix Theory: Basic Results and Techniques; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.

http://dx.doi.org/10.1177/0278364920937608
http://dx.doi.org/10.1137/141000671
https://archive.ics.uci.edu/ml/datasets.php
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.2307/1967124

	Introduction
	Related Work
	The Variational Gaussian Approximation
	Natural Gradients
	Particle-Based VI
	GVA in Bayesian Neural Networks
	Related Approaches

	Gaussian (Particle) Flow
	Gaussian Variable Flows
	From Variable Flows to Parameter Flows
	Particle Dynamics
	Algorithm and Properties
	Relaxation of Empirical Free Energy
	Dynamics and Fixed Points for Gaussian Targets

	Structured Mean-Field
	Comparison with SVGD

	Experiments
	Multivariate Gaussian Targets
	Low-Rank Approximation for Full Gaussian Targets
	High-Dimensional Low-Rank Gaussian Targets
	Non-Gaussian Target
	Bayesian Logistic Regression
	Bayesian Neural Network

	Discussion
	Derivation of the Optimal Parameters
	Relaxation of the Empirical Free Energy
	Riemannian Gradient for Matrix Parameter 
	Regularised Free Energy for ND
	Proof of Theorem 1: Fixed Points for a Gaussian Model (N> d)
	Proof of Theorem 2: Rates of Convergence for Gaussian Targets
	Convergence of the Mean
	Convergence of the Covariance Matrix
	Convergence of the Trace of the Covariance
	Decay of Fluctuation Part of the Free Energy
	Asymptotic Decay of the Free Energy:

	Proof of Theorem 3: Fixed-Points for Gaussian Model (ND)
	Dimension-Wise Optimizers
	ADAM
	AdaGrad
	RMSProp

	Additional Figures
	Bayesian Logistic Regression
	Bayesian Neural Network

	References

