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Abstract: In solving piezoelectric equations of motion, we established an electric–acoustic equivalent
circuit of tangentially polarized thin cylindrical transducers and derived analytical expressions of the
electric-acoustic response from the harmonic driving-voltage excitation. To experimentally verify
the findings, we manufactured a parallel electric-acoustic transmission network for transducers
excited by multifrequency driving signals. We found that the tangentially polarized thin cylindrical
transducers achieved a much higher electric-acoustic conversion efficiency than the radially polarized
thin cylindrical transducers. The electric-acoustic impulse response of the transducers consisted
of a direct-current damping with lower-frequency components, a damping oscillation with higher-
frequency elements, and a higher resonant frequency of the transducer over its center frequency. The
characteristics of radiated acoustic signals included contributions from the geometrical shape and size
of the transducer, the physical parameters of piezoelectric material, the type of driving-voltage signals,
and the polarization mode of the transducers. In comparison, our theoretical predictions are in good
agreement with experimental observations. It is plausible that using the tangentially polarized
thin cylindrical transducers as sensors in the acoustic-logging tool may significantly improve the
signal-to-noise ratio of the measured acoustic-logging signals.

Keywords: thin cylindrical piezoelectric transducer; polarization in tangential direction; electric–
acoustic impulse response; parallel electric–acoustic transmission network

1. Introduction

Acoustics is a fundamental discipline on mechanical waves, e.g., infrasonic, sonic,
and ultrasonic waves, and is also an interdisciplinary field of mechanics, electromagnetic
theory, solid-state physics, and signal processing. Its studies mainly involve the generation,
polarization, propagation, reflection, refraction, and reception of acoustic waves. It has
been used widely in many industries and fields, e.g., petroleum logging, geophysical
exploration, rock physics, in situ stress prediction, prediction of geological hazard, metal
fatigue nondestructive testing, ultrasonic imaging, noise control, sensor design, build-
ing engineering, underwater sonar detection, container liquid-level detection, oil and
gas pipeline flow measurement, and so on. Its application has penetrated almost all of
the essential fields of natural science and engineering technologies, such as underwater
acoustics, acoustic electricity, ultra-acoustics, language acoustics, architectural acoustics,
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bio-acoustics, rock acoustics, petroleum logging acoustics, geophysical acoustics, and
atmospheric acoustics [1–5].

An acoustic transducer is a vital part of acoustic measurement. The characteristics
of electric–acoustic and acoustic-electric conversions of the transducers are significant for
practical applications. Because of the adequate capacity of the piezoelectric materials to
convert electrical energy into mechanical energy and vice versa, they have been widely ap-
plied to the making of acoustic transducers with the advantages of low noise [6], low power
consumption [7], and smaller mechanical size. Piezoelectric transducers have also been
popularly used in internet and mobile communication [8,9], intravascular ultrasound [10],
biometric identification [11], implantable micro-devices [12], and various electronic devices.

Researchers and engineers have extensively investigated the physical properties of
the thin cylindrical piezoelectric transducers and other types of piezoelectric transducers
with different shapes and polarization modes. Williams discussed a method for calculating
the acoustic signal radiated by a thin-cylindrical transducer [13]. Fenlon used a weighted
residual method to calculate the feature of acoustic radiation of a finite-length cylindrical
transducer [14]. Wang and Lai discussed the influence of the thin cylindrical transducers
on the radiated acoustic field by varying their radius and thickness [15]. Li et al. calculated
and measured the conversion efficiency of spherical shell transducers using three different
methods [16]. Adelman et al. derived the characteristic equations of the resonant and
anti-resonant frequencies of some radially polarized cylindrical transducers. They also
discussed the effects of the transducer’s inner and outer radii and boundary conditions
on the electromechanical coupling factors [17,18]. Wang solved the motion equation
of the thin cylindrical transducer under the conditions of tangential polarization with
freeloading and studied the transmitting and receiving characteristics of the transducer [19].
Piqtuette studied the transient response of a transducer that was excited by a sinusoidal
electric-voltage signal and gave the corresponding electric–acoustic equivalent circuit of
the transducer, aiming to improve the calibration accuracy of the transducer [20,21]. In
many cases, however, the driving electrical-voltage signal and the acoustic signal arriving
at the receiving transducer contain many frequency components with different magnitudes
and initial phases.

Based on Fourier transformation and the linear superposition principle, Fa and Zhao
et al. put forward a circuit network model of electric-acoustic and acoustic-electric con-
versions to describe the transient response of the transducers. They applied the model
to radially polarized thin spherical shell transducers excited with multifrequency signals,
derived analytical expressions of the radiated acoustic signal, and performed numerical
calculation and experimental verification [22]. They reported the transient response charac-
teristics of the radially polarized thin cylindrical piezoelectric transducers commonly used
in actual acoustic logging [23].

This paper reports the efficiency of electric-acoustic conversion, frequency response
characteristics, center frequency, and resonant frequency of tangentially polarized thin
cylindrical piezoelectric transducers used in acoustic logging. The calculations and experi-
mental measurements show that the tangentially polarized thin cylindrical transducers
have higher electric–acoustic conversion efficiency than radially polarized thin cylindrical
piezoelectric transducers. Using the tangentially polarized thin cylindrical transducers as
acoustic sources and receivers in the acoustic logging tool may significantly increase the
amplitude of the measured acoustic-logging signal.

2. Theoretical Model
2.1. Equation of Motion for Excitation Response of the Transducer

Let us use a cylindrical coordinate system to discuss and analyze the tangentially
polarized thin cylindrical piezoelectric transducers. Now, we consider a microvolume
element (dV) from the thin cylindrical piezoelectric transducer with a corresponding
circumference angle (dϕ), thickness (dρ), height (dz), and volume (ρdϕdρdz), as shown in
Figure 1.
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The stress on a microvolume element in the transducer is related to its spatial position.

The microvolume has three pairs of surface elements:
→
S 1 and

→
S 2,

→
S 3 and

→
S 4, as well as

→
S 5 and

→
S 6. Each of these surfaces corresponds to one stress that is normal to the surface

and two tangential stresses. For the inner radial surface, the stresses should be noted by
Tρ(ρ, ϕ, z), Tρϕ(ρ, ϕ, z), and Tρz(ρ, ϕ, z) respectively. The spatial position has an increment
dρ in the radial direction, leading to material stresses: one is normal to, and two are

shearing over the surface on the outer radial surface (
→
S 2), which are defined by

T′ρ = Tρ(ρ + dρ, ϕ, z) (1)

T′ρϕ = Tρϕ(ρ + dρ, ϕ, z) (2)

T′ρz = Tρz(ρ + dρ, ϕ, z) (3)
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Figure 1. Schematic diagram of a microvolume element.

There are different stresses on each section of the microvolume element inside the
thin cylindrical piezoelectric transducer, including vertical and shear stresses, as shown in
Figure 2.

By applying the Taylor expansion on Formulas (1)–(3) at the space position of (ρ, ϕ, z),
we can get

T′ρ = Tρ(ρ + dρ, ϕ, z) = Tρ(ρ, ϕ, z) +
∂Tρ(ρ, ϕ, z)

∂ρ
dρ +

1
2

∂2Tρ(ρ, ϕ, z)
∂ρ2 (dρ)2 + . . . . (4)

T′ρϕ = Tρϕ(ρ+ dρ, ϕ, z) = Tρϕ(ρ, ϕ, z) +
∂Tρϕ(ρ, ϕ, z)

∂ρ
dρ+

1
2

∂2Tρϕ(ρ, ϕ, z)
∂ρ2 (dρ)2 + . . . . (5)

T′ρz = Tρz(ρ + dρ, ϕ, z) = Tρz(ρ, ϕ, z) +
∂Tρz(ρ, ϕ, z)

∂ρ
dρ +

1
2

∂2Tρz(ρ, ϕ, z)
∂ρ2 (dρ)2 + . . . . (6)

We may simplify Equations (4)–(6) by eliminating higher-order terms

T′ρ = Tρ(ρ, ϕ, z) +
∂Tρ(ρ, ϕ, z)

∂ρ
dρ (7)

T′ρϕ = Tρϕ(ρ, ϕ, z) +
∂Tρϕ(ρ, ϕ, z)

∂ρ
dρ (8)
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T′ρz = Tρz(ρ, ϕ, z) +
∂Tρz(ρ, ϕ, z)

∂ρ
dρ (9)

There are three stresses on the lateral surface (
→
S 3): one that is normal to and two

that are tangential to the surface, i.e., Tϕ(ρ, ϕ, z), Tϕρ(ρ, ϕ, z), and Tϕz(ρ, ϕ, z). The spatial

position of the lateral surface (
→
S 4) has an increment dϕ in the tangential direction with the

stresses on this surface (one normal to and two shearing over the surface) as

T′ϕ = Tϕ(ρ, ϕ, z) +
∂Tϕ(ρ, ϕ, z)

∂ϕ
dϕ (10)

T′ϕρ = Tϕρ(ρ, ϕ, z) +
∂Tϕρ(ρ, ϕ, z)

∂ϕ
dϕ (11)

T′ϕz = Tϕz(ρ, ϕ, z) +
∂Tϕz(ρ, ϕ, z)

∂ϕ
dϕ (12)

There are three stresses on the lateral surface (
→
S 5): one that is normal to and two

that are tangential to the surface, i.e., Tz(ρ, ϕ, z), Tzϕ(ρ, ϕ, z), and Tzρ(ρ, ϕ, z). The spatial

position of the top surface
→
S 6 has an increment in the z-axis direction, and the stresses on

the surface (
→
S 6) are

T′z = Tz(ρ, ϕ, z) +
∂Tz(ρ, ϕ, z)

∂z
dz (13)

T′zρ = Tzρ(ρ, ϕ, z) +
∂Tzρ(ρ, ϕ, z)

∂z
dz (14)

T′zϕ = Tzϕ(ρ, ϕ, z) +
∂Tzϕ(ρ, ϕ, z)

∂z
dz (15)

In the equations above, the first letter of the subscript indicates the direction that is
normal to the outer surface of the microvolume element, and the second letter indicates the
direction of the stress.
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As shown in Figure 2, the microvolume element is affected by four stresses in the

tangential direction (ϕ) of the transducer. On the surface (
→
S 1), there is a geometrical angle

(dϕ/2) between the dotted-line segment (JK) and the Tρϕ shear stress; the same angle
(dϕ/2) also holds between the dotted-line segment (JK) and the physical stresses on the
other five surfaces. So, the resultant force in the tangential direction is
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Fϕ =
[
(ρ + dρ)T′ρϕ − ρTρϕ

]
dzdϕ+(T′ϕ − Tϕ

)
dρdz cos( dϕ

2 )+(T′ϕρ + Tϕρ

)
dρdz sin( dϕ

2 ) +
(

T′zϕ − Tzϕ

)
ρdρdϕ

=
[

∂Tρϕ(ρ,ϕ,z)
∂ρ ρ + Tρϕ(ρ, ϕ, z) + ∂Tρϕ(ρ,ϕ,z)

∂ρ dρ
]
dρdzdϕ +

∂Tϕ(ρ,ϕ,z)
∂ϕ dρdzdϕ cos( dϕ

2 )

+
[
2Tϕρ(ρ, ϕ, z) + ∂Tϕρ(ρ,ϕ,z)

∂ϕ dϕ
]
dρdz sin( dϕ

2 ) +
∂Tzϕ(ρ,ϕ,z)

∂z ρdϕdρdz

(16)

Similarly, there are four forces along the radial direction (ρ) of the transducer. These
forces lead to a geometrical angle (π/2− dϕ/2) between the dotted-line segment (JK)

and the stress (Tρϕ) normal to the surface (
→
S 1). The (π/2− dϕ/2) also holds between the

dotted-line segment (JK) and the various physical stresses on the other five surfaces in the
radial direction. So, the resultant force in the radial direction is

Fρ =
[
(ρ + dρ)T′ρ − ρTρ

]
dzdϕ+(T′ϕρ − Tϕρ

)
dρdz cos

(
dϕ
2

)
−
(

T′ϕ + Tϕ

)
dρdz cos

(
π
2 −

dϕ
2

)
+
(

T′zρ − Tzρ

)
ρdρdϕ

=
[

∂Tρ(ρ,ϕ,z)
∂ρ ρ + Tρ(ρ, ϕ, z) + ∂Tρ(ρ,ϕ,z)

∂ρ dρ
]
dρdzdϕ +

∂Tϕρ(ρ,ϕ,z)
∂ϕ dρdzdϕ cos

(
dϕ
2

)
−
[
2Tϕ(ρ, ϕ, z) + ∂Tϕ(ρ,ϕ,z)

∂ϕ dϕ
]
dρdz sin

(
dϕ
2

)
+

∂Tzρ(ρ,ϕ,z)
∂z ρdϕdρdz

(17)

Along the z-axis direction of the transducer, there are three main forces: the shear

stresses (Tρz and T′ρz) over the surfaces
→
S 1 and

→
S 2; the shear stresses (T′ϕz and Tϕz) over the

surfaces
→
S 5 and

→
S 5; and the stresses (T′zz and Tzz) that are normal to surfaces

→
S 5 and

→
S 6.

So, the resultant force in the z-axis direction is

Fz =
[
(ρ + dρ)T′ρz − ρTρz

]
dzdϕ+(T′ϕz − Tϕz

)
dρdz+(T′z − Tz)ρdϕdρ

=
[

∂Tρz(ρ,ϕ,z)
∂ρ ρ + Tρz(ρ, ϕ, z) + ∂Tρz(ρ,ϕ,z)

∂ρ dρ
]
dρdzdϕ +

∂Tϕz(ρ,ϕ,z)
∂ϕ dρdzdϕ + ∂Tz(ρ,ϕ,z)

∂z ρdρdϕdz
(18)

According to Newton’s Second Law, we have

Fϕ = m
∂2uϕ

∂t2 = ρmρdϕdρdz
∂2uϕ

∂t2 (19)

Fρ = m
∂2uρ

∂t2 = ρmρdϕdρdz
∂2uρ

∂t2 (20)

Fz = m
∂2uz

∂t2 = ρmρdϕdρdz
∂2uz

∂t2 (21)

In Equations (19)–(21), m and ρm are the mass and density of the microvolume element,
respectively. Since the value dϕ

2 is minimal, we have sin dϕ
2 ≈

dϕ
2 and cos dϕ

2 ≈ 1. After
combining Equations (16)–(21), we obtain

ρm
∂2uϕ

∂t2 =
∂Tρϕ(ρ,ϕ,z)

∂ρ +
Tρϕ(ρ,ϕ,z)

ρ − 1
ρ

∂Tρϕ(ρ,ϕ,z)
∂ρ dρ + 1

ρ
∂Tϕ(ρ,ϕ,z)

∂ϕ +
Tϕρ(ρ,ϕ,z)

ρ + 1
2ρ

∂Tϕρ(ρ,ϕ,z)
∂ϕ dϕ +

∂Tzϕ(ρ,ϕ,z)
∂z (22)

ρm
∂2uρ

∂t2 =
∂Tρ(ρ,ϕ,z)

∂ρ +
Tρ(ρ,ϕ,z)

ρ − 1
ρ

∂Tρ(ρ,ϕ,z)
∂ρ dρ + 1

ρ
∂Tϕρ(ρ,ϕ,z)

∂ϕ − Tϕ(ρ,ϕ,z)
ρ + 1

2ρ
∂Tϕ(ρ,ϕ,z)

∂ϕ dϕ +
∂Tzρ(ρ,ϕ,z)

∂z (23)

ρm
∂2uz

∂t2 =
∂Tρz(ρ, ϕ, z)

∂ρ
+

Tρz(ρ, ϕ, z)
ρ

− 1
ρ

∂Tρz(ρ, ϕ, z)
∂ρ

dρ +
1
ρ

∂Tϕz(ρ, ϕ, z)
∂ϕ

+
∂Tz(ρ, ϕ, z)

∂z
(24)
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We obtain the simplified equations of motion of the thin cylindrical piezoelectric
transducer by ignoring the higher-order terms

ρm
∂2uϕ

∂t2 =
∂Tρϕ(ρ, ϕ, z)

∂ρ
+

1
ρ

∂Tϕ(ρ, ϕ, z)
∂ϕ

+
∂Tzϕ(ρ, ϕ, z)

∂z
+

2Tρϕ(ρ, ϕ, z)
ρ

(25)

ρm
∂2uρ

∂t2 =
∂Tρ(ρ, ϕ, z)

∂ρ
+

1
ρ

∂Tϕρ(ρ, ϕ, z)
∂ϕ

+
∂Tzρ(ρ, ϕ, z)

∂z
+

Tρ(ρ, ϕ, z)− Tϕ(ρ, ϕ, z)
ρ

(26)

ρm
∂2uz

∂t2 =
∂Tρz(ρ, ϕ, z)

∂ρ
+

1
ρ

∂Tϕz(ρ, ϕ, z)
∂ϕ

+
∂Tz(ρ, ϕ, z)

∂z
+

Tρz(ρ, ϕ, z)
ρ

(27)

Knowing that the thickness of the thin cylindrical transducer is much smaller than
its average radius, we have approximately the average radius ρ0 = (ρa + ρb)/2, noting
that ρa and ρb are the inner and outer radii of the transducer. Under this condition, the
wave from the radial stress does not form inside the thin cylindrical transducer, i.e., the
radial stress is roughly a constant. The acoustic field is dynamic so that we can take it to be
Tρ(ρ, ϕ, z) = 0.

Compared with the transducer’s side surface, its cross-section is tiny, so the contri-
bution of the stress in the axis (z) direction on the acoustic field outside the transducer
can be neglected. Again, because there is no shear wave in the coupling fluid around the
transducer, we can infer that the stresses in the tangential (ϕ) direction do not contribute
to the acoustic field outside the transducer. So, in the following acoustic-field analysis
outside the transducer, we only consider Equation (26), i.e., the vibration component of
the transducer in the radius (ρ) direction. Due to the axial symmetry of the transducer’s
particle motion, the shear stress components in the radial and circular orders are also zero,
i.e., Tρz(ρ, ϕ, z) = Tρϕ(ρ, ϕ, z) = Tzϕ(ρ, ϕ, z) = 0. Therefore, Equation (26), i.e., the motion
equation of the thin cylindrical transducer, can be simplified as:

ρm
∂2uρ

∂t2 = −
Tϕ(ρ, ϕ, z)

ρ
(28)

2.2. Electric-Mechanical Equivalent Network for Tangentially Polarized Thin Cylindrical
Piezoelectric Transducers

Figure 3a shows the structure of a tangentially polarized thin cylindrical piezoelectric
transducer. The transducer is formed by bonding N piezoelectric ceramic arc-slices with
the same radii. The average radius of the arc-slices is ρ0, the thickness is lt, the height is H,
and the density is ρm, where ρ0 >> lt. The electrodes are at both ends of the arc length (i.e.,
the sides) of the tangentially polarized piezoelectric ceramic arc-slices. Figure 3b shows the
electrode connection mode with N piezoelectric ceramic arc-slices. The electrodes of all the
arc-slices in the transducer are connected parallelly, applying the same excitation voltage
signal to each adjacent electrode surface.

For the tangentially polarized thin cylindrical piezoelectric transducer, we use 1-, 2-
and 3-axes to express ρ-, z-, and ϕ-axes, respectively, in cylindrical coordinates. Then,
we may write the piezoelectric Equation for the tangentially polarized thin cylindrical
transducer as

Sz = sE
11Tz + sE

13Tϕ + d31Eϕ (29)

Sϕ = sE
31Tz + sE

33Tϕ + d33Eϕ (30)

Dϕ = d31Tz + d33Tϕ + εT
33Eϕ (31)

In Equations (29)–(31), Tz and Tϕ are the stresses along the z-axis and tangential
(circular) direction, respectively. sE

13, sE
31, and sE

33 are the elastic compliance coefficients
under a constant electric field, where sE

13 = sE
31; Sϕ, Dϕ, and Eϕ represent the strain, electric

displacement, and electric field strength along the tangential direction, respectively; d31 and
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d33 are the piezoelectric constants of piezoelectric materials; εT
33 is the dielectric constant of

piezoelectric materials that are under constant stress.
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Under the condition H >> lt, when applying parallel-connected excitations to the
piezoelectric ceramic arc-slices in the transducer, as shown in Figure 3b, the direction of the
electric field strength inside the transducer is pointing to the direction of the circumference
(tangential). We may imagine no axial-stress wave inside the transducer nor axial strain,
leading to the simplified piezoelectric equations

Sϕ = sE
33Tϕ + d33Eϕ (32)

Dϕ = d33Tϕ + εT
33Eϕ (33)

To solve the equations of motion, we may rewrite the stress that is normal to the
tangential surface as

Tϕ =
Sϕ − d33Eϕ

sE
33

(34)

Substituting Equation (34) into motion Equation (28) leads to

m
∂2uρ

∂t2 = −2πHlt
NsE

33
Sϕ +

2πHltd33

NsE
33

Eϕ (35)

In which m is the mass of each arc-slice in the tangentially polarized thin cylindrical
piezoelectric transducer (m = 2πρ0Hltρm/N).

The thin-cylindrical transducer is surrounded by coupling fluid (silicone oil or trans-
former oil) in an acoustic logging tool. The surface vibration of the transducer causes the
coupling liquid around it to alternately expand and compress, thereby outwardly radiating
acoustic wave signals, and the acoustic field (force) generated in the surrounding medium
also acts on the transducer with the strength

Fr = −R(
k2ρ2

0
1 + k2ρ2

0
+ i

kr0ρ2
0

1 + k2ρ2
0
)

duρ

dt
= −(Rr + iXr)

duρ

dt
(36)

The symbols in Equation (36) stand for the density of the coupling liquid (ρ f ), the
phase velocity of harmonic wave (v f ), the wave number in the coupling liquid (k), the

radiation resistance (Rr = R k2ρ2
0

1+k2ρ2
0
), the radiation reactance (Xr = R kρ0

1+k2ρ2
0
), the symbol for

imaginary number (i), and R = 2πρ0Hρ f v f .
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Additionally, the vibration of the transducer surface will also induce a frictional
resistance force owing to the viscosity of the coupling liquid, which is roughly proportional
to the surface vibration velocity (or particle displacement velocity) of the transducer, and
the direction of this force is opposite to the direction of the vibration, and its amplitude can
be expressed by

Ff = −Rm
duρ

dt
(37)

We have used Rm for the force resistance caused by friction, and its value is related
to the viscosity of the coupling fluid and the contact area between the transducer and the
coupling fluid.

Now, we have the total force acting on the transducer surface

F = Fr + Ff = −(Rr + Rm + iXr)
duρ

dt
(38)

Ref. [24] gives the relation between particle displacement and strain for the tangentially
polarized thin cylindrical piezoelectric transducer as follows

Sϕ =
uρ

ρ0
(39)

Combining Equations (35), (38), and (39), we obtain the state equation vibrating in the
coupling fluid, shown by

m
∂2uρ

∂t2 + (Rr + Rm + iXr)
duρ

dt
+

2πHlt
NsE

33ρ0
uρ =

2πHltd33

NsE
33

Eϕ (40)

Under a harmonic motion (i.e., uρ = u0ej(ωt−kr)), the particle displacement on the
surface (or inside) of a transducer will be

uρ =
2πHltd33/sE

33
−ω2(mr + m) + (Rm + Rr) + 1/Cm

Eϕ (41)

In Equation (41), the elastic stiffness is Cm =
NsE

33ρ0
2πHlt

, and the radiation mass of each

arc-slice on the transducer is mr = Xr
ω . Again, combining Equations (33), (34), and (39)

yields

Dϕ =
d33

sE
33ρ0

uρ + εT
33(1− K2

33)Eϕ (42)

Wherein Equation (44), the electric–mechanical coupling coefficient of the transducer is
K33 = d33√

εT
33sE

33
.

From Gauss’s theorem and the transducer’s excitation manner shown in Figure 3b,
the charge of each arc-slice in the tangentially polarized transducer is the integral of the
electric displacement vector to any closed surface containing the electrode, i.e.,

Q =
∮

S

→
D · d

→
S = lt

∫ H
2

− H
2

DϕdH = ltHDϕ (43)

The transient current between the two electrodes of each arc-slice in a tangentially
polarized transducer is the derivative of the charge Q concerning time. The combination of
Equations (41)–(43) results in the expression of the transient current as follows

I =
dQ
dt

= iωC0V +
φ2V

(Rm + Rr) + iω(m + mr) + (iωCm)
−1 (44)
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Note that V = 2πρ0
N Eϕ is the voltage applied to each piezoelectric ceramic arc-slice;

C0 =
Nlt HεT

33
2πρ0

(1− K2
33) is the static capacitance; φ =

(
Hltd33
ρ0sE

33

)2
is the electric–mechanical

conversion coefficients of the piezoelectric ceramic arc-slice.
Based on Equation (44) for instantaneous current expression, we may establish an

electric–mechanical equivalent circuit for the tangentially polarized thin cylindrical trans-
ducer, as shown in Figure 4.
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transducer: U1(t) is the driving-voltage signal that excites the source transducer; V(t) is the voltage
between two electrodes of each thin arc-slice in the transducer; vρ(t) is the particle displacement
velocity on the surface of the transducer; R0 is the output resistance of the driving circuit.

We may convert the electric–acoustic equivalent circuit in the time domain, as shown
in Figure 4, to the s-domain to achieve the desired acoustic-electric impulse response. Since
the acoustic-electric conversion of the transducer is the reverse process of the electric-to-
acoustic transformation, we will focus the discussion on the electric-to-acoustic energy
conversion and vice versa.

From Figure 4, we readily obtain the instantaneous current at the electrical terminals
of each arc slice as follows

I = C0
dV
dt

+ φvρ (45)

with the particle displacement velocity of each arc-slice vρ =
duρ

dt and the voltage between
the two electrodes

V = U1(t)− IR0 (46)

According to the electric–acoustic equivalent circuit shown in Figure 4 and the corre-
sponding relationship between the mechanic component and the electric component, we
can obtain the following relationship

V =
1
φ
[(m + mr)

dvρ

dt
+ (Rm + Rr)vρ +

1
Cm

∫
vρdt] (47)

dV
dt

=
1
φ
[(m + mr)

d2vρ

dt2 + (Rm + Rr)
dvρ

dt
+

vρ

Cm
] (48)

The combination of Formulas (45)–(48) leads to

d2vρ

dt2 + a
dvρ

dt
+ bvρ + c

∫
vρdt = dU1 (49)

In which, a = Rm+Rr
m+mr

+ 1
R0C0

, b = Rm+Rr
(m+mr)R0C0

+ 1
(m+mr)Cm

+ φ2

(m+mr)C0
, c = 1

(m+mr)C0CmR0
,

d = φ
(m+mr)C0R0

.

We define the electric-acoustic conversion system function of the arc-slices in the
tangentially polarized thin cylindrical transducer as the ratio of the particle displacement
velocity to the excitation signal source voltage. By applying the Laplace transform to
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Formula (49), we have the electric–acoustic conversion function of the piezoelectric arc-
slice as follows

H1(s) =
ds

s3 + as2 + bs + c
(50)

The denominator of Formula (50) is a cubic polynomial for s, with cube-roots as its
singularities. By solving the cubic polynomial s3 + as2 + bs + c, the three singularities of
the electric–acoustic conversion function are

s1 = x + y− a/3 (51)

s2,3 = −(x + y)/2− a/3± i
√

3(x− y)/2 (52)

where, x = 3
√
−q/2 +

√
D, y = 3

√
−q/2−

√
D, p = b − a2/3, q = c + 2a3/27− ab/3,

D = (p/3)3 + (q/2)2.
Based on the residue theorem, we solve the function for the impulse response of the

electric–acoustic conversion of piezoelectric arc-slice such that

h1(t) =
3

∑
j=1

Res
[

H1(sj)e
sjt
]

(53)

where, {j} = {1, 2, 3}. For the cases of D < 0, D = 0, and D > 0, the analytical expressions of
the electric–acoustic impulse response of the transducer can be obtained as follows:

h1(t) =



A1 exp(−α1t) +
[

B1ch
(√

3Bt
)
+ C1sh

(√
3Bt
)]

exp(−β1t), D < 0

A2 exp(−α1t) + B2 exp(−β1t) + C2t exp(−β1t), D = 0

A3 exp(−α1t) + B3 exp(−β1t) cos(ω1t + ϕ1) D > 0
(54)

The coefficients A1, B1, C1, A2, B2, C2, A3, and B are from the physical and geometrical
parameters, the number of arc-slices in the transducer, and the physical parameters of
the surrounding coupling medium. Equations (54) correspond to three motion modes of
particles in the arc-slices, which are overdamped, critically damped, and underdamped
(oscillating), respectively.

The physical parameters of the polarized piezoelectric ceramic material provide the
information that the piezoelectric ceramic arc-slice can only be in underdamped-motion
mode, i.e., only in oscillation mode. Therefore, we need only to discuss the case of D > 0. If
defining A = (x + y)/2, B = (x − y)/2, β = A + a/3, α = a/3− 2A and σ = β− α, then the
physically meaning solution of Equation (54) consists of a direct-current damping term and
a damping oscillation term. It describes the characteristics of the electric–acoustic impulse
response of the piezoelectric ceramic arc-slice, where the coefficients are A3 = −dα

σ2+3B2 ,

B3 = − d(α−β)
σ2+3B2 , ω1 =

√
3B, and ϕ1 = arctan βσ+3B2

√
3B(σ−β)

. Now, we can write the resonant

frequency of the piezoelectric ceramic arc-slice as

fn =
ωn

2π
=

√
3B

2π
(55)

The subscripts n = {0, 1} indicate that the transducer is free-mechanically loaded and
mechanically loaded.

It is worth noting that the resonant frequency is only from the contribution of the
damping oscillation term in Equation (54), while the center frequency of the transducer
(or piezoelectric arc-slice) is from both the damping direct-current term and the damping
oscillation term in Equation (54).
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3. Numerical Calculation and Analysis

We selected the tangentially polarized thin cylindrical piezoelectric transducer com-
posed of twelve piezoelectric ceramic arc-slices (N = 12). The piezoelectric ceramic material
forming the arc-slices is PZT-5H, with its physical and geometrical parameters shown in
Table 1.

Table 1. The piezoelectric material is the physical parameters of PZT-5H and the geometrical
parameters of the transducer.

Physical Symbol Unit Value

sE
11 m2 ·N · 10−12 16.5

sE
33 m2 ·N · 10−12 20.7

εT
33 F ·m−2 3.01× 10−8

d31 m ·V−1 · 10−12 −274

d33 m ·V−1 · 10−12 593

ρa mm 21

H mm 35

vm m · s−1 425

ρm kg ·m−3 856.5

3.1. Resonant Frequency of Thin Cylindrical Piezoelectric Transducer

We define a transducer in a vacuum as non-mechanically loaded, i.e., sRm = Rr = mr = 0.
The resonant frequency is the free resonant frequency f0. In the case of a mechanically
loaded transducer, the transducer is installed stationarily in the coupling liquid, and we
denote the transducer’s resonant frequency as f1.

As an example for calculation, we selected a frictional resistance between the trans-
ducer’s surface and the coupling liquid (transformer oil) Rm = 0.2R and noted the rela-
tionship R = 2πr0Hρmvm. After invoking both Equation (55) and the definition of the
resonant frequency of the radially polarized piezoelectric thin cylindrical transducer in
Equation (19) of Ref. [23] and applying the parameters in Table 1, we calculated the rela-
tions of f0 and f1 versus ρ0 for the tangentially and radially polarized piezoelectric thin
cylindrical transducers, as shown in Figure 5a,b.

Figure 5a shows that for transducers of an average radius ρ0 = 19.75 mm, the tangen-
tially polarized transducer values are 24.450 kHz and 22.570 kHz, respectively. The radially
polarized transducer values are at 23.180 kHz and 21.000 kHz (see Figure 5b). The free and
the loaded resonant frequencies ( f0 and f1) of the tangentially polarized transducers are
higher than those of the radially polarized transducers, respectively. Due to the mechanical
load of the transformer oil, which is the coupling medium around the transducer, the
loading resonant frequency is lower than the free resonant frequency for transducers with
the same geometrical size. As shown in Figure 5, the calculated frequencies ( f0 and f1)
decreased as the average radius (ρ0) increased.
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Figure 5. Relationship of both the free resonant frequency f0 and loading resonant frequency f1

versus its average radius ρ0 of tangentially and radially polarized thin cylindrical piezoelectric
transducers. The dotted line is the case with free mechanical load, and the solid line is that with the
mechanical load. (a) Tangentially polarized thin cylindrical piezoelectric transducer; (b) Radially
polarized thin cylindrical piezoelectric transducer.

3.2. Impulse Response of Electric–Acoustic Conversion

We used the same materials as in Table 1 and built the transducers with the same
geometrical size but different polarizations: radially polarized and tangentially polarized.
The tangentially polarized transducers are always in an oscillation mode to be physically
meaningful like the radially polarized transducers.

Figure 6 presented the calculated electric–acoustic impulse response results and the
corresponding amplitude spectrum for both kinds of polarized transducers. For example,
the solid lines were for the tangentially polarized thin cylindrical transducer, and the
dashed lines were for the radially polarized thin cylindrical transducer. The physical
quantities in Figure 6 are the electric–acoustic impulse responses of the tangentially and
radially polarized thin cylindrical transducers (h1(t) and h2(t)), the corresponding ampli-
tude spectra (H1( f ) and H2( f )), and the measured frequency response (H3( f )), as well as
the maximum values (h1max(t), H1max( f ), and H3max( f )).

Figure 6a shows that the electric–acoustic impulse response’s initial phase of the tan-
gentially polarized transducer is different from that of the radially polarized piezoelectric
transducer. Figure 6b showed that either the tangentially polarized transducer or radially
polarized transducer could be equivalent to a bandpass filter. The calculated results also
showed that:

(i) On the peaks of the absolute values of electric–acoustic impulse response and sys-
tem function, the tangentially polarized thin cylindrical transducers were more
pronounced than that of the radially polarized thin cylindrical transducers. The
electric–acoustic conversion characteristics of the former were better than that of the
latter.

(ii) The tangentially polarized transducer’s loading center frequency ( fc) is 22.130 kHz,
lower than the corresponding loading resonant frequency ( f1 = 22.570 kHz). The
radially polarized transducer’s loading center frequency ( fc) is 21.210 kHz, also lower
than its corresponding resonant frequency ( f1 = 21.250 kHz).



Micromachines 2021, 12, 1333 13 of 23Micromachines 2021, 12, x 14 of 24 
 

 

 
Figure 6. The normalized electric–acoustic impulse responses and corresponding amplitude spectra 
of the tangentially and radially polarized thin cylindrical piezoelectric transducers. The solid and 
dashed lines are for the tangentially and radially polarized thin cylindrical transducers, respec-
tively. The dotted line is the experimentally measured amplitude spectrum of tangentially polarized 
thin cylindrical transducers. Where, 1 1 1max( ) ( ) /nh t h t h= , 2 2 1max( ) ( ) /nh t h t h= , 

1 1 1max( ) ( ) /nH f H f H= , 2 2 1max( ) ( ) /nH f H f H=  and 3 3 3max( ) ( ) /nH f H f H= . (a) Impulse re-
sponse, (b) Amplitude spectrum. 

Figure 6a shows that the electric–acoustic impulse response's initial phase of the tan-
gentially polarized transducer is different from that of the radially polarized piezoelectric 
transducer. Figure 6b showed that either the tangentially polarized transducer or radially 
polarized transducer could be equivalent to a bandpass filter. The calculated results also 
showed that: 
(i) On the peaks of the absolute values of electric–acoustic impulse response and system 

function, the tangentially polarized thin cylindrical transducers were more pro-
nounced than that of the radially polarized thin cylindrical transducers. The electric–
acoustic conversion characteristics of the former were better than that of the latter. 

(ii) The tangentially polarized transducer's loading center frequency ( cf ) is 22.130 kHz, 
lower than the corresponding loading resonant frequency ( 1f = 22.570 kHz). The 
radially polarized transducer's loading center frequency ( cf ) is 21.210 kHz, also lower 
than its corresponding resonant frequency ( 1f = 21.250 kHz). 
The loading resonant frequency is from the contribution of the damping oscillation 

of the higher-frequency components, as shown in Equation (54). In contrast, the loading 
center frequency results from direct-current damping with lower frequencies and the 
damping oscillation of the higher-frequency components, as shown in Equation (54). 
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equivalent circuit depend on frequency, and the actual driving-voltage signal usually con-
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Figure 6. The normalized electric–acoustic impulse responses and corresponding amplitude spec-
tra of the tangentially and radially polarized thin cylindrical piezoelectric transducers. The solid
and dashed lines are for the tangentially and radially polarized thin cylindrical transducers, re-
spectively. The dotted line is the experimentally measured amplitude spectrum of tangentially
polarized thin cylindrical transducers. Where, h1n(t) = h1(t)/h1max, h2n(t) = h2(t)/h1max,
H1n( f ) = H1( f )/H1max, H2n( f ) = H2( f )/H1max and H3n( f ) = H3( f )/H3max. (a) Impulse re-
sponse, (b) Amplitude spectrum.

The loading resonant frequency is from the contribution of the damping oscillation of
the higher-frequency components, as shown in Equation (54). In contrast, the loading center
frequency results from direct-current damping with lower frequencies and the damping
oscillation of the higher-frequency components, as shown in Equation (54).

3.3. Driving-Voltage Signal and Radiated Acoustic-Signal

The above analysis showed that the radiated acoustic signal resulted from the com-
bined action of the transducer’s electric–acoustic conversion characteristics and the driving
volage-signal. The radiation resistance and radiation mass in an electric–acoustic equiva-
lent circuit depend on frequency, and the actual driving-voltage signal usually contains
many frequency components.

Invoking the knowledge of single-frequency excitation and Fourier transforms, we
can accomplish multifrequency driving-voltage excitation. Figure 7 shows a schematic
presentation of the transducer’s electric-acoustic equivalent circuit, a parallel transmission
network handling multifrequency signal transmission. Each frequency component of the
driving-voltage signal is the input signal of the corresponding equivalent circuit in the
transmission network.
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Figure 7. Parallel transmission network model of multifrequency driving-voltage signal U(t) exciting
transducer: N is the total number of sinusoidal frequency components in the driving-voltage signal;
Uj is the jth sinusoidal frequency component in the driving-voltage signal; vρj is the jth sinusoidal
frequency component of the surface vibration velocity of the transducer; hj (t, ωj) is the electric–
acoustic impulse response of the transducer corresponding to the jth sinusoidal frequency component.

For the driving-voltage signal U(t), we define the amplitude spectrum S(ω) and phase
spectrum φU(ω) and use an N-point discrete Fourier transform to decompose U(t) into N
frequency components, with each frequency component

Uj(t) =
∣∣S(ωj)

∣∣ cos
[
ωjt + φU(ωj)

]
(56)

where, j = 1, 2, 3...... N, S(ωj) and φU(ωj) are the amplitude and initial phase of the jth

sinusoidal frequency component.
The normalized signal of the driving voltage is then

U(t) =
N

∑
j=1

Uj(t)/max[|
N

∑
j=1

Uj(t)|] (57)

As shown in Figure 7 in the parallel equivalent electric–acoustic network, the output
of the jth circuit is the convolution of the jth sinusoidal frequency component in the driving-
voltage signal U(t) with the electric–acoustic impulse response of the jth equivalent-circuit,
which is

vρj(t)
∣∣
ωj

= [Uj(t) ∗ hj(t)]
∣∣
ωj

(58)

Then, the normalized expression of the vibration velocity on the transducer’s surface
(i.e., the radiated acoustic signal) is

vρ(t) =
N

∑
j=1

vρj(t)
∣∣
ωj

/max[|
N

∑
j=1

vρj(t)
∣∣∣ωj

∣∣∣] (59)

For acoustic signal radiating out of the transducers, it is necessary to know the fre-
quency components in the driving-voltage signal and the electric-acoustic impulse response
of each circuit in the parallel equivalent network of the transducer. Below we use the gated
sinusoidal driving-voltage signal as an example to perform analysis and discussion. In
excitation of transducers, we express a gated sinusoidal signal in the time and frequency
domains as

U(t) = [H(t)− H(t− t0)]U0 sin(ωst) (60)

and

S = U0
ωs − (ωs cos ωst0 + iω sin ωst0) exp[−iωt0]

ω2
s −ω2 (61)
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The corresponding phase spectrum is

φU(ω) = atan
Im[S(ω)]

Re[S(ω)]
(62)

The essential factors are the angular frequency (ωs) of the gated sinusoidal driving-
voltage signal and the gate width (t0). One example of the amplitude of the driving-voltage
signal is 1 V, and the gate width is three sinusoidal signal cycles (i.e., t0 = 6π/ωs).

We specifically selected the loading center frequency ( fc = 22.130 KHz) of the tangen-
tially polarized thin cylindrical piezoelectric transducer as the frequency ( fs) of the gated
sinusoidal driving voltage to ensure the accuracy of the calculations. Figure 8 shows that
the center frequency of the gated sinusoidal driving signal is 21.760 kHz, which is slightly
lower than the loading center frequency ( fs = 22.130 kHz) of the tangentially polarized
transducer but marginally higher than that ( fc = 21.210 kHz) of the radially polarized
transducer. Figure 8c shows the time-domain waveform of the gated sinusoidal driving-
voltage signal calculated from Equation (60) at fc = 22.130 kHz and that synthesized with
its amplitude spectrum (see Figure 8a) and phase spectrum (see Figure 8b), where they
were in good agreement.
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We decomposed the gated sinusoidal driving-voltage signal into a series of sinusoidal
components with different frequencies, amplitude, and initial phases. And each sinusoidal
component was regarded as an independent excitation source for the corresponding circuit
in the parallel network shown in Figure 7.

Figure 9a–d show the radiated acoustic waveforms that occurred when the tangen-
tially polarized thin cylindrical piezoelectric transducer was excited by several sinusoidal
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components selected from the gated sinusoidal driving-voltage signal with a frequency
fs = 22.130 KHz.
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Figure 9. The convolution of the sinusoidal frequency components selected from the gated sinu-
soidal driving-voltage signal with the electric–acoustic impulse responses corresponding to the
circuits in the parallel-connected network of a tangentially polarized thin cylindrical transducer.
The curves (a–d) are the convolutions for selected frequency components at f = 0.1 fs, 0.2 fs, 0.5 fs,
and 1.5 fs, where fs = 22.130 KHz, t0 = 3/ fs, vρj(t) is the particle displacement velocity of the
transducer’s lateral surface corresponding to the frequency components selected from the gated
sinusoidal driving-voltage signal, where {j} = {1, 2, 3, 4}.

The calculated results show a transient transition process for each equivalent circuit
in the parallel network upon excitation of the transducer, followed by a stable sinusoidal
vibration with the corresponding frequency.

In this method, several sinusoidal components, selected from the gated sinusoidal
driving-voltage signal, acted to excite the radially polarized thin cylindrical piezoelectric
transducer, similar to what was reported in the literature [23].

The solid lines in Figure 10a,b are the cumulative output of all of the circuits in
the parallel electric–acoustic network, as shown in Figure 7, namely, the waveform and
amplitude spectrum of the lateral-surface vibration velocity for the tangentially polarized
transducer with the loading center frequency of 22.130 kHz. Using a similar method and
according to both Ref. [23] and the parameters in Table 1, we calculated the waveform
and amplitude spectrum of the lateral-surface vibration velocity for the radially polarized
transducers with the loading center frequency of 21.210 kHz, as shown in dashed lines of
Figure 6a,b.
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The above-calculated results show that the center frequency of the acoustic signal that
radiated from the tangentially polarized transducer was 21.960 kHz, which is smaller than
the loading center frequency of the tangentially polarized transducer ( fc = 22.130 KHz) but
higher than the center frequency ( fv = 21.760 kHz) of the driving-voltage signal. The center
frequency of the acoustic signal that radiated from the radially polarized transducer was
21.670 kHz, which is greater than the loading center frequency ( fc = 21.210 KHz) of the
radially polarized transducer but smaller than the center frequency ( fv = 21.760 kHz) of
the driving-voltage signal. The center frequency of the acoustic signal that radiated from
the tangentially polarized transducer is greater than that of the acoustic signal emitted by
the radially polarized transducer. These calculated results are reasonable.

From Figure 10, we observed that the acoustic signal radiated from the tangentially
polarized transducer was much greater than that emitted by the radially polarized trans-
ducer, i.e., the tangentially polarized transducer had a higher electric–acoustic conversion
efficiency compared with the radially polarized transducer. This result is significant for
improving the ratio of signal to noise during acoustic measurement.
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Figure 10. Acoustic signals radiated by tangentially polarized and radially polarized thin cylindri-
cal transducers under the excitation of the same gated sinusoidal driving-voltage signal with the
frequency of fs = 22.130 kHz, respectively. (a) Waveform; (b) Amplitude spectrum.

Figures 6b and 10b show that the acoustic source transducer behaves like a bandpass of
electric to acoustic filter that can filter the driving-voltage signal’s low- and high-frequency
components far from the transducer’s loading center. Therefore, the radiated acoustic
signal’s energy converted from the driving-voltage signal is more concentrated in the fre-
quency range near the loading center frequency of the transducer, as shown in Figure 10b.

The calculations and analysis show that the acoustic signal radiated by the transducer
depends not only on the characteristics of the driving-voltage signal but also on the
piezoelectric, physical, geometrical parameters of the transducer and its polarization
direction.

4. Experiment Verification

The experimental setup and measurement protocols are known elsewhere, as provided
as supplemental materials [22,23]. It consists of a mechanical assembly, an electrical
hardware module, and a system software module to control and compute the structure
flowchart. The mechanical assemblage includes steering engines, stepping motors, sliding
rails, and a silencing tank. The electrical hardware comprises a computer for the graphic
interface, an electric-signal waveform generator, a power amplifier, a microcontroller to
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control the space position and direction of the source/receiver, a digitizer with a 16–24 bit,
5–15 MHz sampling rate, and a desktop computer for central control. The details of the
fabrication procedure and the experimental setup were given in Ref. [23].

Based on the physical and geometrical parameters of the piezoelectric material PZT5H
provided in Table 1, we fabricated two tangentially polarized thin cylindrical transducers
and two radially polarized thin-cylindrical transducers for experimental measurement,
as shown in Figure 11. We used the established multifunctional acoustic-measurement
instrument to gauge the transducer’s physical properties within a silencing tank filled with
water. In the Supplemental Materials, we presented the schematic measurement system,
the silencing tank filled with water, the multifunctional acoustic-measurement instruments,
and the measurement system’s human-machine interface, shown in Figures S1–S4. The
hardware of the measurement system also includes a desktop computer.
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4.1. Experimental Measurement of Loading Resonant Frequency of the Tangentially Polarized Thin
Cylindrical Transducer

When a transducer is excited by the sinusoidal electric-voltage signal with an angular
frequency ωj, we may express the oscillation mode of Equation (54) as

h(t)
∣∣∣ωj = A3 exp

(
−α1ωj t

)
+ B3 exp

(
−β1ωj t

)
cos
(

ωjt + ϕ1ωj

)
(63)

and from Equation (50), we can get the system function corresponding to the angular
frequency ωj as follows

H(iω)|ωj =
iωdj

−iω3 − ajω2 + iωbj + cj
(64)

From the knowledge of signal and system, the impulse response refers to the zero-state
response of the LTI system when the excitation is a unit impulse function δ(t) and can also
be noted by

h(t)
∣∣∣ωj = δ(t) ∗ h(t)

∣∣∣
ωj

(65)

When a sinusoidal driving-voltage signal with an angular frequency ωj excites the
transducer, the time-domain response of the transducer corresponding to ωj is

vρ(t)
∣∣∣ωj = sin(ωjt) ∗ h(t)

∣∣∣
ωj

(66)
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The transient state process of the transducer surface vibration gradually disappears
with increasing time t and finally reaches a steady-state vibration with angular frequency
ωj. The frequency spectrum of this steady-state vibration, i.e., the frequency response of
the transducer at ω = ωj,

H(iω)δ(ω−ωj) = H(iωj) (67)

where, {j} = {1, 2, 3 . . . . . . N}.
From Equations (66) and (67), we can obtain the expression of the steady-state vibration

of the transducer in the time domain as follows

vρj =
∣∣H(iωj)

∣∣cos(ωjt + ϕj) (68)

where ϕj = atan
Im{H(iωj)}
Re{H(iωj)} .

We performed the experimental measurement of the frequency response of the tangen-
tially polarized transducer, which was similar to the measurement process of the radially
polarized thin cylindrical transducer.

We used two identical tangentially polarized thin cylindrical transducers composed
of 12 piezoelectric ceramic arc-slices and placed them in a pool filled with water. One
transducer served as the acoustic source transducer, another as the receiving transducer,
and the distance between the two transducers was 60 cm. We used sinusoidal voltage
signals with an amplitude of 20 V and various frequencies to excite the transducer and
regulated the frequency of the sinusoidal voltage signal from 1 Hz to 49 kHz. Figure 6
presents the measured relationship, the dotted-line, between the amplitude of the steady
sinusoidal vibration acoustic signal (i.e., the electric-signal output by the electric terminals
of the receiving transducer) and the frequency of the sinusoidal driving-voltage signal. The
frequency, corresponding to the maximum of the dotted line, is the measured resonant
frequency at 22.500 kHz, which is greater than the loading center frequency (22.130 kHz)
of the tangentially polarized transducer but nearly the transducer’s resonant frequency
(22.570 kHz) from our theoretical prediction. We also observed another interesting phe-
nomenon: the measured frequency response curve formed by two identical tangentially
polarized thin cylindrical transducers was much narrower than the amplitude spectrum
curve of the corresponding transducer. The acoustic-source transducer acted as an elec-
tric acoustic filter, which resulted from the combined action of the electric-to-acoustic
filtering of the acoustic source transducer on the driving-voltage signal and the acoustic-
electrical filtering of the receiving transducer on the acoustic signal arriving at the receiving
transducer.

The acoustic-electric conversion process of the transducer is the reverse of its electric–
acoustic conversion process. During the sinusoidal driving-voltage signal excitation of the
transducer, if the frequency of the sinusoidal driving-voltage signal is close to or equal to
the resonant frequency of the transducer, the amplitude of the sinusoidal acoustic wave
signal that radiates outward from the transducer is larger.

When the frequency of the sinusoidal acoustic wave signal reaching the receiving
transducer is equal to its resonant frequency, the system is in resonance (vibration). The
largest is the measured sinusoidal acoustic signal (i.e., the sinusoidal electric-signal output
by the receiving transducer’s electric terminals). The sinusoidal acoustic wave signal arriv-
ing at the receiving transducer far from the transducer’s resonant frequency is weaker. The
sinusoidal driving-voltage signal passes through the dual filtering effects: the source trans-
ducer’s electric-to-acoustic filtering and the receiver’s acoustic-electric filtering. In other
words, the amplitude spectrum shown by the solid line in Figure 6 is the electric–acoustic
frequency response curve of the acoustic-source transducer. The frequency response of the
measurement system should be the contribution from the electric-to-acoustic filtering of the
source transducer and the acoustic-electric filtering of the receiving transducer. Therefore,
the frequency response curve obtained by the measurement is narrower than the amplitude
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spectrum of the source transducer. The experimental results are in good agreement with
the theoretical prediction.

4.2. Comparision of the Electric–Acoustic Property of the Tangentially Polarized Transducer with
That of the Radially Polarized Transducer

We placed two tangentially polarized transducers in a pool filled with water, and the
distance between the two transducers was 0.6 m. One acted as a source transducer and the
other as a receiving transducer. We used a gated sinusoidal driving-voltage signal whose
gate width was three cycles (i.e., t0 = 6π/ωs) and its amplitude was 20 V to excite the
source transducer. The waveforms [vp1(t)] and amplitude spectra [Vp1( f )] by calculation
and measurement are as shown in Figure 12.
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Figure 12. The system’s calculated waveforms and amplitude spectrum and measurements consist of
two tangentially polarized transducers. The solid lines are theory calculation results, and the dotted
lines are experiment measurements. (a) Waveforms; (b) amplitude spectra.

Then we used two radially polarized transducers to replace two tangentially polarized
transducers and kept other measurement conditions unchanged. Figure 13 shows the
waveforms [vp2(t)] and amplitude spectra [Vp2( f )] from the calculation and the experi-
mentation.

The corresponding maximum value obtained using tangentially polarized transducers
was used to normalize the calculated and measured results in Figures 12 and 13. From
either Figure 12 or Figure 13, we can see that the experimental results agree with the
theoretical calculation results obtained using either the tangentially polarized transducers
or radially polarized transducers. Comparing Figure 12 with Figure 13, the acoustic signals
obtained using tangentially polarized transducers are much greater than those received
using a radially polarized transducer, both for theoretical calculation and experimental mea-
surement. The amplitude of the acoustic signal from the tangentially polarized transducers
is over five times that of the radially polarized transducers.
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5. Conclusions

By analysis, calculation, and experimental measurement of the electric–acoustic con-
version property of tangentially polarized thin cylindrical piezoelectric transducers, we
reach the following conclusions:

(i) We established an electric–acoustic equivalent circuit for the tangentially polarized
thin cylindrical transducer with a single-frequency harmonic vibration by solving the
piezoelectric and motion equations, which serve as the base for the multifrequency
transmission network.

(ii) By invoking the residue principle, we derived the analytical expressions of the electric–
acoustic impulse response and the system function of the tangentially polarized thin
cylindrical transducer with a given single-frequency harmonic vibration. The electric-
acoustic impulse response varies with the transducer’s harmonic vibration frequency.

(iii) The impulse response of the tangentially polarized thin cylindrical transducer con-
sists of one direct-current damping and one damping oscillation (see Equation (54)).
The first term of the frequency components acts in a low-frequency range, and the
second term distributes in a higher-frequency range. The frequency corresponding
to the maximum value of the damping-oscillation term’s amplitude spectrum is the
transducer’s resonant frequency. The loading center frequency corresponds to the am-
plitude spectrum’s maximum of the transducer’s impulse response (the direct-current
damping and the damping-oscillation terms). Therefore, the loading center frequency
of the transducer is lower than its loading resonant frequency.

(iv) The resonant frequency of the transducer decreases with its average radius. So does
its center frequency. The free-loading resonant frequency of the transducer is slightly
greater than its loading resonant frequency.

(v) The measured frequency response curve for the transducer is much narrower than
the calculated amplitude spectrum curve that corresponds to the impulse response
of the transducer. This phenomenon results from the combined action of the electric-
acoustic filtering of the acoustic source transducer on the driving-voltage signal and
the acoustic-electrical filtering of the receiving transducer on the measured acoustic
signal.
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(vi) The radiated acoustic signal is influenced by the shape and size of the transducer,
the physical parameters of piezoelectric material, the polarization mode of the trans-
ducer, and the driving-voltage signal. For transducers of the same size and identical
piezoelectric material, the efficiency of the acoustic signal radiated by the tangentially
polarized thin cylindrical transducer is much higher than that emitted by the radially
polarized thin cylindrical transducer. Using the tangentially polarized thin cylindrical
transducers as sensors in the acoustic-logging tool would significantly improve the
measured acoustic-logging signal-to-noise ratio.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi12111333/s1, Figure S1: the schematic presentation of the experimental measurement
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human-machine interface of the measurement system, Figure S4: the silencing tank filled with water.
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