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Abstract

Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their
different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized
machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the
affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational
modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have
been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific
histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we
show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage
compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X
chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by
RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels.
However, in these animals, the X chromosome–specific localization of the complex is partially disrupted, with some nuclei
displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly,
serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an
autosomal repellant.
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Introduction

Many species- such as humans, mice, flies, and worms- utilize a

chromosome-based mechanism to establish sex. This results in a

difference in sex chromosome number between the sexes that, left

uncorrected, puts one sex at a great selective disadvantage. In

order to combat this, these organisms employ a second mechanism

to ensure that the same amount of sex chromosome-linked gene

expression occurs in both sexes. This mechanism is called dosage

compensation [1–4].

In flies and mammals, specific posttranslational histone

modifications and/or replacement of core histones with variants

are key features of the dosage compensated X chromosomes [5].

Dosage compensation in flies is brought about by the MSL (male-

specific-lethal) complex that localizes to the single X chromosome

in males resulting in a two-fold increase in gene expression [6,7].

The MSL complex is made up of at least five proteins (MSL1 [8],

MSL2 [9], MSL3 [10], MLE [11], and MOF [12]), and one of two

non-coding RNAs (roX 1 and roX2, RNA on the X [13,14]). The

hypertranscribed male X is enriched for histone H4 lysine 16

acetylation (H4K16ac) [15]. MOF (males-absent on the first) places

the H4K16ac mark on the male X and this function is essential for

dosage compensation [16–18]. In mammals, one of the two female

X chromosomes is transcriptionally inactivated [3]. The inactive X

is targeted for silencing by the non-coding RNA, Xist in mice

[19,20], XIST in humans [21], that coats the inactive X

chromosome [22]. This is followed by chromosome-wide histone

H3 lysine 27 tri-methylation (H3K27me3) by Polycomb repressor

complex 2 (PRC2) [23], and histone H2A and H2A.Z mono-

ubiquitylation by Polycomb repressor complex 1 (PRC1) [24,25].

On the inactive X chromosome, there is also an enrichment of

histone H3 lysine 9 dimethylation (H3K9me2) [26] and an

enrichment of the histone variant macroH2A [27]. However,

other modifications and variants are specifically under-represented

on the inactive X: di-, and trimethylation of histone H3 lysine 4

(H3K4me) [26,28], dimethylation of histone H3 arginine 17

(H3R17me2) and H3 lysine 36 (H3K36me2) [29], acetylation of

the N-terminal tails of histones H2A, H3 and H4 [30–32], and the

phosphorylated form of macroH2A1 [33]. These and other

modifications are thought to be vital for the resulting essential

change in X-linked gene expression in male flies and female

mammals.

In C. elegans, dosage compensation is achieved by the dosage

compensation complex (DCC), which binds both X chromosomes

in hermaphrodites to downregulate gene expression two-fold [2].

DPY-27 [34], MIX-1 [35], DPY-26 [36], DPY-28 [37], and

CAPG-1 [38] form a condensin-like complex, condensin IDC.

SDC-2 [39], SDC-3 [40], and DPY-30 [41] are thought to be
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responsible for recruitment of the condensin-like complex, as well

as DPY-21 [39] and SDC-1 [42,43], to the X chromosomes in

hermaphrodites. All DCC proteins, except for SDC-2, are

supplied maternally to the oocyte, and are initially present in

both male and hermaphrodite embryos [2]. SDC-2 is not

contributed maternally, expressed only in hermaphrodites and is

thought to confer both sex-specificity and X-chromosome

specificity to dosage compensation [39]. The DCC initially binds

to rex (recruitment elements on the X) sites, which represent sites of

DCC enrichment on the X chromosome, and spreads in cis along

the lengths of both X chromosomes in the hermaphrodite [44–47].

As a result, gene expression from the two hermaphrodite X

chromosomes is down-regulated by half, thus limiting X-linked

gene products to levels produced in XO males [48]. Condensin

complexes are well known for their roles in affecting chromosome

architecture during mitosis and meiosis [49], so it is believed that

the DCC may be altering the overall organization of the X

chromosomes to dampen gene expression during interphase. A

chromosome-wide architectural change by the DCC condensin

may require or lead to specific modifications to the basic

organizational unit of chromatin, the nucleosome. However, no

nucleosomal changes, such as posttranslational modification of

histones or histone variants, have been previously implicated to

play a role in C. elegans dosage compensation.

While in somatic cells of hermaphrodites the X chromosome is

subject to dosage compensation, in the postembryonic germ line of

both sexes the X is subject to a distinct form of chromosome-wide

regulatory process: global repression throughout meiosis in males

and during early meiosis in hermaphrodites [50]. The maternal

effect sterility (MES) proteins mediate silencing of the germ line X

chromosome and their function is required for germ line viability

[50–52]. Three of the mes genes (mes-2, mes-3, and mes-6) encode

proteins that function together in a PRC2-like complex, which

localizes to the germ line X-chromosome(s) and leads to

enrichment of H3 lysine 27 trimethylation on the X [53–56]. By

contrast, an additional MES protein, MES-4, localizes only to the

autosomes and not X, and its function is necessary for germ line X

silencing [51,57]. Additionally, the silenced germ line X

chromosomes show a significant depletion of activating marks

such as acetylation of the N terminal tail of histone H4 and

methylation of lysine 4 on H3 [50,58].

From studies of dosage compensation in other organisms and of

germ line X chromosome silencing in C. elegans, there are many

well-documented links between different forms of chromosome-

wide gene regulation and specific nucleosome characteristics. This

led us to explore whether we might find a similar link between C.

elegans dosage compensation and nucleosome composition. We

were interested to see if any histone modifications or histone

variants play a functional role in dosage compensation in worms.

In this paper we report on the role of the C. elegans histone H2A.Z

variant (HTZ-1).

The histone variant H2A.Z is conserved from yeast to humans

and has been implicated in diverse biological processes. Interest-

ingly, depending on its histone partner in the nucleosome core

particle, H2A.Z can either stabilize or destabilize the nucleosome

[59]. When partnered with histone H3, the H2A.Z-containing

nucleosome becomes more stable, but when partnered with the

histone variant H3.3, the nucleosome becomes destabilized.

Unstable H2A.Z/H3.3. nucleosomes may function to poise genes

for activation. Consistently, studies in several organisms implicate

H2A.Z in various aspects of transcription activation. In Tetrahy-

mena, hv1/H2A.Z associates with the transcriptionally active

macronucleus [60–62]. Genome-wide localization studies in yeast

[63–66], worms [67], flies [68], plants [69], and humans [70],

revealed that H2A.Z preferentially localizes to 59 ends of genes,

consistent with a role in transcription activation. Loss of Htz1 has

been shown to diminish RNA Pol II binding to promoters, slow

the activation of regulated genes, or prevent rapid reactivation of

recently repressed genes [66,71,72]. A role of HTZ-1 to poise

genes for rapid activation has also been observed in a study of the

C. elegans H2A.Z homolog, HTZ-1 [73].

However, H2A.Z also localizes to regulatory regions not

corresponding to promoters to exert other functions. In budding

yeast, Htz1 also functions at boundary elements to protect genes

from heterochromatinization by antagonizing the spread of

silencing complexes [74]. This antisilencing functions at the global

level, not just locally [75]. Consistent with an antisilencing role, in

plants, H2A.Z antagonizes DNA methylation [69]. H2A.Z also

localizes to insulator elements in chicken [76], and to functional

regulatory elements in human cells [70]. It has been proposed that

in this context, the presence of an H2A.Z/H3.3 labile nucleosome

prevents the spreading of heterochromatic marks [59].

On the other hand, H2A.Z also plays a role in heterochromatin

formation. In this context, H2A.Z most likely partners with H3 to

form stable nucleosomes [59]. In mammals and in flies, H2A.Z

associates with pericentric heterochromatin and interacts with

heterochromatin protein HP1 [77–80]. Mammalian H2A.Z also

becomes incorporated into the inactive XY body following meiosis

[81]. However, H2A.Z is significantly underrepresented and

differentially modified on the mammalian inactive X chromosome

in somatic cells, indicating that H2A.Z enrichment is not a general

feature of all heterochromatin [25,79,82]. Consistent with that,

H2A.Z is not enriched at heterochromatic chromocenters in plants

[69,83].

Here we show that in C. elegans the histone variant H2A.Z/

HTZ-1 functions in dosage compensation. Consistent with

previous reports [67], we find that HTZ-1 is under-represented

on the dosage compensated X chromosomes in somatic nuclei of

hermaphrodites. However, we do not observe HTZ-1 depletion on

the non-dosage compensated X chromosome in male somatic

nuclei. We also see an underrepresentation of HTZ-1 on the silent

Author Summary

In organisms where females have two X chromosomes and
males only have one, a mechanism called dosage
compensation ensures that both sexes receive the same
amount of information from their X chromosomes.
Disruption of dosage compensation leads to lethality in
the affected sex. While the precise mechanisms of dosage
compensation differ between organisms, changes to the
structure of the X chromosomes are involved in each case.
The DNA of all chromosomes is packaged into a complex
protein–DNA structure called chromatin. The most basic
level of packaging involves wrapping DNA around a group
of small proteins called histones. In both mammals and
flies, dosage compensation is associated with specific
changes to the histones on the dosage compensated X
chromosome. Until now, no such change has been
associated with dosage compensation in worms. Here we
present evidence that the histone variant HTZ-1/H2A.Z
plays a role in dosage compensation in the worm.
Specifically, we suggest that HTZ-1 functions to ensure
that only the X chromosomes, and not the other
chromosomes, are subjected to dosage compensation.
This suggests that, despite different mechanisms, one
common theme of dosage compensation is a change at
the level of the histones associated with the chromosomal
DNA.

HTZ-1 Restricts DCC to X
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X chromosomes of both male and hermaphrodite germ nuclei.

Partial depletion of HTZ-1 does not lead to an overall decrease in

DCC protein levels. Instead we see mislocalization of the DCC

away from the X chromosomes and onto autosomes. These results

reveal an HTZ-1-dependent activity that serves to repel the DCC

away from autosomes. We propose that HTZ-1 plays a role in

dosage compensation by directly or indirectly restricting binding of

the DCC to the X chromosomes.

Results

HTZ-1 function promotes dosage compensation
To search for chromatin modifiers involved in worm dosage

compensation, we utilized two RNAi-based assays in a genetic

background sensitized for detecting disturbances in dosage

compensation. We tested genes encoding C. elegans homologs of

histone variants, genes implicated in modifying chromatin via

posttranslational histone modifications (such as acetylation or

methylation) or chromatin remodeling [84], as well as genes

annotated to contain chromo-, bromo- or SET domains

(Wormbase [http://www.wormbase.org], release WS201).

The first assay was completed in the sex-1(y263) mutant

background. sex-1 functions genetically as an X signal element

by repressing xol-1, the master switch regulating both sex-

determination and dosage compensation [85,86]. In addition,

sex-1 plays a role downstream of xol-1, promoting dosage

compensation in hermaphrodites [87]. In sex-1(y263) mutant

hermaphrodites, dosage compensation is partially impaired,

resulting in 15–30% embryonic lethality. In these worms, partial

loss-of-function due to feeding RNAi of a gene important for

dosage compensation leads to increased lethality [87]. A second

genetic assay was based on the rescue of males that inappropriately

turn on dosage compensation due to a xol-1(y9) mutation.

Expression of xol-1 in males is essential to prevent dosage

compensation of the single X chromosome [88]. Mutations in

xol-1 are male lethal due to ectopic dosage compensation, leading

to abnormally low levels of X-linked gene expression. The sex-

1(y263) mutation partially weakens dosage compensation, as

described above. xol-1(y9) sex-1(y263) males die, but they can be

rescued by feeding RNAi of dosage compensation genes [38,87].

To ensure a consistent proportion of males in our test strain, we

perform these assays in a strain that also carries the him-8(e1489)

allele. Mutations in him-8 cause X chromosome nondisjunction in

meiosis and results in a predictable 38% of XO progeny each

generation [89].

RNAi of DCC components show near complete sex-1 lethality

and results in 33–60% rescue of him-8(e1489); xol-1(y9) sex-1(y263)

males in these two assays [38]. One candidate, the histone variant

htz-1 (C. elegans H2A.Z homolog) showed a similar genetic

interaction. RNAi in the wild type background leads to little to

no lethality, while htz-1 RNAi in the sex-1(y263) background leads

to near complete embryonic lethality (Figure 1A). In the him-

8(e1489); xol-1(y9) sex-1(y263) background, RNAi of the histone

variant htz-1 resulted in over 15% rescue (Figure 1B). To ensure

that these phenotypes are not caused by general disruption to

chromatin, we also tested two genes encoding H3.3 histone

variants (his-71 and his-72) [90], and genes encoding linker

histones [his-24 (H1.1), hil-3 (H1.3), hil-4 (H1.4), hil-5 (H1.5), hil-6

(H1.6), and hil-7 (H1.Q)] [91]. RNAi of these genes did not show

similar genetic interactions. RNAi of many other chromatin

factors also failed to result in significant male rescue (for a

complete list, see Table S1). The chromatin remodeling enzyme

isw-1, and the histone deacetylase let-418 are shown as examples

(Figure 1B). We conclude that depletion of HTZ-1 leads to

disruption of dosage compensation.

HTZ-1 is underrepresented on hermaphrodite X
chromosomes but not the male X chromosome

A previous study found that in worms HTZ-1 preferentially

localizes to promoters, as in other organisms [67]. Furthermore,

fewer peaks of HTZ-1 incorporation were found on the X

chromosome, as compared to autosomes. The authors attribute

this difference to the relative lack of developmentally important

genes on the X chromosome, rather than a direct role in dosage

compensation [67]. Our RNAi data above indicates that HTZ-1

function is needed for wild type levels of dosage compensation, but

does not address whether this role is direct or indirect. That is, htz-1

Figure 1. HTZ-1 function is needed for dosage compensation.
(A) Embryonic lethality caused by feeding RNAi in wild type (N2) and
sex-1(y263) X hermaphrodite worms. RNAi of both dpy-27 (nN2 = 1173;
nsex-1 = 566) and htz-1 (nN2 = 1292; nsex-1 = 385) leads to synergistic
embryonic lethality in the sex-1 mutant background that is significantly
different from levels observed after vector RNAi (nN2 = 459; nsex-1 = 504)
(p = 1.8461025, and p = 4.961025 respectively). RNAi of his-71 (39-UTR,
nN2 = 1901 ;nsex-1 = 1037), his-72 (39-UTR, nN2 = 2821; nsex-1 = 1381), his-24
(nN2 = 438; nsex-1 = 933), hil-3 (nN2 = 378; nsex-1 = 682), hil-4 (nN2 = 412;
nsex-1 = 853), hil-5 (nN2 = 440; nsex-1 = 1083), hil-6 (nN2 = 350; nsex-1 = 481 ),
or hil-7 (nN2 = 413; nsex-1 = 882) does not significantly affect sex-1
embryonic lethality compared to vector. (B) Male survival caused by
feeding RNAi in him-8(e1489) IV; xol-1(y9) sex-1(y263) X worms. Both
capg-1 (n = 771) and htz-1 (n = 1337) RNAi rescue a significant
proportion of males (p = 5. 261026 and p = 3.861024 respectively)
compared to vector (n = 1245). RNAi of his-71 (coding region, n = 623),
his-71 (39-UTR, n = 1786), his-72 (39-UTR, n = 639), his-24 (n = 633), hil-3
(n = 810), hil-4 (n = 1332), hil-5 (n = 1847), hil-6 (n = 1139), and hil-7
(n = 868), isw-1(n = 1004), or let-418 (n = 1313) does not lead to
significant male rescue. Error bars indicate standard deviation for four
experiments. Asterisks indicate a p value of less than 0.05 by student’s
T-test analysis comparing vector and experimental RNAi data.
doi:10.1371/journal.pgen.1000699.g001
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may directly regulate some aspect of DCC function, or htz-1 may

indirectly affect dosage compensation by regulating expression of

known or unknown dosage compensation genes. To begin to

distinguish between these possibilities, we analyzed the distribution

of HTZ-1 in male and hermaphrodite nuclei. We reasoned that if

HTZ-1 functions in dosage compensation, its distribution in the

nucleus may be different in males (dosage compensation inactive)

and hermaphrodites (dosage compensation active).

To analyze HTZ-1 distribution, we took advantage of a strain

expressing a YFP-HTZ-1 fusion protein, or used an HTZ-1

specific antibody. The specificity of our HTZ-1 antibody is

demonstrated by recognition of a protein of the predicted size on

western blots and reduction of signal after HTZ-1 depletion on

both western blots and by immunofluorescence (IF) (Figure S1).

We marked the X-chromosome territory with an antibody specific

to DPY-27 (marks the X chromosomes in hermaphrodites only) or

X-paint fluorescent in situ hybridization (FISH) (to mark the X

chromosomes in both sexes). Consistent with a previous report

[67], we observed reduced HTZ-1 staining on the dosage

compensated X chromosomes in mid-to-late stage hermaphrodite

embryos after the onset of dosage compensation by DPY-27/

HTZ-1 IF (Figure 2A and 2B), and combined X-Paint FISH/

HTZ-1 IF (Figure 2C). We also observed reduced levels of YFP-

HTZ-1 in the territory of the X-chromosomes in transgenic

hermaphrodite embryos (Figure S2). However, in males we did not

observe a decrease in HTZ-1 staining intensity in the X

chromosome territory of somatic nuclei (Figure 2C). These results

indicate that reduced HTZ-1 levels are specific to dosage

compensated X chromosomes and not a general feature of X

chromosomes in both sexes in adult animals.

HTZ-1 depletion does not lead to a decrease in DCC
protein levels

The results of the genetic assays and localization assays

appeared contradictory: reduced htz-1 expression disrupts dosage

compensation, yet the protein itself is depleted on the dosage

compensated X chromosomes. Therefore, we wanted to explore

how dosage compensation is affected in htz-1 depleted animals. If

HTZ-1 functions in dosage compensation indirectly (by regulating

expression of dosage compensation genes) we would predict to see

a decrease in DCC protein levels upon HTZ-1 depletion. We

analyzed worms carrying the htz-1 deletion allele tm2469 that

removes 345 of 885 base pairs from htz-1 and likely represents a

null allele. htz-1(tm2469) homozygous progeny of heterozygous

mothers (m+z2) develop into healthy adults but are sterile, as

reported [67]. However, the tm2469 deletion appears to affect

expression of not just htz-1, but the neighboring gene as well

(Figure S3). It was therefore important to obtain HTZ-1-depleted

worms using an alternate method and to confirm that phenotypes

are due to HTZ-1 depletion, and not depletion of the neighboring

gene product. As an alternative method, we depleted HTZ-1 levels

by feeding worms bacteria expressing double stranded RNA

corresponding to htz-1. As a control, worms were fed bacteria

carrying an empty vector. Feeding RNAi in wild type animals

greatly reduced HTZ-1 as detected both by immunofluorescence

and quantitative Western blot analyses (89% reduction) (Figure 3B

and Figure S1).

To investigate the possibility that HTZ-1 depletion leads to a

decrease in DCC protein levels, we quantified protein levels by

western blotting of HTZ-1 depleted and control animals. Although

HTZ-1 levels were clearly reduced after htz-1 RNAi, we did not

observe a dramatic change in DCC protein levels (Figure 3A and

3C). Levels of DPY-27 and CAPG-1 show a very slight decrease

while MIX-1, DPY-26, and DPY-28 show very slight increases

after htz-1 RNAi. Our results suggest that, HTZ-1 reduction does

not lead to a significant defect in overall DCC protein levels.

However, we cannot exclude the possibility that the timing of

DCC gene expression is changed (delayed) in HTZ-1 depleted

cells, as was observed for genes involved in foregut development

[73]. It is also possible that a small amount HTZ-1 that remains

after feeding RNAi is sufficient for DCC gene expression, but

more complete HTZ-1 depletion would result in a significant

decrease in DCC protein levels.

SDC-2, the primary determinant of hermaphrodite fate, is the

only DCC protein whose expression in the zygote is essential [39].

The remaining DCC proteins are maternally loaded into the

oocyte and this maternal load is sufficient to carry out dosage

compensation in the developing embryo. Therefore, it was

important to determine whether sdc-2 transcript levels are affected

after HTZ-1 depletion. We analyzed sdc-2 mRNA levels in HTZ-1

depleted and control animals by reverse transcription followed by

quantitative polymerase chain reaction (RT-qPCR) and observed

no significant change in sdc-2 expression (Figure 3D). We conclude

that the changes observed in DCC protein and RNA levels are not

likely to be sufficient to explain the observed requirement for

HTZ-1 to maintain wild type levels of dosage compensation.

DCC localization is disrupted in HTZ-1-depleted animals
An alternative possibility is that HTZ-1 has a more direct role in

dosage compensation by affecting DCC localization or function.

To explore this possibility, we used immunofluorescence to

observe DCC localization in HTZ-1-depleted worms. The DCC

was clearly present in nuclei of htz-1(RNAi) animals, again

suggesting that HTZ-1 depletion does not lead to a significant

reduction in DCC protein levels. However, the territory occupied

Figure 2. HTZ-1 depletion on dosage compensated X chromo-
somes. HTZ-1 and DPY-27 localization by IF in hermaphrodite adult
somatic nucleus (A) and embryonic nucleus after the onset of dosage
compensation (B). HTZ-1 (green) staining is reduced in the region
containing the X chromosomes, as marked by DPY-27 (red) staining. (C)
HTZ-1 localization by IF (green) and X-Chromosome labeling by FISH
(red) in adult hermaphrodite (top) and male (bottom) somatic nuclei.
HTZ-1 staining is reduced on the hermaphrodite X chromosomes but
not on the male X chromosome.
doi:10.1371/journal.pgen.1000699.g002
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by the DCC in these nuclei was significantly more diffuse in

appearance than in wild type nuclei (Figure 4).

We hypothesized that the diffuse appearance of the DCC

reflected mislocalization of the DCC away from the X

chromosome. To observe DCC localization relative to X

chromosomes, we combined DCC immunofluorescence with X-

paint FISH in htz-1(RNAi) (Figure 4) and mutant (Figure 5)

animals. We used intestinal nuclei because they are 32-ploid,

allowing for easier visualization of sub-nuclear regions by FISH

[92]. To determine the degree of colocalization between X-Paint

and DPY-27 signals we determined Pearson’s correlation coeffi-

cient (Rr) values (see Materials and Methods). An Rr value of +1

indicates a complete and positive correlation between two signals

within a region of interest while a value of 0 indicates no linear

relationship between the two signals.

In vector control RNAi animals we observed that the DCC was

highly restricted to the X chromosomes and the mean Rr was

0.6560.14. Rr was greater than 0.5 in the vast majority of nuclei

observed (88%), and only a minority of nuclei had Rr values

between 0.5 and 0.2 (,12%). No correlation values of less than 0.2

were observed in these animals. Representative nuclei and

corresponding Rr are shown in Figure 4A. By contrast, after htz-1

RNAi, the mean Rr for htz-1 RNAi nuclei was 0.4460.20,

significantly lower than control (p = 5.79E-8). The majority of

nuclei (58%) had DPY-27/X-paint correlation values below 0.5,

and 27% of nuclei had values below the lowest value observed in the

control. Representative htz-1(RNAi) nuclei and corresponding Rr

values are shown in Figure 4B. A summary of DPY-27/X-Paint

colocalization quantification after vector and htz-1 RNAi is shown

in Figure 4C.

DCC mislocalization was also observed in intestinal nuclei of

homozygous htz-1(tm2469) hermaphrodite progeny of heterozygous

mothers (m+z2) (Figure 5) and in HTZ-1-depleted embryos (Figure

S4). The mislocalization phenotype observed in htz-1(tm2469)

(Figure 5) mutant animals was very similar to the observations made

after htz-1 RNAi. In wild-type hermaphrodites only 5% of nuclei

observed had Rr values below 0.5, but a majority of htz-1(tm2469)

nuclei (59%) had values below 0.5. Additionally, 45% of nuclei

Figure 4. HTZ-1 depletion disrupts DCC restriction to the X
chromosomes. Adult hermaphrodite intestinal nuclei were stained
with a-DPY-27 (green), X-paint FISH probe (red) and DAPI (gray). (A)
Representative nuclei observed after vector RNAi treatment. (B)
Representative nuclei observed after htz-1 RNAi treatment. (C) Summary
of quantification of DPY-27 colocalization with the X chromosomes
following vector and htz-1 RNAi treatment. After vector RNAi, the
average Rr value from three independent experiments was 0.6560.14
(n = 41). After htz-1 RNAi, the average value from three independent
experiments was reduced to 0.4460.2 (n = 48).
doi:10.1371/journal.pgen.1000699.g004

Figure 3. htz-1 RNAi does not significantly decrease DCC levels.
HTZ-1 levels were reduced by feeding RNAi in wild type worms. (A,B) An
equal number of control vector and htz-1 RNAi adult animals were
collected for quantitative western blot analysis to observe levels of HTZ-
1, MIX-1, DPY-27, DPY-26, CAPG-1, DPY-28 and a-Tubulin (loading
control) after RNAi treatment. Band intensities were quantified and
normalized to tubulin (C). RNAi significantly reduces HTZ-1 levels, but
no significant decrease was seen in levels of DCC subunits. Vector and
htz-1 RNAi adults were also collected for RT-qPCR analysis (D). htz-1
expression is significantly reduced in htz-1 animals (p = 3.161026), but
there is no significant difference in sdc-2 expression between vector and
htz-1 RNAi animals.
doi:10.1371/journal.pgen.1000699.g003
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observed had values below the lowest value observed in wild-type

nuclei (Figure 5B and 5C). We also analyzed HTZ-1-depleted

embryos after the 50-cell stage in development (after the onset of

dosage compensation). We observed 16% of htz-1-depleted embryos

with a diffuse nuclear DCC localization pattern (as opposed to 2%

of vector RNAi control embryos), confirming that DCC misloca-

lization is not tissue specific (Figure S4).

Finally, we analyzed DCC distribution in nuclei of ssl-1 (n4077)

mutant animals. ssl-1 encodes a homolog of Swr1, the catalytic

subunit of Swr1-com, the complex responsible for exchanging

H2A for H2A.Z [93–96]. Consistent with this function, ssl-

1(n4077) m+z2 homozygous animals have reduced HTZ-1

staining (Figure 5A). In ssl-1(n4077) hermaphrodites, 43% of

nuclei observed had Rr values below 0.5, similar to what we

observe after htz-1 RNAi and in htz-1(tm2469) animals. Also, 33%

of ssl-1 nuclei had Rr values below the lowest value observed in

wild type nuclei, confirming that reduced HTZ-1 disrupts the

localization of DCC to the X chromosomes (Figure 5B and 5C).

Together, these results strongly suggest that HTZ-1, a protein

more abundant on autosomes, is important for restricting

localization of the DCC to the X chromosomes.

DCC localization to autosomes upon HTZ-1 depletion
The portion of DCC which is not associated with the X

chromosome appears nonetheless bound to chromatin. When we

combined X-Paint FISH/DPY-27 IF with a protocol previously

shown to extract nucleoplasmic proteins [97], we were unable to

remove the non-X associated DCC within intestinal nuclei of htz-1

RNAi animals (Figure 6A). This suggests that the non-X associated

DCC is associated with autosomal chromatin.

To confirm DCC association with autosomes, we analyzed

prophase chromosomes in both vector control and htz-1 depleted

embryos. We reasoned that individualized mitotic chromosomes

would allow for more conspicuous visualization of DCC

localization. To mark mitotic nuclei, embryos were co-stained

with a-Phospho-Histone H3 Serine 10. In control embryos, DCC

localization was largely restricted to two chromosomes in prophase

nuclei. After htz-1 RNAi, however, 32% of prophase nuclei had

low-level DCC staining on more than two chromosomes

(Figure 6B). These data indicate that the DCC associates not

only with the X chromosome, but also with autosomes in HTZ-1-

depleted animals. Taken together, these results suggest the

existence of an HTZ-1 dependent autosomal repellent activity.

In wild type animals, this activity restricts localization of the DCC

to the X chromosome. Loss of htz-1 reduces the efficiency of this

repellant, allowing the DCC to bind other chromosomes.

HTZ-1 levels are also reduced on the X chromosomes in
the male and hermaphrodite germ lines

In different organisms, H2A.Z has been observed to be either

enriched in silent chromatin, (such as mammalian and Drosophila

centromeres [77–80], or the XY sex body in the mammalian germ

line [81]) or depleted in silent chromatin (such as heterochromatic

chromocenters in plants [69,83], or the transcriptionally inactive

micronucleus in Tetrahymena [60–62]). Dosage compensation in

worms is thought to involve two-fold downregulation of gene

expression, but not complete silencing [2]. To explore whether

HTZ-1 localizes to silent chromatin in worms, we examined its

distribution in the germ line, where the X chromosomes are

subject to chromosome-wide silencing by a mechanism unrelated

to dosage compensation [50]. In the male germ line, the single X

chromosome is subject to meiotic silencing of unpaired chromatin

and is silent throughout meiosis. In the hermaphrodite germ line,

the paired X chromosomes are silent during early meiosis, but

become transcriptionally active in later stages [50]. To test HTZ-1

levels on the silent X chromosome in the germ line, we performed

immunofluorescence experiments on dissected male and her-

maphrodite gonads. To distinguish the X from autosomes we used

antibodies specific to MES-4, H3K27me3, or H4K16ac, all of

which have been used in previous studies to distinguish the X from

autosomes in the germ line. MES-4, a SET-Domain protein, is

enriched on autosomes and markedly depleted from the X

chromosome in the germ line [51,57]. Conversely, H3K27me3 is

enriched on the silent X chromosomes in the germ line [53]. In the

male germ line, H4K16ac is present on autosomes but absent from

the unpaired X chromosome [50]. We found that HTZ-1 levels

Figure 5. DCC mislocalization in htz-1(tm2469) and ssl-1(n4077)
adult hermaphrodites. (A) HTZ-1 (red) and DAPI (blue) staining in
wild-type, htz-1(tm2469) m+z2 and ssl-1(n4077) m+z2 adult hermaph-
rodite intestinal nuclei. HTZ-1 levels are reduced in htz-1(tm2469)m+z2
and ssl-1(n4077) m+z2 adult hermaphrodites. (B) Representative wild
type (Rr = 0.67), htz-1(tm2469)m+z2 (Rr = 0.18) and ssl-1(n4077) m+z2
(Rr = 0.33) adult hermaphrodite intestinal nuclei stained with a-DPY-27
(green), X-paint FISH probe (red) and DAPI (grayscale). (C) Summary of
quantification of DPY-27 colocalization with the X chromosomes
observed in wild type (mean Rr = 0.70, n = 22), htz-1(tm2469)m+z2
(mean Rr = 0.45, n = 22) and ssl-1(n4077) m+z2 (mean Rr = 0.54, n = 21)
adult hermaphrodite intestinal nuclei.
doi:10.1371/journal.pgen.1000699.g005
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are much lower on the X chromosomes than on autosomes in both

male and hermaphrodite germ lines (Figure 7). Thus, underrep-

resentation of HTZ-1 appears to be a general feature of both types

of chromosome-wide repression in the worm: two-fold downreg-

ulation by dosage compensation and complete meiotic silencing.

The possible involvement of HTZ-1 in germ line X chromosome

silencing will be explored elsewhere.

Discussion

Dosage compensation in C. elegans is accomplished by the DCC,

a complex of proteins that binds the two X chromosomes in

hermaphrodites to down-regulate expression of genes two-fold. In

this study we report on the role of the histone variant H2A.Z/

HTZ-1 in this process. HTZ-1 is less abundant on the dosage

compensated X chromosomes in hermaphrodites but is found at

higher levels on autosomes and X chromosomes in male somatic

cells. When htz-1 expression is reduced, levels of DCC proteins do

not change. However, binding of the DCC is no longer restricted

to the X chromosomes and dosage compensation is impaired.

Models for HTZ-1 function in dosage compensation
One of the intriguing challenges in the study of dosage

compensation is to understand how the DCC machinery is able

to specifically target the X chromosomes for regulation. Our

studies indicate that when HTZ-1 is depleted, the DCC appears to

be no longer targeted correctly to the X chromosome. Rather than

binding solely to the X chromosomes, the complex now binds

autosomes as well. These results reveal that the normal function of

HTZ-1 (or an HTZ-1 regulated factor) includes keeping the DCC

away from autosomes. Previous studies indicated that specific

DCC binding sites on the X chromosome, so-called rex sites

(recruiting element on X), are important for attracting the DCC to

the X chromosome ([44–47]). Taken together, these data suggest

that positive forces (X-specific recruitment elements that attract

the DCC) and negative forces (autosomal chromatin that repels

the DCC) cooperate to discriminate the X from autosomes

(Figure 8).

The mechanism of how HTZ-1 restricts DCC localization is

unclear. We will consider three possible models. First, HTZ-1 may

serve as a direct regulator of DCC binding. Targeting of the DCC

to the X chromosome is believed to be a two-step process. The

complex initially binds to an estimated 200 rex sites, followed by

dispersal to numerous so-called dox sites (dependent on X) or ‘‘way

Figure 6. DCC associates with autosomes in HTZ-1-depleted
cells. (A) DPY-27 (green) and X-chromosome (red) localization in vector
and htz-1 RNAi treated hermaphrodite adult intestinal nuclei after
detergent extraction of nucleoplasmic proteins. DCC staining not in
association with the X chromosomes remains after detergent extraction
in htz-1 RNAi animals. (B) DPY-27 (green) localization to prophase
chromosomes (DAPI, blue) in vector and htz-1 RNAi treated embryonic
nuclei (.50 cell stage). DPY-27 staining to more than two chromo-
somes is observed in 32% of htz-1(RNAi) prophase nuclei (n = 63) but
only observed in 11% of vector prophase nuclei (n = 57). Mitotic nuclei
were identified using an antibody that recognizes H3S10Ph (red).
doi:10.1371/journal.pgen.1000699.g006

Figure 7. HTZ-1 is underrepresented on the silent X chromo-
somes of male and hermaphrodite germ lines. (A) Hermaphrodite
germ nucleus in pachytene of prophase I of meiosis stained with
antibodies specific to H3K27me3 (a mark enriched on the X, green),
HTZ-1 (red), and DAPI (grayscale). (B) Hermaphrodite germ nucleus in
diplotene of prophase I co-stained for MES-4 (enriched on autosomes,
green), HTZ-1 (red), and DAPI (grayscale). (C) Male germ nucleus in
pachytene of prophase I co-stained for H4K16ac (enriched on
autosomes, green), HTZ-1 (red) and DAPI (grayscale). In all cases, HTZ-
1 levels are lower on the X chromosome (arrows) than on autosomes.
doi:10.1371/journal.pgen.1000699.g007
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stations’’ [44,46,47,98]. Rex sites coincide with the highest peaks of

DCC binding and are characterized by the presence and

clustering of short sequence motifs called MEX motifs

[46,47,99]. MEX motifs are slightly enriched on the X

chromosome, but are also present on autosomes [46]. In principle,

HTZ-1 can affect either DCC targeting to rex sites, or dispersal to

dox sites, or both.

It should be pointed out that this model is different from the

interpretation of the HTZ-1 localization data presented in [67].

Using high-resolution analysis of HTZ-1 binding, the authors

showed that a subset of DCC peaks on the X chromosome

coincide with HTZ-1 peaks. One way to reconcile their data and

ours is to point out that the DCC/HTZ-1 overlap tends to be at

promoters (DCC dox sites), and less so at the highest peaks of

DCC binding (DCC foci or rex sites) [67]. Therefore, if HTZ-1 is a

negative regulator of DCC binding, it is more likely that HTZ-1

affects the targeting step to rex sites, but not the dispersal step to dox

sites. Another way to reconcile the data in the two studies is to

suggest that HTZ-1 at dox sites is modified posttranslationally (see

below) in such a way that permits DCC binding. According to this

model, MEX motifs attract DCC to the X chromosome, whereas

HTZ-1 negatively regulates DCC recruitment to rex sites. If a

MEX motif-containing sequence is not bound by HTZ-1 the DCC

will be recruited. However, if a MEX motif-containing sequence is

bound by HTZ-1, the DCC will be prevented from binding. From

sites of entry, the DCC then may be dispersed to dox sites in a

sequence and HTZ-1 independent manner. When HTZ-1 levels

are reduced by RNAi or mutation, the DCC will be able to bind

all MEX motif containing sites, whether they are on the autosomes

or on the X chromosome. Ectopic DCC binding to autosomes will

reduce the amount of DCC binding to the X chromosomes, and

dosage compensation will be impaired as a result. To test this

model, it will be important to observe DCC binding patterns

genome-wide at high resolution upon htz-1 depletion and to

determine whether ectopic DCC binding sites contain a DNA

sequence motif similar to MEX motifs.

An alternative possibility is that changes in the higher order

chromatin organization imposed by HTZ-1 determine whether

the DCC is able to bind the chromosome. H2A.Z has been

reported to alter the nucleosome surface, affect recruitment of

other chromatin components, and thereby modulate higher order

features of the chromatin fiber [77]. High levels of HTZ-1 on the

autosomes may result in alterations in the overall structure of the

chromatin fiber, which preclude DCC binding. Low levels of

HTZ-1 on the X chromosome would allow DCC binding. Upon

reduction of HTZ-1 levels, general disruption of higher order

chromatin folding would allow the DCC to bind both the X and

the autosomes. According to this model, the changes in chromatin

fiber folding are a direct consequence of HTZ-1 levels on the

chromosome. However, the model does not require complete

mutually exclusive binding of the DCC and HTZ-1 at high

resolution, and therefore does not conflict with the data in [67].

Finally, HTZ-1 may regulate expression of a DCC component,

or another gene needed for proper DCC localization. While HTZ-

1 is an obvious candidate for the DCC-repelling activity, it should

be noted that in principle another HTZ-1-regulated protein could

also perform this function. Our evidence, as yet, does not support

this model, as we do not observe a change in DCC protein levels

or sdc-2 RNA levels when htz-1 expression is reduced. In addition,

most DCC proteins are loaded into oocytes, and this maternal

load of DCC proteins is sufficient for healthy development.

Therefore, it is unlikely that the observed dosage compensation

defects in m+z2 htz-1 mutant animals are due to defects in

transcription of DCC genes. However, it remains possible that

HTZ-1 plays more subtle roles in regulating the exact levels and

timing of expression of dosage compensation genes. Nonetheless,

the difference in HTZ-1 levels in male and hermaphrodite X

chromosomes (Figure 2C) argue for a more direct role for HTZ-1

in the hermaphrodite specific-process of dosage compensation.

High-resolution analysis of HTZ-1 binding to the male X

chromosome may help distinguish between the models presented

above.

HTZ-1 depletion on the X chromosome
A question that remains unanswered is how HTZ-1 is

specifically targeted to autosomes, or conversely, how the X

chromosomes become depleted of HTZ-1. The small number of

developmentally important genes on the X chromosome relative

to autosomes can certainly contribute to this difference [67].

However, this model does not explain why the male X in adult

animals does not appear to be depleted of HTZ-1 at the

chromosomal level (Figure 2C). The X chromosome in the both

the male and hermaphrodite germ lines is subject to silencing

[50–52], and it is possible that the chromosome maintains some

memory of this silencing after fertilization. Such effects have been

seen on the sperm-derived X chromosome [100]. The differences

between the sperm derived X (which only hermaphrodite embryos

receive) and the oocyte-derived X (which both males and

hermaphrodites receive) may contribute to the sex-specific

differences in observed X-linked HTZ-1 levels. Comparison of

HTZ-1 dynamics in male and hermaphrodite embryos in early

development will be an important future area of investigation.

Different HTZ-1 pools for different functions
It is important to keep in mind that dosage compensation is a

chromosome-wide gene regulation mechanism that is super-

imposed on the unique transcriptional programs of individual X-

linked genes. While HTZ-1 levels on the dosage compensated X

chromosomes are reduced overall, the protein is not completely

absent. Indeed, HTZ-1 binds to the promoter of an X-linked

Figure 8. Model for HTZ-1 function in dosage compensation.
DNA sequence motifs, which are enriched on the X chromosome (X),
attract the DCC. HTZ-1, or a factor/activity dependent on HTZ-1, is
enriched on autosomes (A) and repels the DCC. As a consequence of
these two forces, in wild type cells the DCC is greatly enriched on the X
chromosomes. However, when HTZ-1 levels are low, the DCC is now
able to bind both the X chromosomes and the autosomes. Ectopic DCC
binding on autosomes titrates the complex away from the X
chromosomes and impairs dosage compensation.
doi:10.1371/journal.pgen.1000699.g008
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dosage compensated gene, myo-2, and is needed for its proper

temporal activation [73]. It is possible that a pool of HTZ-1

functions at promoters, including promoters on the X chromo-

some, to promote timely regulation of gene expression. Superim-

posed on that is the global repression of the X chromosome by the

DCC. Thus, HTZ-1 may perform a double role: it regulates genes

both individually (by binding to promoters) and chromosome-wide

(by regulating DCC binding).

Different pools of HTZ-1 may differ in their histone partners

and/or the level of posttranslational modifications. Unlike yeast

(where the only histone H3 is most similar to H3.3), worms possess

both H3 and H3.3 [90]. Therefore, in principle, one population of

HTZ-1 in worms is able to form labile nucleosomes, while another

population can form stable nucleosomes. Furthermore, both

populations can be modified by various posttranslational modifi-

cations, increasing the number of potentially different ways in

which HTZ-1 can affect genome activity. Consistent with this

idea, acetylation of the N-terminal tail of Htz1 is necessary for the

anti-silencing property of Htz1 in S. cerevisiae, as unacetylatable

Htz1 shows no change in localization to anti-silenced genes, but

Sir complex spreading and decreased expression of anti-silenced

genes is observed [101]. Htz1 is also subject to C-terminal

SUMOylation. SUMO-Htz1 is implicated in directing chromo-

somes with persistent double-strand breaks to re-localize to the

nuclear periphery in budding yeast [102]. Posttranslational

modification of H2A.Z has also been observed in mammalian

dosage compensation [25]. H2A.Z is under-represented on the

inactive X in female mouse nuclei, but the small population of

remaining H2A.Z is specifically mono-ubiquitylated by the

Ring1b E3 ligase as part of the Polycomb repressor complex 1

(PRC1). Ring1b is also responsible for mono-ubiquitylation of

histone H2A in X inactivation [24]. Although it is not currently

understood how mono-ubiquitylation of H2A and H2A.Z function

in X inactivation, the fact that this modification is largely specific

to the inactive X suggests an important role. It is highly likely that

C. elegans HTZ-1 is subject to posttranslational modification and it

will be important to address how these modifications affect its role

both in dosage compensation and in other processes.

Barriers to repressor complex binding
The proposed role of HTZ-1 in dosage compensation is similar

to that of two proteins shown to function in germ line X-

chromosome silencing in C. elegans. The gene encoding MES-4 was

originally identified in a forward genetic screen with several other

genes whose mutations led to the same mes phenotype (maternal

effect sterility) [51]. MES-2, MES-3 and MES-6, are the protein

products of the other genes identified, and these form a Polycomb

repressor-like complex that is responsible for enriching the X

chromosomes with the silencing H3K27me3 mark [53]. Surpris-

ingly, MES-4, a histone H3 lysine 36 methyltransferase (HMT),

localizes to autosomes, not the X, and yet it has been shown to be

important for germ line X-chromosome silencing [51,57]. MRG-

1, an ortholog of the mammalian mortality factor related protein

MRG15, is the second autosome-enriched protein that has been

shown to play a role in germ line X chromosome silencing [103].

In both mes-4 and mrg-1 mutants, de-silencing of X-linked genes is

observed. It has been proposed that the activities of MES-4 and

MRG-1 on autosomes prevent the binding of a repressor protein

or complex and help limit repressor binding to the X

chromosomes. The proposed mode of action of MRG-1 and

MES-4 in germ line X chromosome silencing is similar to the

model of HTZ-1 function in dosage compensation we have

proposed.

Our model describing HTZ-1 as an autosomal DCC barrier is

also similar to the role of Htz1 in yeast in blocking the spread of

silencing complexes into euchromatic regions adjacent to telo-

meres [74]. In htz1D cells, the Sir proteins spread into these

regions, leading to silencing of genes. Recent evidence has shown

that loss of Htz1 leads to ectopic Sir complex localization that is

not limited to immediate anti-silenced regions, but, rather, is found

throughout the genome [75]. Thus, Htz1p in yeast may serve a

global, not just a local, anti-silencing function, similar to our

proposed model of HTZ-1 action in worms. Furthermore, in

Arabidopsis, H2A.Z also plays a global antisilencing role by

protecting DNA from methylation [69]. When H2A.Z incorpo-

ration is compromised, DNA methylation expands into regions

once protected by H2A.Z-containing nucleosomes. Therefore, a

function for H2A.Z in the protection against transcriptional

repression may be a widely conserved role for this histone variant.

Htz1 functions in parallel with other nucleosomal elements to

prevent heterochromatic spreading. The Set1 complex is respon-

sible for histone H3 lysine 4 methylation (H3K4me) and also has

an anti-silencing function [104]. A recent study found that Set1

and Htz1 cooperate to mediate global antisilencing in yeast [75].

This raises the possibility that there are other nucleosomal

modifications or elements that might function in X-chromosome

DCC restriction in parallel with HTZ-1 in C. elegans.

Materials and Methods

Strains and alleles
All strains used were maintained as described [105]. Strains

include: N2 Bristol strain (wild type), TY2384 sex-1(y263) X;

TY4403 him-8(e1489) IV; xol-1(y9) sex-1(y263) X; EKM11 htz-1

(tm2469) IV/nT1(qIs51) IV,V; MT12963 ssl-1(n4077)III/eT1

(III;V); SM1353 cha-1(p1182) IV; pxEx214(HTZ-1promoter::-

YFP::HTZ-1 + HTZ-1promoter::CFP::LacI +pRF4) [73].

RNA interference
E. coli HT115 bacteria expressing double stranded RNA for htz-

1, dpy-27, capg-1, his-71 (coding region), his-24, hil-3, hil-4, hil-5, hil-

6, hil-7, isw-1 or vector (polylinker), were used for feeding RNAi

using the Ahringer feeding RNAi clones [106]. To generate RNAi

vectors for let-418 and the 39 UTR of his-71 and his-72, the regions

were PCR amplified, digested with Bam HI and Bgl II (let-418) or

Bgl II and Not I (his-71 and his-72), and cloned into the DT7

vector as described [106]. The following primers were used for

amplification:

his-71 39-UTR

cgaagatctcgtgcataaacgttgagctg and gagcggccgccatgcacgctgtt-

caaaaac

his-72 39-UTR

cgaagatctagctccatcaccaattctcg and gagcggccggcgtggaatatagttgct

let-418

catgggatccttgccgctcctcattcaact and gtacagatctgacgatgtgcacgaga-

gaaa

RNAi in N2 was initiated at the L1–L2 stage. Adults were then

transferred to new RNAi plates to produce progeny for 24 hours.

For IF/FISH, western, and RT-PCR analysis, RNAi progeny

were processed 24 hours post-L4. To score embryonic lethality in

the sex-1 strain, adult animals were allowed to lay eggs for

24 hours and the number of embryos laid was counted. The next

day the number of dead embryos and larvae were counted and the

percentage of embryonic lethality was calculated by dividing

number of dead embryos by the total number of embryos laid. To

score male rescue in him-8(e1489) IV; xol-1(y9) sex-1(y263) X, adult

animals were allowed to lay eggs for 24 hours. When adult animals
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were removed from the RNAi plates, the number of embryos laid

was counted. Three days later the number of male progeny on

each plate was counted. Male viability was calculated by dividing

the number of male progeny observed by the expected number of

males. The him-8(e1489) mutation reproducibly results in 38%

male self-progeny [89], so the expected number of males was

determined to be 38% of total embryos laid. Male rescue = Num-

ber of males/(total embryos60.38). All RNAi was conducted at

20uC.

Immunostaining
Rabbit and rat a-HTZ-1 antibodies were raised against the C-

terminal 19 amino acids (NKKGAPVPGKPGAPGQGPQ) and

affinity purified. Polyclonal rat a-HTZ-1 was used at a dilution of

1:500, polyclonal rabbit a-HTZ-1 at a dilution of 1:100 for

immunofluorescence. Other primary antibodies used are: poly-

clonal rabbit a-DPY-27 at a dilution of 1:100 [38], polyclonal

rabbit a-MES-4 (Susan Strome [UC Santa Cruz], [57]) at 1:100,

rabbit antiserum a-acetyl-histone H4 (Lys16) (Upstate) at 1:100,

rabbit polyclonal a-trimethyl-histone H3 (Lys27) (Upstate) at

1:500, and mouse monoclonal a-phospho-histone H3S10 (6G3)

(Cell Signaling Technology) at 1:500. Secondary antibodies used

are: Fluorescein (FITC) conjugated donkey a-rabbit (Jackson

ImmunoResearch) and Cy3 conjugated donkey a-rabbit IgG

(Jackson ImmunoResearch) both at a dilution of 1:100. Embryos

were stained as described [34]. Adult animals were dissected and

stained as described [44]. In adults, somatic non-intestinal nuclei

near the cut site (vulval area) were observed. Images were captured

with a Hamamatsu ORCA-ERGA CCD camera mounted on an

Olympus BX61 motorized X-drive microscope using a 606 oil

immersion objective. Captured images were deconvolved using 3i

Slidebook imaging software. Projected images were taken at

0.2 mm intervals through samples. Adobe Photoshop was used for

assembling images.

Fluorescent in situ hybridization
FISH probe templates were generated by degenerate oligonu-

cleotide primed PCR to amplify purified yeast artificial chromo-

some DNA. The labeled X-paint probe was prepared and used as

described [44]. Hybridization was performed on adult animals

(24 hours post-L4) with or without previous RNAi treatment. For

X-paint hybridization followed by DPY-27 immunostaining,

sample and probe were denatured at 95uC for 3 minutes. For

X-paint hybridization followed by HTZ-1 immunostaining,

sample and probe were denatured at 78–80uC for 8–10 minutes

in a Hybaid OmniSlide in situ Thermal Cycler System (Thermo

Scientific). Imaging was conducted as described above.

Quantification of colocalization
3i Slidebook imaging software was used to measure colocaliza-

tion of DPY-27 (FITC) and X-Paint (Cy3) signals on images

obtained as described above. A FITC mask was set for each

nucleus z-stack and the correlation between signals was calculated

within this mask by the software. The FITC:Cy3 correlation

coefficient was recorded and used as an indication of colocaliza-

tion between DPY-27 and X-Paint.

Detergent extraction
Detergent extraction of nucleoplasmic protein from dissected

nuclei was performed by dissecting animals in 16 sperm salts plus

1% Triton detergent [97]. Dissected animals were then processed

for either Fluorescent in situ hybridization or immunofluorescence.

Western blot analysis
For each treatment described, 100 animals (all 24 hours post-

L4) were picked into 1XM9, washed, and incubated for ten

minutes at 95uC in 19 ml SDS-PAGE loading dye (0.1 M Tris-

HCl pH 6.8, 75 M Urea, 2% SDS, Bromophenol Blue for color)

plus 1 ml b-mercaptoethanol. The treated samples were then

loaded into either 6% acrylamide (for detection of DPY-27, MIX-

1, DPY-26, DPY-28, and CAPG-1) or 15% acrylamide gels (for

detection of HTZ-1). SDS-PAGE was performed and protein was

transferred onto nitrocellulose. The following antibodies and

dilutions were used: rabbit a-HTZ-1 at 1:500, rabbit a-DPY-27 at

1:500, rabbit a-CAPG-1 at 1:500 [38], rabbit a-DPY-28 (gift of K.

Hagstrom) at 1:500, rabbit a-DPY-26 (gift of K. Hagstrom) at

1:5000, rabbit a-MIX-1 (gift of R. Chan) at 1:500, mouse

monoclonal a- a-Tubulin (Sigma) at 1:1000, LI-COR IRDye

800CW Conjugated Goat (polyclonal) a-Mouse IgG at 1:10000,

LI-COR IRDye 800CW Conjugated Goat (polyclonal) a-Rabbit

IgG at 1:10000. Blots were scanned and band intensities were

quantified using an Odyssey Infrared Imaging System (LI-COR

Biosciences). Protein levels for DCC proteins and HTZ-1 were

normalized to a-tubulin. Relative protein levels after htz-1 RNAi

were calculated by dividing the normalized htz-1 RNAi level by

normalized vector RNAi level.

RT–PCR
Trizol (Invitrogen) was used to extract RNA from all samples.

Worms were washed from RNAi plates or normal OP50 plates

24 hours post L4, washed with M9 and stored at 280uC until

extraction. For RNA extraction, samples were thawed on ice and

tissue was homogenized by grinding using a microcentrifuge tube

pestle. Tissue was ground in three 60-second intervals and re-

frozen in liquid nitrogen between each interval. During the final

60-second interval, 250 ml of Trizol was added to the tube, and

when completed, another 250 ml was added for a total volume of

500 ml Trizol and the standard protocol was used to extract RNA

from the homogenized samples (Invitrogen). DNA-Free kit

(Applied Biosystems) was used to digest remaining DNA

contamination.

Reverse transcription (RT) reactions were performed utilizing

the High Capacity cDNA Reverse Transcription Kit with RNase

Inhibitor (Applied Biosystems). 1 ml of DNase-treated RNA was

used in each RT reaction.

PCR was used to observe relative levels of htz-1, R08C7.10, and

act-1 (actin) expression levels. The following primers were used

with a 60uC annealing temperature:

act-1: gctatgttccagccatccttc and aagagcggtgatttccttctg

htz-1: tggctggaggaaaaggaaag and aacgatggatgtgtgggatg

R08C7.10: gtagaccaaaccagccagca and agcgccttgacgatacttttt

Real-time PCR analysis
Real-time PCR analysis was conducted as described [98]. The

following primers were used with an annealing temperature of

59uC:

act-1: same as above

htz-1: gcgctgccatcctcgaat and gggctcccttcttgttcatc

sdc-2: ggaaacaagaccgacaggaa and gatgcaatagtacacgccaaatc

Relative htz-1 and sdc-1 expression levels were calculated using

the Pfaffl method [107] incorporating the PCR efficiency for each

primer set as determined by a 10-fold dilution series for each

primer set in each reaction. Reactions were conducted in triplicate

per experiment. Data shown are resulting averages from three

experiments.
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Supporting Information

Figure S1 a-HTZ-1 antibody is specific. (A) HTZ-1 (red), DPY-

27 (green), and DAPI (grayscale) staining of adult intestinal nuclei

in vector and htz-1 RNAi treated hermaphrodites. The HTZ-1

signal is greatly reduced after htz-1 RNAi. (B) a-HTZ-1 Western

blot. a-HTZ-1 recognizes a band of the expected size (,15 kDa)

in both embryonic extract and adult protein samples. The a-HTZ-

1 signal is reduced in htz-1 RNAi treated animals as compared to

vector treated animals.

Found at: doi:10.1371/journal.pgen.1000699.s001 (7.19 MB TIF)

Figure S2 Transgenic YFP-HTZ-1 is also under-represented on

the dosage compensated X chromosomes. Embryos after the onset

of dosage compensation were stained with a-GFP antibodies to

observe YFP-HTZ-1 localization (red), a-DPY-27 to mark the X

chromosome (green) and DAPI (grayscale). Arrows in the top

panels indicate enlarged nucleus shown below. YFP-HTZ-1 levels

are reduced in the territory of the dosage compensated X

chromosomes.

Found at: doi:10.1371/journal.pgen.1000699.s002 (7.78 MB TIF)

Figure S3 tm2469 deletion affects htz-1 and R08C7.10 expres-

sion. (A) Reverse-transcription polymerase chain reaction (RT-

PCR) analysis of expression of htz-1, R08C7.10 and actin (control)

in wild type (+/+), heterozygous (htz-1(tm2469)/nT1), or homozy-

gous (htz-1(tm2469)) animals. Expression of both htz-1 and

R08C7.10 is affected in homozygous animals. Contaminating

amplification product from residual DNA in the RNA sample is

indicated by a star. (B) Schematic showing relative positions of htz-

1 and R08C7.10 on chromosome IV (not to scale). The tm2469

deletion removes most of the coding region of htz-1. In addition, it

likely the affects the promoter or other cis control elements of the

R08C7.10, a gene located only 522 base pairs away from the

deletion.

Found at: doi:10.1371/journal.pgen.1000699.s003 (5.72 MB TIF)

Figure S4 htz-1-depleted embryos also show compromised DCC

localization. Vector and htz-1 RNAi embryos were stained with a-

Phospho-H3 Ser10 (red) (to mark mitotic nuclei) and a-DPY-27

(green). After htz-1 RNAi, 16% of embryos with Phospho-H3

Ser10 staining (.50 cell stage) had diffuse nuclear DPY-27

localization (n = 372), as opposed to 2% in vector embryos

(n = 314).

Found at: doi:10.1371/journal.pgen.1000699.s004 (2.89 MB TIF)

Table S1 RNAi of the following genes did not result in

significant (.10%) male rescue.

Found at: doi:10.1371/journal.pgen.1000699.s005 (0.12 MB

DOC)
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