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Abstract: Channelrhodopsins (ChRs) are light-gated transmembrane cation channels which are
widely used for optogenetic technology. Replacing glutamate located at the central gate of the ion
channel with positively charged amino acid residues will reverse ion selectivity and allow anion
conduction. The structures and properties of the ion channel, the transport of chloride, and potential
of mean force (PMF) of the chimera protein (C1C2) and its mutants, EK-TC, ER-TC and iChloC, were
investigated by molecular dynamics simulation. The results show that the five-fold mutation in
E122Q-E129R-E140S-D195N-T198C (iChloC) increases the flexibility of the transmembrane channel
protein better than the double mutations in EK-TC and ER-TC, and results in an expanded ion
channel pore size and decreased steric resistance. The iChloC mutant was also found to have a higher
affinity for chloride ions and, based on surface electrostatic potential analysis, provides a favorable
electrostatic environment for anion conduction. The PMF free energy curves revealed that high
affinity Cl− binding sites are generated near the central gate of the three mutant proteins. The energy
barriers for the EK-TC and ER-TC were found to be much higher than that of iChloC. The results
suggest that the transmembrane ion channel of iChloC protein is better at facilitating the capture and
transport of chloride ions.
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1. Introduction

Channelrhodopsins (ChRs) are non-selective, light-gated cation channels that act as photoreceptor
in microalgae and are widely used to activate specific groups of neurons in the brain [1–3]. In the dark
adaptation state, the ion channel of ChRs are closed. The chromophores of ChRs, retinal molecules,
undergo photo-induced trans-cis isomerization, which initiates the photocycle reaction and leads to the
opening of ion channels [4–7]. ChRs can non-selectively conduct monovalent cations such as Na+, K+,
H+ and divalent cations such as Ca2+. The cation flow into cell will cause depolarization of neuron and
lead to an excited neural stimulation. However, for wild-type (WT) ChRs, some physiological studies,
such as neural circuit, learning and memory, and movement disorders, cannot be carried out because
of the relatively low ion conductivity. Therefore, it is necessary to design and optimize mutants of
ChRs to obtain better optogenetic actuators [8].

Mutants of ChRs with different physiological activities can be obtained by modifying their
native molecular structures. The mutants have different activation spectra so that a broader range of
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wavelength can be used to activate the mutational proteins and make them more extensive useful for
research on neural regulation [9,10]. In particular, the cation channel of ChRs can be changed into an
anion channel by modifying some residues of the WT-ChRs protein. As an opposite kind of optogenetics
tool, the inhibiting stimulation induced by anion influent into neuronal cells have made considerable
progress in recent years [11–13]. In 2014, anion channelrhodopsins (ACRs) were designed [14,15].
The protein can rapidly inhibit the action potential and show the kinetic characteristics of stable
inhibition, which is more durable than the light pulse, and the inhibited cells are more sensitive to
light. Subsequently, natural ACRs (GtACR1 and GtACR2) were extracted from chlorophyll algae [16].
The designed ACRs have been developed further [17–19], and additional natural ACRs have been
found by genome mining [20–22]. In 2015, the first demonstration of ACRs as inhibitory optogenetic
tools that could successfully modulate animal behavior (with a designed ACR named iC++ [17]). Both
ACR classes have been widely applied in mice, flies and fish [17,18,23–25].

Despite advances in the optogenetics of inhibition, ion binding sites in anion conduction have not
been fully identified, and the precise mechanism of ion selectivity and conductivity remains elusive.
Electrophysiological investigation [26,27] showed that negatively charged glutamate and aspartate
are present among the ChRs transmembrane helixes (TM) TM1, TM2, TM3, and TM7. For example,
the crystal structure [26] of chimeric proteins (C1C2) of ChR1 and ChR2 shows that there are seven
glutamic acids orientated in the ionic transport pathway of C1C2, which can transport H+ and other
cations when the channel is opened. It is suggested that the cation selectivity of ChRs is caused by the
negative electrostatic potential surface around the channel hole. In the electrostatic surface model, it is
hypothesized that the replacement of these residues in or near the pores may reverse channel polarity,
resulting in the formation of anion channels.

In this article, we analyzed the precise geometric structure of channel selective filters of several
anion-conducting ChRs by molecular dynamics simulation (MD). Based on the MD trajectories,
steered molecular dynamics (SMD) simulation, and umbrella sampling analysis were carried out to
qualitatively estimate the ion penetration in the anion conduction channel of rhodopsins. This type of
study provides insights into the atomic details of ion and channel interactions and open the way for
the designing and creating new optogenetic tools.

2. Materials and Methods

2.1. Simulation-System Preparation

Multiple literature reported [7,28–34] in recent years, glutamate (E129) in the C1C2 protein is a key
amino acid in the center of ion conduction hole and plays an important role in cation selectivity. In order
to change the ionic selectivity of the protein, E129 is replaced with alkaline lysine and threonine (T198)
is replaced with cysteine to obtain a mutant called EK-TC. If E129 can also be replaced with arginine to
obtain a mutant called ER-TC. The mutation could improve membrane targeting of proteins and the
enhance binding of retinal in the pocket [10,35]. Three additional mutations can be introduced into the
by replacing E122 on the inner side of the channel with glutamine to eliminate the negative charge at
that location without changing the residue geometry, replacing E140 outside the channel by serine to
reduce cation conduction, and a D195N mutation can be used to extend the open state. This five-fold
mutant was E122Q-E129R-E140S-D195N-T198C (iChloC) [18]. Electrophysiological studies [14,30,36]
have shown that this combination further enhances chloride selectivity.

Model building on the basis of the C1C2 ground-state structure with PDB ID 3UG9 [26] was
performed using the CHARMM-GUI software [37]. For the building of EK-TC and ER-TC models [38]),
the E residues of C1C2 was replaced with K and R respectively and T of C1C2 was replaced with C.
Furthermore, a five-fold mutation in C1C2-WT was performed (E122Q-E129R-E140S-D195N-T198C,
iChloC [18]) for further improving chloride-conducting. The pre-equilibrated 16:0/18:1c9-palmitoyloleyl
phosphatidylcholine (POPC) built with a plug of CHARMM-GUI software, was used as a bilayer lipid
membrane, and the Membrane Builder module in CHARMM-GUI software was used to optimize the
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initial structures of each protein, including the addition of side chain and implicit hydrogen atoms and
so on. Then the optimized C1C2 structure was embedded in a fully hydrated and balanced POPC
membrane, ensuring the protein axis perpendicular to the plane of the lipid membrane. The overlapped
phospholipid molecules were discarded to avoid poor van der Waals interactions. The center of the
protein was coincided with that of the POPC membrane. Two water boxes, each with a length of 29 Å,
were added to the two sides of the system, respectively. Then, 0.15 mol/L of NaCl were used to model
the experimental conditions and to ensure the whole system electrically neutral. Finally, the system
was simulated using periodic boundary conditions in a simulation box.

2.2. Molecular Dynamics Simulations

In this work, the classical molecular dynamics (CMD) simulations were run in NAMD 2.13 [39]
software and the CHARMM36 [37] force field and TIP3P water model were applied to describe the
transmembrane protein and water molecules, respectively. Simulation process was investigated using
a canonical NPT ensemble with periodic boundary conditions, and harmonic potentials applied in x, y,
and z directions with a force constant (k) of 10 kcal/mol·Å2, respectively, were applied to the backbone
Cα atoms of the protein to avoid protein inclination. Langevin dynamics was implemented to maintain
the temperature of the system at 310 K, with a damping coefficient of 1/ps. Nosé-Hoover Langevin
piston method was used to control the system pressure at 1 bar by coupling in XY dimensions with a
piston period of 50 fs and a decay of 25 fs. Full electrostatic interactions were treated by the particle
mesh Ewald (PME) approach with a grid spacing of less than 1 Å [40]. The cut-off radii of long-range
electrostatic and van der Waals interactions were set to be 12 Å, with a smoothing function applied
from 10 Å. The bonds containing hydrogen atoms were frozen with SHAKE [41] constrain algorithm
and a time step of 2 fs was used in the integration. We used the integration time step of 2 fs, and the
trajectories were saved at every 5 ps, with the last 50 ns used for the analysis.

2.3. Steered Molecular Dynamics

Although advances in computer technology have extended the time dimensions of dynamic
simulations, the time scales for ion permeation through ion channels range from milliseconds to
seconds [5,6]. However, the CMD easily lead to the sampling falling into the energy minimum in
the conformational space, and it is difficult to realize the process of ion transmembrane conduction.
In SMD simulations, a time-dependent external force is applied to the ion to move along the channel
from the protein, which cannot usually be achieved by standard MD simulation. For these, SMD was
adopted in this work [42–46] and an imaginary external force was artificially applied to Cl− in the
simulation so that allows the ion to move along the channel. During the transition, we can calculate
the exerted force as well as the external work performed on the system.

All the SMD simulations were performed using the PLUMED [47] plugin integrated in the
NAMD 2.13 [39] MD code. Since we were interested in the information about the process of ion
transmembrane conduction, the natural choice of the pulling variable was the reaction coordinate of ion,
and SMD simulations were carried out as described with constant-velocity [48]. The initial structure in
constant-velocity SMD is a representative configuration extracted from cluster analysis. To enable it to
move along the direction of the channel, Cl− was initially placed at the entrance of channel and was
then pulled in the Z-direction (parallel to the channel axis) from the mouth to the center of the channel
at constant velocities, but no restraint was imposed in the X and Y directions. Here, reaction coordinate
was defined as the separation between Cl− and the center of the channel, ranging from −18 Å to 17 Å.
In order to avoid any distortions of the protein as a consequence of pulling, the Hamiltonian limit of
5 kcal/mol·Å−2 was added to the amino acid residues surrounding the seven helices of the protein.
The pulling parameters were adopted from Yang et al. [49]. In particular, the spring constant was set to
the value of 4 kcal/mol·Å−2 to meet the requirements of hard spring and the pulling velocity to 0.0001
Å ps−1 to ensure a reversible pulling. Other parameters for SMD simulations are consistent with MD.
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The time length for each simulation was 360 ns, which was sufficient to observe the entire ion to move
along channel process.

2.4. Determining the Potential of Mean Force (PMF) with Umbrella Sampling

The potential of mean force of a single Cl− along the channel axis was obtained by employing the
Umbrella Sampling (US) method [50,51]. Umbrella Sampling consists of running separate “windows”
of the reaction coordinate simultaneously. The change in free energy in each window can be calculated
from the sampled distribution of the system along the reaction coordinate. The windows are then
combined by methods of the weighted histogram analysis method. Thus, the umbrella sampling
simulation could find the equilibrium state in a set of umbrella sampling windows and obtain relatively
accurate potential of mean force (PMF) curve by reweighting constant biasing potential well along a
reaction coordinate.

The reaction coordinate used for the umbrella sampling simulations was the same reaction
coordinate used for the SMD simulations, i.e., the z distance along the channel axis, ranging from
−18 Å to 17 Å. With the purpose of enhancing the computational efficiency of the Umbrella Sampling
algorithm, the whole span of the reaction coordinate was subdivided into 36 equally spaced windows
in the z direction, each with a width of 1 Å. and each window was simulated independently. First,
a SMD simulation was carried out to pull Cl− moving through the whole range of reaction coordinate.
Then a separate US simulation for each window was performed with the initial structure created from
the above SMD trajectory. A harmonic potential with force constant of 2.5 kcal/mol·Å is applied to
maintain the respective distance in the z direction for each window, and each window was further
divided into 50 bins with a width of 0.1 Å, which was sufficiently small to generate a smooth PMF
profile. Finally, we used the Weighted Histogram Analysis Method (WHAM) [52] to construct the PMF
based on these umbrella sampling simulation trajectories.

3. Results

3.1. Water Distributions

CMD simulations were performed on wild-type C1C2 (C1C2-WT) and mutants mentioned
above respectively to explore the formations of ion channels. In C1C2-WT, protonated E129 forms
hydrogen bonds with N297 and S102, respectively. Simultaneously, residues E162 and D292 are
deprotonated. After a 300 ns MD simulation, the value of the root mean square difference (RMSD)
of the transmembrane helix of each system tended to be stable, indicating that the protein structure
tended to be stable and the system had converged, as shown in Figure 1.
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Recent research found water plays an important role in the opening of ion channels in ChR2 [6].
In the early stage of formation of ion channel, outside water flows into cell to form a “pre-opened”
channel, then the “pre-opened” channel continues to extend and create ionic conduction states [6].
The water distributions were calculated with grid water density as shown in Figure 2. The water
distribution around E129 in C1C2-WT was found to be discontinuous, consistent with the water density
in the crystal structure of C1C2 [26], suggesting that the ion channel in natural C1C2 protein is closed.
The results of electrophysiological and spectroscopy experiments [26,28,31–34,53] indicate that E129
participates in the formation of the central gate (CG), and acts as a hydrophobic barrier in the dark state
to prevent water from entering the inner vestibule between the central gate and intracellular gate (ICG).
After photoactivation of the retinal chromophore, these barriers undergo substantial conformational
changes and convert the C1C2 protein to a “pre-opened” state.
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molecular dynamics (MD) simulation trajectory equilibrium. The water molecules are shown in blue.

Figure 2B,C show that fewer water molecules enter the inner vestibule in EK-TC and ER-TC
mutants compared with the wild type. The limited number of immigratory water molecules is not
enough to be considered as having a continuous distribution in the channel for the water in the mutants
EK-TC and ER-TC. However, it is certain that the distribution of water molecules in the mutant ER-TC
is significantly different from that in the mutant EK-TC. Compared with E129K, E129R significantly
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change the structure of extracellular gate (as seen in Figure 3) and lead to more water molecules
entering outer vestibule, as shown in Figure 2B,C. So we believe that mutating E129 into arginine may
be more conducive to the formation of anion channels. Further mutation (iChloC, Figure 2D) shows
that more water molecules enter the inner vestibule, and a continuous water distribution between the
two vestibules is obtained. This suggests that the additional mutation in iChloC is favors the influx of
more water consistent with the formation of a pre-opening channel. These findings are consistent with
the results in the photocurrent experiment [18,38].
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Figure 3. Cluster analysis of EK-TC, ER-TC, and iChloC. The first column shows the stable conformation
of intracellular gate (ICG), central gate (CG), and extracellular gate (ECG) after C1C2-WT trajectory
equilibrium, Columns 2–4 show the representative conformations of the first class of ICG, CG, and ECG
in the EK-TC, ER-TC, and iChloC clustering results, respectively. The percentages of the first class are
also shown in the figure.

3.2. Structure Changes in Mutants

In order to intuitively display the conformational differences of different mutants systems,
the K-means algorithm in the MMTSB toolset [36] was used for the cluster analysis of simulation
trajectories of the mutants EK-TC, ER-TC, and iChloC.

In Figure 3, the stable conformations of the ICG, CG, and extracellular gate (ECG) of C1C2-WT
are separately presented. It was observed that, as in the crystal structure reported in the literature [26],
the protein channel is mainly blocked by two constrictions—the central gate and the intracellular gate.
The CG in the center of the channel is composed of residues S102, E129, D292, K132, and N297. The key
amino acid E129 forms hydrogen bonds with N297 and S102, respectively. D292, E162, and K132 are
also connected to each other intermediated by water molecules to form a hydrogen bond network,
which blocks the central gate and closes the channel. The ICG of the C1C2-WT protein is composed of
residues E122, E121, and N297. The formation of double hydrogen bonds between residues R307 and
E121 also suggests the inside of the ion channel is blocked. In addition, we found that the channel of
extracellular part is also discontinuous. There are several water molecules in the ECG, which consists
of residues V156, E140, R159, E136, and H288. The water molecules and the key residue R159 play a



Biomolecules 2019, 9, 852 7 of 13

pivotal role in the formation of hydrogen bonds network among the ECG and its adjacent amino acids,
which tightly constrains TM2, TM3, and TM7 and blocks the ion channel. Moreover, Figure 3 shows
that the hydrogen bond network formed in the ECG is very complicated and extends all the way to the
CG, so that it can be considered that the ECG and the CG are closely related.

Compared with C1C2-WT, the ICG, CG, and ECG of the mutant are significantly different. In the
ICG, residue R307 in the mutants are flipped, which led to the destruction of the double hydrogen bond
originally formed with E121. Furthermore, the E121 and E122 of the three mutants all tilted slightly
downward. In particular, in iChloC, where E122 was mutated to glutamine (Q), the conformation
of Q122 is flipped, leaving a larger cavity for the intracellular gate. This phenomenon indicates that
E122Q is beneficial to the opening of the intracellular gate. In CG, the structures of K129 and R129
were flipped after mutating E129 into lysine and arginine, making the original hydrogen bond with
N297 and S102 disappear. However, according to the results of water distribution, water molecules did
not penetrate the central gate well in the EK-TC and ER-TC mutants (Figure 2B,C). By observing the
central gates of the two mutants, it was found that both the lysine and the arginine after the mutation
were bulky residues, and because of the limited space of the central gate, the conformations of K129
and R129 were not changed in the direction towards the inside of the helix, thus blocking the central
gate. On the other hand, the conformation of R129 in iChloC is flipped, opening the central gate and
allowing water molecules to penetrate well through the central gate (Figure 2D). By observing ECG,
it was found that the hydrogen bond complexity in the ECG conformation in ER-TC and iChloC was
significantly reduced compared to C1C2-WT. This is due to the flipping of the key amino acid R159,
which destroys the hydrogen bond network in the ECG, creating a large cavity in the extracellular
portion. This suggests that the mutation of E129 into arginine is more favorable for the opening of the
extracellular channel. We also found that in iChloC, where E140 in the extracellular part was mutated
into serine, the cavity of the extracellular channel is more enlarged compared with ER-TC. Due to the
destruction of the ECG hydrogen bond network of the iChloC mutant, the connection between TM2,
TM3, and TM7 is broken, TM2 is easier to tilt outward, and more space is reserved for the central gate.
This explains why only the R129 conformation at the central gate of the iChloC mutant has changed,
allowing water molecules to penetrate well through the central gate.

The results of structural analysis show that the three mutants of C1C2 showed significant changes
in the three blockages of the ion channel compared to ChR2-WT. These changes are consistent with
the expected trend of ion channel formation in the literature [18,38]. The conformational change of
the mutant iChloC is towards the direction more favorable for the opening of the channel. Due to the
rearrangement of the hydrogen bonding network, a continuous water distribution is formed between
the two vestibules (Figure 2D).

3.3. The Electrostatic Potential Surface of the Channel

The electrostatic surface potential of C1C2-WT and its mutants were calculated on the pore surface
(Figure 4). In C1C2-WT (Figure 4A), an electronegative hole, which consists of negatively charged
residues including E122, E129, E136, E140, E162, and D292 was formed among TM1, TM2, TM3,
and TM7. These residues contribute to the formation of electronegative surface suitable for cation
selectivity. As shown in Figure 4B,C, in the mutants EK-TC and ER-TC, the electrostatic potential
formed a small amount of positive potential surface between TM2 and TM7 compared to the wild
type. The electrostatic potential around the iChloC pore indicates that the ion channel of the mutant is
also electrically positive (Figure 4D). These positive electrostatic potentials make the protein interior
accessible to chloride ion.

Since most of the negatively charged residues are derived from TM2, we suggest that the ionic
conductance and selectivity of C1C2-WT are primarily determined by TM2. The E122 in TM2 is a key
residue of the ICG that stretches the negatively charged carboxylic acid group into the pores and leads
to the formation of a potential barrier for anion diffusion. Similarly, negatively charged E140 located
at the entrance of the ECG possibly hinders the permeation of anions. Therefore, in mutant iChloC,
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where E122, E129, and E140 on TM2 were replaced by glutamine, arginine, and serine, respectively,
the electronegativity surface around the pores was reversed. It suggests that these residues provide a
suitable electrostatic environment for anion conduction in iChloC and also explains the experimental
result that the photo-induced membrane depolarization of the iChloC mutant is greatly attenuated [18].Biomolecules 2019, 9, x 8 of 13 
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3.4. Potential of Mean Force from Umbrella Sampling

To further understand the selectivity of ion permeation, we adopted SMD simulation to move Cl−

through the ion channels of three mutants (Figure 5A), and further estimated the energy changes of ion
transmembrane transport of related ions by using the umbrella sampling [42] method. The constructed
PMF of Cl− through channels of three mutants was shown in Figure 5B. It can be seen from the PMF
curve of the EK-TC mutant that it is an energy reduction process for Cl− entering the ion channel.
The energy is gradually reduced from 3.90 kcal/mol to 0 kcal/mol, and an energy minimum is reached at
K132 of the CG (at about −9 Å). Obviously, there is electrostatic attraction between negatively charged
Cl− and positive charged lysine. Hence the outer vestibular part of the ion channel has the ability to
capture and enrich chloride ions. Therefore, we suggest that K132 is the binding site of Cl− in the ion
channel. Subsequently, Cl− encounters a bottleneck with energy barrier of about 10 kcal/mol in the ion
channel. Clearly, as reflected from the PMF, energy increases as Cl− passes through the inner vestibule
between the CG and the ICG. After Cl− ions pass through the inner vestibule and ICG (about 7.5 Å),
it gradually moves away from ion channel and solvated.

The PMF curve of ER-TC and EK-TC are very similar, with a potential energy wells at the same
binding site, K132. However, there are differences. In ER-TC, as chloride passes through the entrance of
ion channel, energy does not decrease as much (3.90 kcal/mol to 2.43 kcal/mol). This can be explained by
the E129R mutation causing the R159 at ECG to flip. This destroys the hydrogen bond networks, which
makes it easier for ER-TC mutant to capture and enrich Cl− in the outer vestibule. The energy barrier
of Cl− in the inner vestibule between the CG and the ICG in ER-TC mutant about 0.59 kcal/mol lower,
on average, compared to EK-TC. This is also consistent with E129R in ER-TC being more favorable for
the formation of anion channels than E129K mutation in EK-TC.
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A significant difference can be noted in the PMF curve of iChloC compared to ER-TC and EK-TC.
The energy barriers for Cl− pass through CG is much smaller in iChloC and there is no energy rise
in the inner vestibule between the CG and ICG. Therefore, it is easier for Cl− to be traverse the ion
channel in iChloC. This result is consistent with the conformational changes as discussed above as well
as with the experimental results [18].

Generally, it is useful to understand the channel function of the hydrophobic region in the
biological ion channel by analyzing the energy barrier for ions passing through the channel. This can
provide a theoretical basis for designing novel light-controlled ion channel proteins. For example,
Cl− more easily passes through the CG of iChloC compared to the mutant EK-TC and ER-TC, which
means that in addition to local electrostatic interaction in the biological ion channel, the pore size of the
hydrophobic cavity also an important factor to consider for ion selectivity.
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4. Conclusions

As regulator of neurons, understanding ion channels has always been one of the important
goals of optogenetics. In this article, molecular simulation and umbrella sampling methods were
used to study the molecular mechanism of the transport of Cl− through ChRs. The results show
that point mutations of E129R and E140S increase the structural flexibility of the transmembrane
channel protein of the five-fold mutant (iChloC). the outward tilt of TM2 increases the pore size of ion
channel and lowers the steric hindrance. From the electrostatic potential analysis, it was found that
mutating the negatively charged amino acids E129, E122, and E140 on TM2 into positively-charged
or uncharged amino acids in iChloC contributes to the formation of electropositive surface leading
to anionic selectivity in and around the pores. The formation of electropositive surface provides a
highly favorable electrostatic environment for anion conduction in the iChloC mutant. By analyzing
the change of PMF curve obtained from umbrella sampling, it can be hypothesized that Cl− has a high
affinity binding site and energy potential well at K132 (Figure 4), which hinders the transport of Cl−

through the CG of the channel. In addition, PMF curves suggest that the energy barriers for the mutant
EK-TC and ER-TC in the CG are much higher than those for iChloC. The five-fold mutation in iChloC
significantly enhances the ability of the transmembrane protein to capture and enrich chloride ions.
In this work, the structure-oriented analysis of multiple mutants led us to have a deeper understanding
for the ChR pores. We can conclude that protein flexibility, Cl− affinity, and the hydrogen bonding
network are important factors in the formation of cavities and the enhancement of anion selectivity
and conductance of the mutant transmembrane protein. Taking everything into consideration, this
study provides a theoretical basis for the formation mechanism and ion permeation mechanism of ion
channels, and provides a way for rational protein engineering of channelrhodopsin ion pores.
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