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Summary 

 
To generate movements, the brain must combine information about movement goal and body 
posture. Motor cortex (M1) is a key node for the convergence of these information streams. How 
are posture and goal information organized within M1’s activity to permit the flexible generation 
of movement commands? To answer this question, we recorded M1 activity while monkeys 
performed a variety of tasks with the forearm in a range of postures. We found that posture- and 
goal-related components of neural population activity were separable and resided in nearly 
orthogonal subspaces. The posture subspace was stable across tasks. Within each task, neural 
trajectories for each goal had similar shapes across postures. Our results reveal a simpler 
organization of posture information in M1 than previously recognized. The compartmentalization 
of posture and goal information might allow the two to be flexibly combined in the service of our 
broad repertoire of actions. 

 
Introduction 
 

We can effortlessly reach in a given direction from a wide variety of initial configurations, or 
postures, of the arm. Yet, due to the biomechanical properties of the limb, the muscle activity 
required to make the reach from different initial postures can differ in complicated ways1. 
Somehow, populations of neurons in the brain can rapidly and flexibly combine information 
about arm posture and the desired goal of the movement to generate muscle commands in the 
moments before a movement is executed. How might posture and goal information be 
organized in neural activity to support their flexible combination during the range of actions we 
perform on a daily basis? 

Primary motor cortex (M1) is well-situated to play an important role in this process. It receives 
inputs about arm posture and movement goal from sensory and association areas and in turn 
provides the major source of descending projections to the spinal cord for the control of the arm 
and hand2–4 (Figure 1). Prior work has shown that changing the initial posture from which a 
movement is made can cause complicated changes in the activity of individual M1 neurons5–9. 
We reasoned that complex interactions between posture and goal at the single-neuron level 
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could nevertheless be consistent with clear and simple organization of posture and goal 
information at the population level.  

To investigate the structure of posture and goal information in M1 population activity, we 
employed a battery of behavioral tasks in which animals acquired visually-cued targets (i.e., 
movement goals) from a variety of initial arm postures. We used tasks that spanned a range of 
movement requirements. First, we examined M1 activity during a brain-computer interface (BCI) 
task, during which M1 is active, but in the absence of arm movements. Next, we used an 
isometric force task, during which muscles contract, but the arm’s posture does not change. 
Finally, we examined an overt reaching task, which involves both muscular contractions and 
arm movements.  

Across tasks, we found a clear and simple organization of posture information in M1. First, 
neural population activity could be decomposed into posture- and goal-related components that 
were separated into nearly orthogonal subspaces. Second, a single subspace could be used to 
decode arm posture across tasks, even though posture had different implications for each task. 
Third, within each task, neural trajectories for a given goal had similar shapes across postures.  

Together, these results indicate the existence of a ‘posture subspace’ in M1 activity. That is, 
posture produces similar effects in neural population activity across a wide range of behaviors, 
and those effects modulate neural activity in a subspace separate from the one modulated by 
goal signals. The organization of posture and goal information into separate subspaces may 
facilitate the brain’s ability to flexibly combine the two types of information, allowing for posture 
information to be integrated with movement goals differently to support a wide variety of 
behaviors. 

 
 
Figure 1 | Studying how posture and goal information are organized in motor cortical activity. 
(a) M1 receives information about movement goal from upstream areas including premotor and parietal 
cortices2,10. It also receives information about arm posture from areas such as the somatosensory and 
parietal cortices2,10 and the cerebellum4. We sought to determine how posture and goal information were 
organized in M1 population activity. (b) We trained animals to perform tasks in which they acquired 
targets (i.e., movement goals) from different initial arm postures. The means of moving the cursor to the 
goal could be a BCI, isometric force or reaching. (c) We found a clear and simple population-level 
organization of posture and goal information: posture- and goal-related components of neural activity 
were separable and arranged in nearly orthogonal subspaces. Each of the four lines represents a neural 
trajectory corresponding to a particular arm posture and movement goal combination. Trajectory color 
indicates arm posture (postures illustrated in panel b), and line style (solid/dashed) indicates movement 
direction. Changes in posture caused a shift in neural activity that was consistent across movement 
directions. This shift was nearly orthogonal to the neural dimensions modulated by movement goal. 
Furthermore, trajectories for each movement direction had similar shapes across postures. 
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Results  

Posture and goal modulate separate neural dimensions 

We begin by describing how arm posture and movement goal affect neural population activity in 
the primary motor cortex (M1) during a BCI task. The BCI task provides a powerful tool for 
studying the effects of arm posture on neural activity, because during the use of a BCI, the arm 
is still while M1 neurons are active as they control a computer cursor directly. This allows us to 
examine the effects of posture and movement goal simultaneously, while minimizing the 
confounding effects of time-varying proprioceptive feedback generated during arm movements. 
 
In the BCI task, animals volitionally modulated M1 activity to move a computer cursor from the 
center of the workspace to one of eight radially-arranged targets (i.e., movement goals) (Figure 
2a). We used a decoder to map neural activity to cursor motion (Monkey E: position, Monkeys N 
and R: velocity, see Methods). The posture of the arm contralateral to the recording array was 
changed across blocks of trials by rotating the forearm about the shoulder in the transverse 
plane (i.e., rotating about a vertical axis through the shoulder). 

 
We first analyzed the responses of individual neural units during the task (Figure 2b). Most 
units exhibited mixed tuning to posture and target (e.g. unit 1), while some were tuned primarily 
to target (unit 2) or posture (unit 3). Postural tuning was present both before and during cursor 
movement, as can be seen in the responses for units 1 and 3. Many units also exhibited 
changes in target tuning across postures, in agreement with previously reported results for overt 
movement tasks5–9 (Figure S1). 
 
We next asked how posture and goal affected the time course of neural activity across the 
entire population of recorded neural units. This time course can be thought of as a ‘neural 
trajectory’ in a high-dimensional space, where each axis of the space describes the activity of a 
single neural unit11–13. To summarize this trajectory, we projected it into a low-dimensional 
space identified by principal component analysis (PCA) (Figure 2c). We examined neural 
activity from 50ms to 250ms after go cue (go cue coincided with the appearance of the 
peripheral target that the animal acquired during the task). This window was chosen to capture 
goal effects in neural activity while excluding corrective cursor movements made later in the 
trial. When neural activity from all targets in all postures were visualized in the dimensions of 
greatest variance (i.e., top principal components), the neural trajectories displayed little 
discernible organization (Figure 2d).  
 
To attempt to isolate the effects of posture and goal, we employed a targeted dimensionality 
reduction (TDR) approach to identify dimensions that explained posture- and goal-related 
variance (see Methods). When projected into these dimensions, neural trajectories exhibited 
clear spatial structure, with dissociable effects of posture and goal (Figure 2e). Trajectories for 
different targets within each posture emanated outward in different directions along ‘goal 
dimensions’. When the arm’s posture was changed, the shape of these neural trajectories was 
conserved, with all trajectories offset along ‘posture dimensions’. This created a geometry in 
which all trajectories from each posture were cleanly separated from those from the other 
postures. We asked whether similar geometry was produced by other types of arm joint rotation, 
including elbow rotation (Monkey E, Figure 2f) and shoulder abduction (Monkey N, Figure 2g; 
Monkey R, Figure 2h). In all cases, we found that changing the posture of the arm shifted 
neural trajectories along posture dimensions, while the shapes of the neural trajectories for each 
target were conserved.   
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Before concluding that posture and goal modulate separate neural dimensions, we considered 
several alternative explanations for the observed geometry in neural trajectories. The geometry 
was not a byproduct of TDR, although TDR made it more apparent; it was also visible for neural 
trajectories from the same target direction in the top principal components (Figure S2). 
Changes in BCI decoders across postures did not explain the observed postural effects (Figure 
S3). Similarly, drift in neural signals over time could not account for the effects of posture 
(Figure S4). After ruling out these alternative explanations, we can conclude that posture and 
target have dissociable effects on neural population activity during BCI control: changes in 
posture impact neural trajectories by offsetting them along posture dimensions, while changes 
in target alter the direction in which trajectories emanate along goal dimensions. 
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Figure 2 | Posture and goal signals are visibly separable in neural population activity. 
(a) Schematic of the multi-posture BCI task. Animals volitionally modulated M1 activity to drive a 
computer cursor to one of eight radially-arranged targets. On each trial, a center target was acquired. 
Next, the center target disappeared, and one of eight peripheral targets appeared (‘target onset and go 
cue’). Finally, the animal acquired the peripheral target with the cursor. Neural activity from 50ms to 
250ms after go cue/target onset was analyzed. The posture of the arm was changed in blocks of trials by 
rotating the forearm about the shoulder in the transverse plane in 15-degree increments. (b) (top) Trial-
averaged single unit responses for the rightward BCI target for each arm posture (Monkey E, Array 1). 
Colors correspond to arm postures. Dot indicates target onset/go cue. Shaded error bars are +/-SEM. 
(bottom) Responses for all BCI target directions when the arm was in the innermost posture. Colors 
correspond to BCI target directions. Unit 1 is tuned to both target and posture, unit 2 is tuned primarily to 
target, and unit 3 is tuned primarily to posture. Note that posture tuning is visible before the go cue in 
units 1 and 3. (c) Dimensionality reduction provides different low-dimensional views of the same high-
dimensional neural activity. (d) When visualized in the top 3 principal components, these trajectories 
displayed little discernible organization. Trial-averaged neural trajectories are shown for all targets and 
postures for Monkey E in space identified by PCA. Trajectories are colored by arm posture. Percentages 
along axes indicate variance of trial-averaged trajectories explained by each PCA dimension. (e) Here, 
neural trajectories are projected into the space identified by targeted dimensionality reduction (see 
Methods). When visualized in these dimensions, neural trajectories exhibited clear spatial structure, with 
dissociable effects of posture and goal. Trajectories for different targets within each posture emanated 
outward in different directions along ‘goal dimensions’. When the arm’s posture was changed, the shape 
of these neural trajectories was conserved, with all trajectories offset along ‘posture dimensions’. (f-h) 
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Same format as (e), but for other monkeys and postural manipulations. (f) 60 degree elbow and shoulder 
rotations (Monkey E). (g) 90 degree shoulder abduction and 45 degree shoulder rotation (Monkey N). (h) 
90 degree shoulder abduction (Monkey R). For all animals and postural manipulations we considered, 
neural trajectories exhibited similar spatial structure as in (e). 
 

Posture and goal subspaces are nearly orthogonal 
Visualizations of neural activity from the BCI task (Figure 2) suggested that posture and goal 
have separable effects on neural population activity in M1, and that these effects modulate 
different neural dimensions. Previous work has suggested that compartmentalization of sensory 
and motor information into orthogonal subspaces could support flexible sensorimotor 
integration14,15. Separating neural activity across postures may allow different dynamical flow 
fields of neural activity to be learned in each posture11,16–18. Additionally, compartmentalization 
may prevent incoming sensory information from prematurely affecting ongoing motor 
commands14,15. To determine the extent to which this compartmentalization principle applies to 
posture and goal information, we asked how different the posture and goal dimensions were. At 
one extreme, these dimensions could be orthogonal (Figure 3a, top). At the other extreme, they 
could be aligned (Figure 3a, bottom). 
 

To quantify the alignment of the posture and goal dimensions, we performed a cross-projection 
alignment test19. We first decomposed trial-averaged neural activity into a posture component 
(by averaging neural trajectories over different targets; see Methods), and goal component (by 
averaging neural trajectories over different postures). We then identified the ‘posture subspace,’ 
defined as the dimensions that captured the greatest posture-related variance, by applying PCA 
to the posture component (see Methods). We separately identified the ‘goal subspace’ by 
applying PCA to the goal component. We next projected the posture component into each 
subspace and measured the amount of variance captured in a cross-validated manner. If the 
two subspaces were perfectly aligned, they would capture the same amount of posture-related 
variance. If they were orthogonal, then the goal subspace would capture little posture-related 
variance. We then repeated this procedure with the goal component.  
 

We found that the posture subspace captured the majority of posture-related variance, whereas 
the goal subspace captured very little posture-related variance. This is an indication that the 
posture and goal subspaces were nearly orthogonal. For example, in the session shown 
(Monkey E), a 2-dimensional posture subspace captured 83% of the posture variance (Figure 
3b), whereas a 2-dimensional goal subspace captured only 10% of the posture variance 
(Figure 3c). This result was consistent in all sessions for all animals (Figure 3d). In fact, the 
amount of posture variance captured by the goal subspace was on the low end of the amount 
captured by randomly-drawn subspaces. Similarly, we found that the posture subspace 
captured little goal-related variance. In the session shown, the 2-D posture subspace captures 
10% of the goal variance (Figure 3e), whereas the 2-D goal subspace captures 79% of the goal 
variance (Figure 3f). This effect was also observed in all sessions for all animals (Figure 3g). 
When we manipulated multiple arm joints within the same session, the posture and goal 
subspaces remained orthogonal, and the posture subspaces for each joint were orthogonal to 
one another (Figure S5). 
 
These results indicate that, during BCI control, neural population activity can be decomposed 
into posture- and goal-components, and that these components modulate nearly orthogonal 
subspaces of neural activity. We next sought to determine whether these findings extended to 
overt tasks requiring muscular contraction. 
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Figure 3 | Posture and goal subspaces are nearly orthogonal.  
(a) How similar are the posture and goal subspaces? At one extreme, they may be orthogonal (top) while 
at the other, they may be aligned (bottom). In this schematic, the posture subspace is shown as 1-
dimensional to illustrate orthogonality and alignment. (b) Projection of the posture component of neural 
population activity into the 2-dimensional posture subspace for the same session as shown in Figure 2e. 
Each trace is the marginalization over target directions for one posture (see Methods). Traces are colored 
by posture. Small dots indicate the end of the trajectory, and large dots represent the mean across time. 
These means are only shown for visual clarity; quantifications were performed on the marginalized time 
courses. For this session, the posture subspace captured 83% of the posture-related variance. (c) 
Projection of the posture component into the 2-dimensional goal subspace. The goal subspace captured 
only 10% of the posture-related variance for this session. (d) Posture-related variance captured by 
posture and goal subspaces for each animal. Data from all sessions and postural manipulations were 
combined for each monkey (Monkey E: four shoulder rotation sessions and one session in which both the 
shoulder and elbow were rotated; Monkey N: two sessions in which the shoulder was separately rotated 
and abducted; Monkey R: one session of shoulder rotation and one session of shoulder abduction; see 
Methods). Bar heights are means across sessions and error bars indicate the 2.5th to 97.5th percentile of 
the bootstrapped sampling distribution. The gray dashed line and shaded area indicate the mean and 
2.5th to 97.5th percentile of posture-related variance captured by randomly drawn subspaces (see 
Methods). For each animal, the goal subspace captured much less posture-related variance than the 
posture subspace (p < 10-24, bootstrap test), and the amount of posture-related variance captured by the 
goal subspace was on the low end of the random subspace distribution. Together, these indicate that the 
posture and goal subspaces are nearly orthogonal. (e-g) Same format as (b-d), but for goal-related 
variance. Across animals, the posture subspace captured much less goal-related variance than the goal 
subspace (p < 10-27, bootstrap test), providing further evidence that the posture and goal subspaces are 
nearly orthogonal. 
 

Posture and goal also modulate separate neural dimensions during overt tasks 

The BCI paradigm enabled us to isolate the effects of posture and goal on neural activity, 
because during BCI control, M1 is active though the arm does not move, and the muscles need 
not contract. This removes many of the confounding factors present during overt movement, 
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such as time-varying proprioceptive feedback and movement commands that may depend on 
initial arm posture. So far we have shown that posture and goal modulate distinct subspaces of 
M1 population activity, at least during BCI control. Does this finding generalize to ‘overt’ 
behaviors (i.e., behaviors requiring muscular contraction)? We next asked whether a posture 
subspace was present during overt isometric force and reaching tasks.  
 

In the isometric force task, muscle activation is required for task success, but limb movement is 
restricted, which minimizes the influence of time-varying proprioceptive feedback (Figure 4a). 
The animal exerted upward or downward forces on a handle attached to a force transducer to 
move a computer cursor to a target displayed on the screen. Between blocks, arm posture was 
changed by rotating the forearm about the shoulder in the transverse plane. We analyzed neural 
activity from 50ms to 250ms after go cue to include strong target effects on neural activity while 
excluding as much as possible time-varying proprioceptive feedback from the contracting 
muscles (see Methods).  
  
When we examined neural population activity in the isometric task, we again observed that 
neural trajectories for each target had similar shapes across postures and were separated along 
posture dimensions (Figure 4b). We repeated the subspace alignment analysis and again 
found that posture and goal subspaces were nearly orthogonal (Figure 4c). These observations 
indicate that a posture subspace is also evident during an isometric task, as it was for BCI 
control. 

We next asked whether posture and goal information were also separated during a center-out 
reaching task performed from different initial arm postures. As similar tasks have been shown to 
produce substantial changes in muscle activation and neural activity across postures5, we 
wondered if the clean separation of posture and goal effects would break down during an overt 
reaching task, or if our ability to see it would be obscured. In this task, animals made reaches to 
one of eight radially arranged targets. The initial posture of the arm was changed across blocks 
of trials by changing the initial location of the hand in the frontoparallel plane (Figure 4d). 
Reaches were matched in direction and length from each initial hand position. Visual feedback 
was matched across postures so that the instructed initial hand position always corresponded to 
the center of the screen. We analyzed neural activity in the 200ms preceding movement onset 
to exclude time-varying proprioceptive feedback. 

Even during overt reaching, we observed clear organization of posture and goal information in 
neural population activity (Figure 4e, Figure S6). Posture and goal subspaces were nearly 
orthogonal (Figure 4f). We again noticed that neural trajectories for a given target seemed to 
have a similar shape (e.g., Figure 4e, red and blue trajectories for the rightward target). We 
return to this point below for further quantification. We note that once the arm begins moving, 
activity in the posture subspace does not closely track the position of the hand (Figure S7), 
possibly due to muscle lengths changing in complicated ways during reaching. 
 

Our consistent results across tasks suggest that the separation of posture and goal information 
into distinct subspaces is an organizing principle of motor cortex. It is easiest to see in the BCI 
case, but also present during behaviors that engage the muscles and move the arm. 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.12.607361doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607361
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

 
 
Figure 4 | Posture and goal also modulate separate neural dimensions during overt tasks. 
(a) Schematic of the isometric force task. Monkey E (Array 1) exerted upward or downward forces on a 
handle that was fixed to a force transducer. Forces recorded by the transducer were mapped to cursor 
position. On each trial, a central target was first acquired. Next, the center target disappeared, and an 
upward or downward peripheral target appeared (‘target onset and go cue’). The animal exerted forces to 
drive the cursor to acquire the peripheral target (4.75N of upward or downward force corresponded to the 
upward or downward target center, respectively). Neural activity from 50ms to 250ms after go cue/target 
onset was analyzed. The posture of the arm was changed across blocks of trials by rotating the forearm 
about the shoulder in the transverse plane in 15-degree increments. (b) Trial-averaged neural trajectories 
for all targets and postures for the isometric force task, plotted in the space identified by TDR (see 
Methods). Neural trajectories exhibited clear spatial structure, with dissociable effects of posture and goal. 
Trajectories are colored by arm posture. Percentages along axes indicate variance of trial-averaged 
trajectories explained by these dimensions. (c) Posture- and goal-related variance captured by the 
posture and goal subspaces for the isometric force task. Same format as Figure 3d (left) and Figure 3g 
(right). As with the BCI task, the goal subspace captured much less posture-related variance than the 
posture subspace (left, p < 10-20, bootstrap test), and posture subspace captured less goal-related 
variance than the goal subspace (right, p < 10-20, bootstrap test). Together, these support the notion that 
the posture and goal subspaces are nearly orthogonal. (d) Schematic of the reaching task. On each trial, 
a center target was acquired. Next, the center target disappeared, and one of eight radially-arranged 
peripheral targets appeared (‘target onset and go cue’). Finally, the animal made a reach to acquire the 
peripheral target. We analyzed neural activity in the 200ms before movement onset. Posture was 
changed in randomized blocks of trials by adjusting the initial location of the hand in the frontoparallel 
plane. Visual feedback was matched across postures. Task design for Monkey R is shown; task design 
varied slightly for other animals (see Methods). (e) Trial-averaged neural trajectories for all movement 
goals and postures for one example session of the reaching task, plotted in the space identified by TDR. 
(f) Posture- and goal-related variance captured by the posture and goal subspaces for the reaching task. 
Same format as Figure 3d (left) and Figure 3g (right). Again, the goal subspace captured much less 
posture-related variance than the posture subspace (left, p < 10-52, bootstrap test), and posture subspace 
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captured less goal-related variance than the goal subspace (right, p < 10-63, bootstrap test), indicating that 
the posture and goal subspaces are nearly orthogonal. 
 

The posture subspace is shared across tasks 

Across a variety of tasks, we found that posture and goal information were separated into 
distinct neural subspaces. We next asked how the posture subspaces from different tasks were 
related. It could be the case that there is a separate posture subspace for each of our tasks. 
This is plausible because, in each task, the initial arm posture has different implications for the 
upcoming muscle commands. Alternatively, it could be that there is a posture subspace that is 
common to all tasks. This might be the case if the posture subspace purely reflects joint-based 
proprioceptive inputs to M1. To directly compare the encoding of posture across tasks, we 
trained Monkey E to perform a ‘multiple tasks’ paradigm, in which all three of the tasks were 
performed within a single experimental session (Figure 5a).  
 

We asked whether it was possible to identify a single subspace from which arm posture could 
be read out across tasks. To test this, we averaged neural activity within the analysis window for 
each task, resulting in one observation (i.e., one spike count vector) per trial. We then used 
linear discriminant analysis (LDA) to identify a subspace that separated neural activity from all 
tasks by posture (see Methods). Projections of each task’s neural activity into the subspace 
identified by LDA were qualitatively similar (Figure 5b), suggesting that a single posture 
subspace might be common to all tasks. 
 
To quantify this, we attempted to classify posture from neural activity using a single classifier 
across tasks. We used the means and covariance of the neural population activity from LDA to 
classify posture. To establish a baseline for classifier performance, we first trained classifiers on 
each task separately, and found that the cross-validated prediction accuracies were nearly 
perfect (96.7% correct; Figure 5c, left bar). When we used a single classifier for all tasks, there 
was hardly any degradation in performance (95.4% correct; Figure 5c, middle bar). An even 
stronger test of the consistency of the posture subspace across tasks is to train a posture 
classifier on one task and test on others. When we did this, the classifiers still performed well 
above chance levels, with a moderate decrement in performance (77.8% correct; Figure 5c, 
right bar).  
 

A trivial explanation for our ability to decode posture using a single subspace across tasks is 
that overall neural activity is similar across tasks. However, we were able to identify other neural 
dimensions that strongly separated neural activity across tasks, indicating that neural activity for 
each task was starkly different (Figure 5d; see Methods for details on how these dimensions 
were identified). This suggests that the posture subspace is consistent across tasks, even 
though overall neural activity is different across tasks. Together, these analyses support the 
existence of a stable posture subspace in M1’s population activity.  
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Figure 5 | The posture subspace is shared across tasks. 
(a) In the multiple tasks paradigm, Monkey E (Array 1) performed the BCI task, the isometric force task, 
and the reaching task in blocks of trials on the same day. The tasks were modified so that the same three 
initial postures were matched across tasks  (see Methods). The posture of the arm was changed in blocks 
of trials by rotating the forearm about the shoulder in the transverse plane in 30-degree increments. 
Blocks of each task were performed in each posture before changing postures. (b)  Projections of mean 
neural activity for individual trials (one point per trial) onto the posture subspace identified by linear 
discriminant analysis (LDA) on data from all tasks. The first three panels each show neural activity from 
one task. The lower-right panel shows neural activity from all tasks together, with ellipses covering 95% of 
the distribution for each task and posture. Axes are the same for each panel. Class labels for LDA were 
determined by arm posture, irrespective of task or target direction. Projections of neural activity for each 
task were overlapping in the posture subspace (lower right panel), indicating that it may be possible to 
classify arm posture from a single subspace, regardless of task. (c) Arm posture can be accurately 
classified from motor cortical activity across different tasks. To assess the consistency of postural signals 
across tasks, we calculated cross-validated posture classification accuracy in three different ways (for 
details, see Methods). First, we trained and tested separate classifiers within each of the three tasks 
(Within task, left bar). Bar height and error bar are mean and SEM of the classification accuracies across 
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15 test folds (five folds for each of the three tasks). This effectively establishes an upper limit for classifier 
performance against which we can compare across-task classification performance. Second, we trained a 
single classifier on neural activity from all tasks, then tested on data from each task individually (Train on 
all tasks, middle bar). We observe almost the same classifier performance when compared with the within 
task classification, suggesting that we can identify a consistent posture subspace across tasks. Third, we 
trained classifiers on neural activity from one task and then tested on data from the other tasks (Train on 1 
task, test on other tasks, right bar). Classifiers performed well above chance (red dashed line, 33.3%), 
again suggesting a consistent posture subspace across tasks. (d) Distributions of neural activity from 
each posture and task combination, visualized in a 3-dimensional space formed from the posture 
subspace from (b) (horizontal plane) and a ‘task dimension’ (vertical axis). Ellipsoids contain 95% of the 
neural activity in the distribution. To identify the task dimension, we used LDA to separate neural activity 
by task, ignoring arm posture and target direction. This procedure identifies two task dimensions, as there 
were three task labels. One dimension was chosen manually from within the space formed by these two 
task dimensions and combined with the two posture dimensions (see Methods). We then used QR 
decomposition to orthonormalize these three dimensions. The resulting visualization demonstrates that 
neural activity maintains a consistent projection into the posture subspace, even as activity differs strongly 
across tasks. 
 

Neural trajectories in each task have similar shapes across postures 

So far, we have shown that posture and goal information are separated in M1 neural population 
activity across a variety of tasks, and that the posture subspace is consistent across tasks. 
When examining neural population activity within each task, we noticed that neural trajectories 
for each target seemed to have a similar overall shape, regardless of arm posture. Similarity of 
trajectory shape might indicate that goal-related neural motifs are reused across postures, 
potentially allowing for ‘composition’ of movement commands20,21. Therefore, we next sought to 
precisely quantify the extent to which trajectories changed shape across postures.  
 

To do so, we measured the difference (as the mean Euclidean distance) between pairs of 
trajectories before and after applying a translation to align their means (Figure 6a; for complete 
illustration of procedure, see Figure S8). This translation accounts for the offset in population 
space between the pair of trajectories, including any offset due to the influence of posture. We 
compared the difference after translation to the difference before translation for each pair of 
trajectories (Figure 6b). If trajectories do not reshape, then applying this translation would 
remove any difference between them, yielding completely overlapping trajectories. This would 
result in a low ‘difference after translation,’ regardless of the ‘difference before translation.’ 
Alternatively, if the pair of trajectories had different shapes, the translation procedure would 
account for some (but not all) of the difference between them, resulting in a higher difference 
after translation. 
 

Across all tasks, we found that removing the offset between trajectories accounted for the 
majority of the difference between them (BCI, Monkey E: 89% reduction, Monkey N: 85%, 
Monkey R: 83%; Isometric Force, Monkey E: 70%; Reaching, Monkey E: 73%, Monkey N: 58%, 
Monkey R: 63%), resulting in low values for differences after translation (Figure 6c). We noticed 
that differences after translation were higher for isometric force and reaching than they were for 
the BCI task. This means that trajectories exhibit larger changes in shape across postures for 
these overt tasks than they do for the BCI task. This could be due to differences in time-varying 
proprioceptive feedback or outgoing muscle commands across postures that are present in the 
overt tasks, but not BCI task. These differences notwithstanding, within each task, the shapes of 
trajectories were largely conserved across postures, supporting the possibility that M1’s posture 
and goal information could serve to flexibly compose motor commands. 
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Figure 6 | Neural trajectories in each task have similar shapes across postures. 
(a) Method for assessing the similarity of neural trajectories across postures (see Methods, 
Supplementary Figure 8). We measured the difference between pairs of trajectories before and after 
translating them to bring them into alignment. Our metric for the difference between a pair of trajectories 
was the mean of the Euclidean distances between corresponding time points on each trajectory. (b) 
Trajectories might exhibit strong reshaping across postures (top), in which case the difference before and 
after translation would be similar, producing points near the diagonal. Alternatively, trajectories might 
exhibit minimal reshaping across postures (bottom), in which case the difference after translation would 
be near 1, regardless of the difference before translation. (c) Neural trajectories for each task have similar 
shapes across postures. Each panel shows the differences before and after translation for all monkeys 
and tasks. Each small, shaded marker represents one comparison for one experimental session (e.g., 
posture 1, target 1 vs. posture 2, target 1). The larger markers indicate the mean of all comparisons for 
each monkey (circle, Monkey E; diamond, Monkey N; X, Monkey R). In the BCI task, all differences after 
translation are near 1, regardless of the difference before translation. This indicates minimal trajectory 
reshaping in the BCI task. In the isometric force and reaching tasks, differences after translation were 
slightly higher, although still well below the diagonal. This indicates that trajectories still had broadly 
similar shapes across postures, with some reshaping that might be explained by differences in muscle 
activity or sensory feedback across postures.  
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Discussion 

Here we report the existence of a “posture subspace” in M1. By incrementally varying arm 
posture in BCI, isometric force, and reaching tasks, we discovered that posture and movement 
goal information are mostly confined to separate subspaces of M1 population activity. The 
posture subspace is preserved across tasks. Finally, for any given task and movement direction, 
neural trajectories had similar shapes across postures. Our results reveal a simpler organization 
of posture information in M1 than previously recognized.  

Prior work has suggested that the separation of distinct neural signals into orthogonal 
subspaces may be advantageous for sensorimotor integration14,15,22, as well as for 
learning18,23,24, motor control19,20,25–27, working memory28,29, and decision making30–33. The 
separation of posture and goal signals in M1 may provide similar benefits, allowing M1 to 
flexibly integrate posture information when generating movement commands. We propose three 
possible benefits. First, the separation of posture and goal signals could allow goal signals to be 
re-used across postures, thereby enabling compositional coding of movement commands and 
facilitating generalization to new postures20,21. This is consistent with our observation that neural 
trajectories have broadly similar shapes across postures, even for reaches occurring in different 
parts of the workspace. Second, the separation of posture and goal signals could enable 
different dynamical flow fields of neural activity to be learned in different postures11,16–18. We 
found that neural trajectories had similar overall shapes in each posture, but the shapes were 
not identical (Figure 6c). These small changes in shape could reflect slight differences in flow 
fields across postures. Indeed, recent work has shown that muscle-related components of M1 
activity explain only a small fraction of the variance in overall population activity34, suggesting 
that slight differences in neural flow fields could be sufficient for producing the muscle activity 
required in each posture35. Third, the separation of posture and goal signals could allow posture 
information to enter M1 without immediately causing limb movement. This is because posture 
signals could avoid M1’s ‘output-potent space,’ the dimensions which cause muscle output25. By 
sequestering posture information from the output-potent space, M1 could process posture 
information before it affects movement14,15, allowing it to be used in a goal-dependent way36, as 
opposed to being mapped one-to-one to muscle activity, as can happen for a simple reflex.  

How might the posture subspace arise? It is likely that the posture signal we observed 
originates from proprioceptive stretch receptors in the muscles37,38. For most of our tasks, the 
monkey’s arm was resting passively on a handle during the analysis window, so it is unlikely 
that the posture signal was an efferent signal related to active postural maintenance. Indeed, 
previous work has found that changes in the passive configuration of the arm influence M1 
activity, even when the muscles are relaxed37. However, this does not explain why the posture 
subspace is nearly orthogonal to the goal subspace. One possible explanation for the observed 
near orthogonality is that proprioceptive signals arrive at M1 via different anatomical pathways 
(e.g., through somatosensory cortex) than goal signals (e.g., through premotor cortex). These 
distinct pathways could form disparate, independent patterns of synaptic connections with M1. 
Thus, such projections could drive population activity patterns that are orthogonal to each other. 
Another possibility is that orthogonal subspaces are set up through learning to exploit the 
computational benefits enumerated above23.  

The population-level organization of posture and goal information that we report is simpler than 
previously recognized, as posture influences the activity of single units in M1 in complicated 
ways. For example, as reported in previous studies5–9,37,39,40, we observed changes in the 
directional tuning of individual neural units across postures, as well as heterogeneous offsets in 
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the overall firing rate of individual units across postures (cf. Figure S2). Yet, these seemingly-
complicated changes in activity with posture are consistent with a far simpler organization in 
population activity space, made evident with dimensionality reduction techniques41,42. We found 
that a single neural plane could capture goal signals across postures, and that neural population 
trajectories had similar shapes across postures. We proceeded to incrementally vary posture in 
a variety of behavioral tasks, which enabled us to discover that the postural signals are 
compartmentalized from goal signals in a consistent way across tasks.  

Although this organization was visible across a wide range of tasks, there may be scenarios in 
which the organization is less apparent. For example, it may be less apparent in tasks requiring 
drastic changes in muscle activity across postures (e.g., Kakei et al. 19996, Oby et al. 20137). 
This is suggested by our finding that neural trajectories reshape more across postures in the 
reaching task, which required changes in muscle activity across postures, than they did in the 
BCI task, which did not involve arm movements. 

For users of clinical BCIs, it is important that postural signals do not impede control of the BCI. 
Postural signals can be present for BCI users who have experienced incomplete transection of 
spinal sensory pathways40, and BCI users may change posture if they retain some degree of 
residual motor control or if their body is adjusted by a caregiver. Our results suggest that it may 
be possible to design BCI decoders that are robust to posture signals. We found that posture 
signals are mostly confined to the posture subspace, and that goal signals are similar across 
postures. This implies that if enough postures are sampled to accurately estimate the goal 
subspace, a single decoder can be trained to decode movement intention from all of them. After 
training, the decoder would not need to be recalibrated each time posture changes. Another 
implication of our results is it may also be possible to design decoders that are robust to 
somatosensory signals generated by electrical stimulation, provided that the stimulation is 
delivered in such a way that it avoids the goal subspace. 

Overall, our work adds posture to a growing list of non-motor signals that influence M1’s 
activity43, including arousal44, reward45, uncertainty27, somatosensory feedback15,37,46, visual 
feedback47,48, and memories18,49. Ongoing work will continue to determine how these non-motor 
signals influence M1’s neural population dynamics, and how this impacts decision making, 
learning, and ultimately, the movement that is produced.  
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Methods 

Resource availability 

Requests for materials should be directed to and will be fulfilled by the lead contact, Aaron 
Batista (aaron.batista@pitt.edu). 

Materials availability: This study did not generate new unique reagents. 

Data and code availability: Data will be made available at the time of publication. Analysis code 
can be found at https://github.com/pmarino162/posture-git-repo 

Experimental subjects and details  

Three adult male rhesus macaques, Monkey E (9.2kg, 10 years old), Monkey N (10.7kg, 7 
years old), and Monkey R (17.1kg, 7 years old), were used in this study. The experiments for 
this study were conducted at the University of Pittsburgh (Monkey E) and Carnegie Mellon 
University (Monkeys N and R). All animal handling procedures were approved by the University 
of Pittsburgh Institutional Animal Care and Use Committee or the Carnegie Mellon University 
Institutional Animal Care and Use Committee, respectively. All data were analyzed using 
MATLAB 2019a.  

Neural recordings  

We recorded from the proximal arm region of the motor cortex of all animals using 
microelectrode ‘Utah’ arrays (Blackrock Microsystems). Prior to array implant surgeries, all 
animals were trained to perform center-out reaching tasks. Monkey E was also trained to 
perform isometric force and delayed center-out reaching tasks. We implanted arrays in the 
hemisphere contralateral to the trained reaching arm. 

Monkey E was first implanted with a 96-channel array straddling the shoulder regions of primary 
motor cortex (M1) and dorsal aspect of the premotor cortex (PMd) of the left hemisphere (Array 
1), and a series of experiments were conducted using the right arm (see details below). Later, 
after training Monkey E to use his left arm in a reaching task, two separate 64-channel arrays 
were implanted, one in PMd and one in M1 of the right hemisphere, and second series of 
experiments were conducted with the left arm. We refer to these data collectively as Monkey E, 
Array 2. Monkey N was implanted with one 96-channel array in M1 of the left hemisphere. 
Monkey R was implanted with two adjacent 96 channel arrays (arranged medio-laterally) in M1 
of the left hemisphere. In this study, we make no distinction between recordings from M1 versus 
PMd and include all recordings for all analyses.  

Microelectrode array analog voltage signals were amplified, bandpass filtered, and digitized 
using a multichannel acquisition processor system (Tucker Davis Technologies, Monkey E; 
Plexon, Monkey N; Blackrock Microsystems, Monkey R). Waveform data were converted to 
spiking events by thresholding at 3x (Monkey E) or 3.5x (Monkeys N and R) the root mean 
square voltage for each channel. We did not include data from an electrode if the threshold 
crossing waveforms did not resemble action potentials or if the electrode appeared to be 
electrically shorted to another electrode. For Monkey E, each channel was treated as a neural 
unit, and waveforms on the channel were not sorted. For Monkeys N and R, waveforms were 
sorted online before experiments. This approach yielded 87.5 ± 0.5 units (mean ± standard 
deviation across sessions) for Monkey E, Array 1; 109.6 ± 0.9 units for Monkey E, Array 2; 64.3 
± 13.5 units for Monkey N; and 120.75 ± 48.9 units for Monkey R. 
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Kinematic recordings  

During reaching tasks, the 3-D position of the hand contralateral to the recording array was 
tracked using an infrared LED marker attached to the hand (Monkey E, 120Hz sampling rate, 
PhaseSpace; Monkeys N and R, 60Hz sampling rate, Optotrak 3020, Northern Digital 
Instruments). Hand position was also recorded for some BCI and isometric force sessions for 
Monkey E.  

During Monkey E’s isometric force task, forces exerted by the hand contralateral to the 
recording array were recorded using a force transducer (Mini 40, ATI Industrial Automation). The 
animal held a cylindrical metal handle which was fixed to the force transducer. Hand forces were 
also recorded for some of Monkey E’s BCI sessions and all tasks of Monkey E’s multiple-tasks 
paradigm. All force thresholds for all tasks are expressed relative to the amount of force exerted 
on the force transducer by the hand when the arm was at rest. 

Tasks 

In this study we conducted four types of tasks: BCI, isometric force, reaching, and a ‘multiple 
tasks’ paradigm, and each is detailed below. For all experiments, the monkey sat in a primate 
chair in a darkened room facing a mirror ~8cm in front of the eyes which reflected a computer 
monitor displaying task events. Monkey E was head-fixed, but Monkeys N and R were not. 
During reaching tasks, the working arm was not visible to the animal, as it moved in the space 
behind and below the mirror.  

Postural manipulations for all tasks other than the reaching tasks (i.e., the ‘delayed center-out 
reaching’ task and the ‘center-out reaching’ task) are described relative to a ‘neutral’ posture, in 
which the upper arm rested on the side of the body, and the forearm was perpendicular to the 
upper arm, aligned with the sagittal axis (see Figure 2a, central posture, for illustration). 

BCI Task 

Task flow 

Monkeys performed an eight-target center-out BCI task by volitionally modulating recorded 
neural activity to control the position (Monkey E) or velocity (Monkeys N and R) of a computer 
cursor on a screen. Each experimental session consisted of several blocks. In each block, the 
arm contralateral to the recording array was fixed in a new posture, and a new decoder was 
calibrated (see procedure below). A separate decoder was calibrated for each posture so that 
the animal did not need to produce neural activity appropriate for a different posture’s decoder 
for task success (Figure S3). The monkey used the new decoder to complete between 100 and 
200 trials of the center-out task. The arm ipsilateral to the recording array was lightly restrained 
throughout.  

For Monkey E, fine postural manipulations were used. To accomplish this, Monkey E’s 
contralateral arm was restrained in one of two mechanical devices. Each device allowed for arm 
posture to be changed by rotating the arm about one joint. The device could then be locked, 
restraining the arm in the new posture. The first device was used to rotate the forearm about the 
shoulder in the transverse plane in 15-degree increments. The second was used to rotate the 
forearm about the elbow in the sagittal plane in 15-degree increments. When using either 
device, the monkey grasped a handle that was attached to a force transducer so that forces 
exerted at the hand could be measured during BCI control. Measured forces, motion tracking of 
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the hand, and observed live video feed from the experiment showed that exerted forces and 
hand movements during BCI control were minimal. 

For Monkeys N and R, coarser postural manipulations were used. Arm posture was changed by 
restraining the arm contralateral to the recording array in a brace placed in different 
configurations (45-degree rotation of the forearm about the shoulder in the transverse plane and 
90-degree abduction of the upper arm about the shoulder in the frontoparallel plane). Hand and 
arm movements were observed to be minimal during the experiment, but we did not measure 
them for Monkeys N or R. 

BCI calibration 

We used two different types of BCI decoders across animals in this study. For each animal, we 
used the type of decoder that the animal was familiar with from other experiments prior to this 
study. The fact that we found similar results regardless of the type of decoder used further 
strengthens our results.  

We begin by describing the calibration procedure for Monkey E, who used a position-based 
decoder. At the beginning of each session, we estimated the root mean square voltage of the 
signal on each electrode while the monkey sat calmly in a darkened room. We then began a 
calibration block of trials, and we repeated the calibration procedure after each postural change. 

We used a closed-loop calibration procedure similar to Sadtler et al., 201450. The procedure 
consisted of five 32-trial blocks of center-out movements (four trials to each of the eight targets, 
chosen pseudo-randomly). After each block, a new decoder was calibrated that gave the animal 
increased control of the BCI. The final decoder produced from this procedure was then used by 
the animal to perform experimental tasks. We describe the calibration procedure in greater 
detail below. 

The first block was an observation block during which we recorded neural activity while the 
animal observed a computer cursor (circle, 4mm radius) moving from the center target (circle, 
15mm radius) to a peripheral target (circle, 10mm radius, 90mm away from center) at a constant 
velocity (0.15 m/s). Each trial began with a 250ms period during which the screen was blank, 
and the animal’s hand rested on the handle attached to the force transducer. Next, there was a 
300ms ‘freeze period’ during which the cursor, center target and peripheral target were 
displayed, and the cursor was frozen at the center target location. The cursor then began 
moving to the peripheral target. After it reached the peripheral target, the animal received a 
water reward. Data from these observation trials were used to calibrate an initial decoder.  

For blocks 2 to 5, the animal performed a BCI center-out task by using the decoder calibrated 
on trials from the previous block(s) to control the position of the cursor. Each trial began with a 
250ms period during which the screen was blank, and the animal’s hand rested on the handle 
attached to the force transducer. Next, there was a freeze period (500ms) during which the 
central target and peripheral target appeared, but the cursor was not displayed. After the freeze 
period, the central target disappeared, and the cursor appeared at a location decoded from 
neural activity during the freeze period. The animal then had 4s to acquire the peripheral target. 
If the target was successfully acquired within the time limit, a water reward was given. 

In the 2nd block, the initial decoder calibrated on observation trials was used. We restricted 
movement of the cursor so that it moved in a straight line towards the target (that is, any cursor 
movement perpendicular to the target was scaled by a factor of 0). For the 3rd block, the 
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decoder was calibrated on the trials from the 2nd block only, and perpendicular movements were 
scaled by 0.25. For the 4th block, the decoder was calibrated on trials from blocks 2 to 3, and 
perpendicular movements were scaled by 0.5. For the 5th block, the decoder was calibrated on 
trials from blocks 2 to 4, and perpendicular movements were no longer restricted (i.e., scaled by 
1). The final decoder resulting from the calibration procedure was calibrated on trials from 
blocks 2-5.  

Throughout all calibration blocks, forces at the hand were monitored, and excessive forces 
triggered a trial failure. Excessive forces were defined as upward or downward forces greater 
than 3N. 

Threshold crossings from calibration trials were binned in non-overlapping 45ms bins. Neural 
activity from the beginning of the freeze period until target acquisition for each trial was used to 
fit a Gaussian Process Factor Analysis (GPFA) model to estimate low-dimensional latent states 
from the high-dimensional neural recordings51. These latent state estimates were then used to 
determine a linear mapping from low-dimensional latent states to cursor position in a procedure 
described below.  

GPFA is a latent variable model that extracts smooth, low-dimensional neural trajectories from 
simultaneous recordings of many neural units. A neural trajectory summarizes the time evolution 
of the activity of the recorded neural units. Like factor analysis (FA), GPFA describes the high-
dimensional neural activity using a lower-dimensional set of ‘factors,’ which represent the 
inferred latent state. However, unlike in FA, in GPFA, these latent states are related through 
Gaussian processes, which embody the notion that trajectories should be smooth. This unifies 
the typical steps used in extracting neural trajectories (dimensionality reduction and smoothing) 
into a common probabilistic framework.  

GPFA defines a linear-gaussian relationship between a high-dimensional vector of spike counts, 

𝒖:,𝑡 ∈ ℝ𝑞×1 , (𝑞 simultaneously recorded channels at timestep 𝑡 = 0,1, … , 𝑇), and the 

corresponding low-dimensional latent state at time 𝑡, 𝒛:,𝑡 ∈ ℝ𝑝×1 (𝑝 latent dimensions, 𝑝 < 𝑞):  

𝒖:,𝑡|𝒛:,𝑡~𝑁(𝐶𝒛:,𝑡 + 𝒅, 𝑅)                                 (1) 

where 𝐶 ∈ ℝ𝑞×𝑝, 𝒅 ∈ ℝ𝑞×1, and 𝑅 ∈ ℝ𝑞×𝑞 are model parameters to be estimated. As in factor 
analysis, the covariance matrix 𝑅 is constrained to be diagonal, where the diagonal elements 
are the independent noise variances of each neural unit. 

The latent states at different time points 𝒛:,𝑡 are related through Gaussian processes (GP’s). We 

define a separate GP for each dimension of the latent state indexed by 𝑖 = 1,2, … , 𝑝 

𝒛𝑖,:~𝑁(𝟎, 𝐾𝑖)                                                                              (2) 

where 𝐾𝑖 ∈ ℝ𝑇×𝑇is the covariance matrix for the 𝑖th GP.  Here we chose the squared exponential 
covariance function as in Yu et al., 200951. Model parameters are fit by the EM algorithm to 
maximize the probability of the recorded neural activity as described in Yu et al., 200951. 

To enable online BCI control, we used a causal implementation of GPFA52 in which the 
estimated latent state at time 𝑡, 𝒛̂:,𝑡, depends only on the current and previous 6 time bins of 

neural activity (i.e., 7 total bins). We first defined  

𝒖̅:,𝑡 = 𝒖:,𝑡 − 𝒅                                                                       (3) 

We then concatenated them into a vector 𝒖̅ ∈ ℝ(7∗𝑞)×1: 
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𝒖̅ = [𝒖̅:,𝑡
𝑇 , … , 𝒖̅:,𝑡−6

𝑇 ]
T
                                                      (4) 

Finally, we used a smoothing kernel, 𝑀 ∈ ℝ𝑝×(7∗𝑞), to compute our estimate of the latent state at 

time 𝑡, 𝒛̂:,𝑡: 

𝒛̂:,𝑡 = 𝑀𝒖̅                                                               (5) 

The smoothing kernel, 𝑀, describes the influence of past spiking activity on the latent state at 

time 𝑡, and is determined using 𝐶, 𝑅, and 𝐾𝑖 for 𝑖 = 1, … , 𝑝. We used 𝑝 = 10 dimensions for all 
experiments, as this has been found to capture the majority of shared variability in M1 activity 
during BCI control50. 

We then determined a linear mapping from latent state estimates, 𝒛̂:,𝑡, to 2-D cursor 

position, 𝒑:,𝑡 ∈ ℝ2×1: 

   𝒑:,𝑡 = 𝑊𝒛̂:,𝑡 + 𝒃                                (6) 

where 𝑊 ∈ ℝ2×𝑝 and 𝒃 ∈ ℝ2×1 are the parameters of the mapping. To estimate 𝑊 and 𝒃, we 
used a subset of latent state estimates from each trial and their corresponding intended cursor 
positions. Specifically, we used latent state estimates from the first 135ms of the freeze period 
(three bins) and last 225ms before target acquisition (five bins) from each trial (i.e., eight total 
bins per trial). The intended cursor positions corresponding to these latent state estimates were 
as follows: for the three bins at the beginning of the freeze period, the intended cursor position 
was taken to be the screen center in mm, (0,0)T. For the 5 observations just before target 
acquisition, the intended cursor position was taken to be the target location in mm (e.g., for trials 
to the rightward target, (0,90)T). 

For Monkeys N and R, each decoder was calibrated by mapping neural activity collected during 
calibration trials to cursor velocity using the population vector algorithm (PVA, Monkey N)53,54 or 
the optimal linear estimator (OLE, Monkey R)55. For both, we used a co-adaptive calibration 
procedure that has been described previously56. Briefly, animals completed center-out trials 
(described below) to each of the eight possible targets while decoder parameters were 
recursively updated. Linear (cosine) tuning for each neural unit was estimated by regressing the 
observed firing rates for each trial to target direction. The level of assistance provided to the 
subject’s cursor control was gradually reduced. After five cycles through the eight targets 
(~2min of data collection), the subject was able to reliably control cursor movement, and 
decoding parameters were fixed for the remainder of the session. The implementation of the 
PVA and OLE algorithms has been described in detail in previous work from the group55. Briefly, 
we binned threshold crossings (33ms bins, Monkey N; 20ms bins, Monkey R), subtracted 
baseline firing rates, and smoothed online by averaging the last 5 time bins together. Weighted 
averages of these firing rates determined the cursor velocity. 

BCI center-out-across task 

The BCI task for Monkey E was a 2-D center-out-across task in which the position of the cursor 
was controlled with neural activity. The animal first acquired a central target, then a peripheral 
target, then the diametrically opposed peripheral target. Each trial began with a 250ms period 
during which the screen was blank, and the animal’s hand rested on the handle attached to the 
force transducer. Next, the central target (circle, 15mm radius) appeared in the center of the 
screen, and the cursor (circle, 4mm radius) appeared at a location determined by the monkey’s 
neural activity. The monkey had 4s to acquire the central target with the cursor.  After the target 
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was acquired, it disappeared, and the first peripheral target (circle, 15mm radius) appeared in 
one of eight possible radial locations (90mm from workspace center). The monkey had 4s to 
acquire the peripheral target.  After the first peripheral target was acquired, a second peripheral 
target immediately appeared (circle, 15mm radius), diametrically opposed to the first peripheral 
target. The monkey had 4s to acquire that target. If all three targets were acquired within the 
specified durations, the animal received a water reward. After each trial, there was a blank 
screen for 300ms before the next trial.  

Throughout, forces at the hand were monitored, and excessive forces triggered a trial failure. 
Excessive forces were defined as upward or downward forces greater than 3N. Failed trials 
were followed by a 2s timeout before continuing to the next trial. In this work, we only analyzed 
data from the initial center-out movement (see ‘Neural activity preprocessing’ below). 

The posture of the arm contralateral to the recording array was changed in blocks of trials. For 
some sessions, five arm postures were used (Figure 2b, d, e). These postures were the 
‘neutral’ posture and four outer postures achieved by rotating the forearm about the shoulder in 
the transverse plane (30 degrees clockwise, 15 degrees clockwise, 15 degrees 
counterclockwise, and 30 degrees counterclockwise from the neutral posture). For other 
sessions, four arm postures were used (Figure 2f). Two of these were achieved by rotating the 
forearm about the shoulder in the transverse plane (30 degrees clockwise and 30 degrees 
counterclockwise from the neutral posture). The other two postures were achieved by rotating 
the forearm about the elbow (30 degrees clockwise and 30 degrees counterclockwise from the 
neutral posture). 

BCI center-out task 

The BCI task for Monkeys N and R was a 2-D center-out task in which the velocity of the cursor 
was controlled with neural activity. The animal moved the cursor (circle, 6mm radius) from the 
center of the screen to a peripheral target on each trial. At the beginning of each trial, a central 
target appeared (circle, 6mm radius) and the cursor position was reset to the center of the 
screen. The animal was required to hold the cursor within the central target for 50ms (Monkey 
N) or 200ms (Monkey R). Next, the central target disappeared and a peripheral target (circle, 
6mm radius, Monkey N; 5mm radius, Monkey R) appeared 85mm away. The monkey had 3s to 
acquire the peripheral target and was required to hold it for 200ms (Monkey N) or 100ms 
(Monkey R) to receive a water reward. After each trial, there was a blank screen for 500ms 
before the next trial. 

The posture of the arm contralateral to the recording array was changed in blocks of trials. For 
Monkey N, three postures were used in each session: (1) the neutral posture, (2) a 45-degree 
rotation of the forearm about the shoulder in the transverse plane and (3) a 90-degree abduction 
of the upper arm about the shoulder in the frontoparallel plane (Figure 2g). For Monkey R, two 
postures were used in each session. In one session, (1) the neutral posture and (2) a 45-degree 
rotation of the forearm about the shoulder in the transverse plane were used. In another 
session, (1) the neutral posture and (2) a 90-degree abduction of the upper arm about the 
shoulder in the frontoparallel plane were used (Figure 2h). 

Isometric force task 

Monkey E completed an isometric force task in which an upward or downward force was 
exerted on the handle attached to the force transducer. Forces were exerted by the hand 
contralateral to the recording array. Forces were mapped to the position of a computer cursor 
that was constrained to move on a vertical line, so that only upward or downward components 
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of exerted forces contributed to the cursor motion. The position of the hand used to exert forces 
was recorded using the motion tracking system. The ipsilateral hand was lightly restrained.  

At the beginning of each trial, the cursor (circle, 4mm radius) appeared in a location dictated by 
the current level of force exerted on the handle, and a central target (square, 10mm side length) 
appeared, corresponding to the amount of force produced by the hand lightly resting on the bar. 
The animal had to acquire the central target within 4s and hold it for 350ms. Once the central 
target was acquired, it disappeared, and a peripheral target (square, 10mm side length) 
appeared 38mm above or below the location of the central target. The animal then had to 
acquire the peripheral target within 4s and hold it for 350ms to receive a water reward. To 
acquire the upward or downward peripheral target, the animal had to exert 4.75±0.62N of 
upward or downward force. There was a 300ms period before the start of the next trial.  

The posture of the arm used to exert forces was changed in blocks of trials. Five arm postures 
were used (Figure 4a). These postures were the ‘neutral’ posture and four outer postures 
achieved by rotating the forearm about the shoulder in the transverse plane (30 degrees 
clockwise, 15 degrees clockwise, 15 degrees counterclockwise, and 30 degrees 
counterclockwise from the neutral posture).  

Reaching Task 

Center-out reaching task 

The center-out reaching task for Monkeys N and R was a 2-D, eight-target task. Animals made 
unconstrained reaches in 3-D space, but only the vertical and horizontal components of those 
reaches were mapped to cursor motion. Hand position was recorded as described above and 
mapped to the location of the computer cursor (circle, 5mm radius). The mapping was calibrated 
such that 1cm of hand displacement in the frontoparallel plane corresponded to 1cm of cursor 
movement. At the beginning of each trial, a central target appeared (circle, 5 mm radius), and 
the animal had 3s to acquire it with the cursor. Once it was acquired, the animal had to hold it 
for a variable duration ‘center hold period’ (0-100ms, uniformly distributed). Next, go cue was 
indicated by the disappearance of the central target and appearance of a peripheral target 
(circle, 5mm radius) located 60mm away from the central target. The animal had 1000ms to 
acquire the peripheral target. Finally, the peripheral target was held for a variable length period 
(200-400ms, uniformly distributed). If the peripheral target was acquired within 1000ms and held 
for the entire target hold period, the animal received a water reward.  

The initial posture of the arm was changed in blocks of trials by changing the initial location of 
the hand in the frontoparallel plane. Reaches were matched in direction and distance from each 
initial hand position. Visual feedback was matched across postures so that the instructed initial 
hand position always corresponded to the center of the screen. There were 2 initial hand 
locations. These were located (-51.2, 34.7) and (51.2, -34.7) mm (x, y) away from the center of 
the animal’s workspace (i.e., the initial hand locations were separated diagonally by 123.7mm). 
The ipsilateral arm was lightly restrained during the task.  

 

Delayed center-out reaching task 

The reaching task for Monkey E was a 2-D, eight target delayed center-out task. Hand position 
was recorded and mapped to the location of the computer cursor as described above. At the 
beginning of each trial, the central target appeared (circle, 12mm radius), and the animal had 5s 
to acquire it with the cursor. Once it was acquired, the animal had to hold it for a variable 
duration (450ms, 40% of trials; 550ms, 40%; 1000ms, 20%). If the cursor left the central target 
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during the center hold period, the animal could bring the cursor back into the central target and 
restart the hold period. Once the center hold period was complete, the peripheral reach target 
appeared (circle, 12mm radius, 80mm from center target) and a variable-length delay period 
began (25ms, 500ms, 750ms, or 1000ms, equal probability) during which the animal continued 
to hold the cursor within the center target. Next, the go cue was indicated by the disappearance 
of the central target, after which the animal had 1500ms to acquire the peripheral target. Finally, 
the animal was required to hold the cursor in the peripheral target for a variable duration 
(500ms, 66% of trials, 1000ms, 34%). After a successful trial, there was a 300ms pause before 
the next trial. If the trial was failed, there was a 650ms penalty. 2.5% of trials were ‘catch trials’, 
which ended with a reward after the delay period if the animal held the cursor in the central 
target for the duration of the delay period. These trials were not analyzed but helped to keep the 
animal motivated to not leave the central target before the go cue was given. The delay period 
was not necessary for this study, which focuses on peri-movement activity. It was included to 
study the effect of posture on neural activity during the delay period, which will be explored in a 
future study. 

The initial posture of the arm was changed in blocks of trials by changing the initial location of 
the hand in the frontoparallel plane. Reaches were matched in direction and distance from each 
initial hand position. Visual feedback was matched across postures so that the instructed initial 
hand position always corresponded to the center of the screen. There were 7 initial hand 
locations: a central location, a row of four locations above the central location, and a row of two 
locations below the central location. The coordinates of each location relative to the central 
location in mm (x, y) were as follows: (-120,40), (-40,40), (40,40), (120,40), (0,0), (-40,-40), and 
(40,-40). The ipsilateral arm was lightly restrained during the task. 

Multiple tasks paradigm  

Monkey E also completed a ‘multiple tasks’ paradigm in which multi-posture reaching, BCI, and 
isometric force tasks were all completed within a single session. This paradigm was designed to 
compare the influence of posture on neural activity across tasks. Therefore, the initial postures 
of the arm were matched across tasks. To achieve this, each trial of the paradigm began with 
the animal holding the handle fixed to the force transducer with the hand contralateral to the 
recording array. This hand was used to exert forces in the isometric force task and to make 
reaches in the reaching task. The posture of the arm holding the handle was changed in blocks 
of trials. The same three initial arm postures were used for all tasks (Figure 5a). These postures 
were the neutral posture and two outer postures achieved by rotating the forearm about the 
shoulder in the transverse plane 30 degrees clockwise or counterclockwise from the neutral 
posture. The isometric force task was carried out exactly as described in the ‘isometric force 
task’ section above.  

The BCI task was an 8-target center-out-across task similar to that described above with a few 
minor differences. Each trial began with a 250ms period during which the screen was blank, and 
the animal’s hand rested on the handle attached to the force transducer. Next, a central target 
(circle, 15mm radius) and peripheral target (circle, 15mm radius, 90mm away from center) 
appeared and a 500ms ‘freeze period’ began during which the cursor was not displayed. 
However, neural activity recorded during the freeze period was used to determine the position of 
the cursor in subsequent timesteps.  After the freeze period, the central target disappeared and 
the cursor appeared, and the animal had 4s to acquire the peripheral target. After this, the 
‘across’ movement began, and the task proceeded exactly as the ‘BCI center-out-across task’ 
described above.  
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The reaching task was a 2-D, three target task. Hand position was recorded and mapped to the 
location of the computer cursor as described above. At the beginning of each trial, the animal 
had to hold the handle fixed to the force transducer for 1s. Excessive forces exerted at the hand 
during this period (upward or downward force > 3.5N) triggered a trial failure. After this, a reach 
target (circle, 6mm radius) appeared in one of 3 possible locations, and the animal had 3s to 
acquire it with the cursor. The target locations for each posture were (-100,75), (0,125), and 
(100,75) measured in mm (x,y) from the position of the hand when it held the handle. That is, 
the directions and distances of the targets from the initial hand position were matched across 
postures. The target locations were chosen so the animal could make unimpeded reaches from 
the handle to the target. After acquiring the reach target, the monkey was required to hold it for 
300ms. There was no delay period. Visual feedback was matched across postures so that the 
targets always appeared at the same locations on the screen. 

 

Experimental sessions 

With Monkey E (Array 1), we conducted four sessions of the BCI center-out-across paradigm, 
three sessions of the isometric force paradigm, and one session of the multiple-tasks paradigm. 
Only one session of the multiple-tasks paradigm was collected because it was a difficult task for 
the animal. With Monkey E (Array 2), we conducted one session of the BCI center-out paradigm 
and three sessions of delayed center-out reaching. With Monkey N, we conducted two sessions 
of the BCI center-out paradigm and five sessions of the center-out reaching paradigm. With 
Monkey R, we conducted two sessions of the BCI center-out paradigm and two sessions of the 
center-out reaching paradigm.  

 

Data analysis 

Kinematic data preprocessing and analysis 

Here we describe how we determined the movement onset times in the reaching tasks. These 
times were used to select the analysis window for each trial of the reaching tasks as described 
in the ‘Neural activity preprocessing’ section below. 

Hand position signals were first processed as in Smoulder et al., 202345. In brief, position 
measurements were smoothed with a zero-phase low pass Butterworth filter (total 8th order, 
cutoff frequency 15Hz). Velocities were computed by taking the first difference of the position 
signals, dividing by the time difference between samples, and assigning each velocity sample a 
timestamp that was the midpoint of the timestamps for the two position samples used. We then 
used spline interpolation to upsample position and velocity measurements to 1000Hz. 

To determine the movement onset time for each trial in the reaching tasks, hand speed was 
calculated at each time step using the horizontal and vertical components of hand velocity. We 
then determined the peak speed for the trial as the maximum hand speed between go cue and 
target acquisition. Finally, movement onset was taken as the earliest time after go cue at which 
hand speed reached 20% of the peak speed for the trial.  

Only successful trials from each task were analyzed. To ensure we were analyzing trials with 
consistent behavior, we removed any trials with abnormally long movement epochs from each 
session (95th percentile and above for each session; movement epoch is the time from go cue to 
target acquisition). 
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Neural activity preprocessing 

For all tasks, we focused on the early execution epoch, defined for each task below, when 
posture and goal information were simultaneously present in neural activity. For BCI tasks, we 
analyzed the 200ms period beginning 50ms after go cue/target onset. We began 50ms after 
target onset, as visual information takes more than 50ms to reach motor cortex57. We ended 
250ms after target onset to exclude any corrective cursor movements that occurred later in the 
trial. For isometric force tasks, we also analyzed the 200ms period beginning 50ms after go 
cue/target onset. For reaching tasks, we analyzed the 200ms period before movement onset. 
The ends of the analysis windows for the isometric force and reaching tasks were chosen to 
exclude any time-varying proprioceptive signals produced by muscle contraction. 

Neural spike times were convolved with a Gaussian kernel (25ms standard deviation) to 
produce estimates of firing rate versus time. These firing rates were sampled every 25ms during 
the analysis window for each task. The sampled firing rates for each electrode were z-scored 
separately to prevent electrodes with high firing rates from overly influencing population-level 
results. The mean and standard deviation used for z-scoring each electrode were computed 
using all sampled firing rate estimates taken when animals were engaged in the task (center 
hold period to the end of trial) for all trials that met the inclusion criteria (outlined in the 
‘Kinematic data preprocessing and analysis’ section above). Electrodes for which this mean 
firing rate was < 3 Hz were excluded from all neural analyses.  

Principal component analysis (PCA) 

To produce the PCA visualizations in Figure 2d and Figure S2, we first formed condition-
averaged neural trajectories for each posture and target combination. We then concatenated 
these condition-averaged trajectories into an 𝑁 × 𝐶𝑇 matrix, where 𝑁 is the number of recorded 

units, 𝐶 is the number of conditions (i.e., the number of postures times the number of targets), 
and 𝑇 is the number of timesteps in each trajectory. PCA was performed on this matrix to 

identify the directions of greatest variance within the 𝑁-dimensional population activity space.  

Targeted dimensionality reduction 

To create the ‘targeted dimensionality reduction’ (TDR) visualizations in Figure 2 (e-h) and 
Figure 4 (b&e), we used demixed principal components analysis (dPCA)41 
[https://github.com/machenslab/dPCA]. The default dPCA parameters were used, including the 
optimization procedure to find the regularization factor. 

dPCA is a linear dimensionality reduction technique which identifies neural dimensions that 
explain variance related to individual experimental variables. To do this, dPCA first decomposes 
the activity from each neural unit into marginalizations in an ANOVA-like manner. It then 
identifies neural dimensions which explain variance in groups of these marginalizations. We 
explain below how to compute the marginalization groups used to identify posture and goal 
dimensions in Figure 2 (e-h) and Figure 4 (b&e).  

Consider the condition-averaged activity recorded from one neural unit for one experimental 
session. We first subtracted the overall mean activity for the unit (across all trials and timesteps) 
from its condition-averaged activity at each timestep. We next collected the activity into a 3-

dimensional tensor, 𝑥𝑡𝑔𝑝 ∈ ℝ𝑇×𝐺×𝑃, where 𝑇 is the number of timesteps, 𝐺 is the number of 

goals (i.e., targets), and 𝑃 is the number of postures. For this work, the relevant marginalizations 
of this tensor were the 𝑇 × 1 ‘time marginalization,’ formed by averaging over all variables 

except for time; the 𝑇 × 𝑃 ‘posture marginalization,’ formed by averaging over goal, then 
subtracting the time marginalization from each column (to remove time effects); and the 𝑇 × 𝐺 
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‘goal marginalization’, formed by averaging over posture, then subtracting the time 
marginalization from each column (to remove time effects).  

After computing these marginalization groups, we combined them across units to form the input 
for dPCA. dPCA was used to identify time, posture, and goal dimensions that sought to explain 
variability from their respective marginalization groups while minimizing variance captured from 
other marginalizations. For visualization, we show the top two goal dimensions and the top 
posture dimension in a 3-D space after orthonormalizing them using QR decomposition. 

Cross-projection alignment test 

We were interested in whether the subspaces modulated by posture- and goal-related neural 
signals were misaligned (Figure 3, Figure 4, and Figure S5). We therefore first identified 
posture- and goal-related components of neural activity (see procedure below). We then 
identified the subspaces modulated by each, which we refer to as the posture and goal 
subspaces, respectively. To quantify the alignment of these subspaces, we employed the cross-
projection alignment test in Elsayed et al., 201619. This test measures the alignment of two 
subspaces by projecting the same neural activity into each subspace, then comparing the 
amount of variance captured by each subspace. If the subspaces are aligned, a similar amount 
of variance will be captured by each subspace. However, if the subspaces are not aligned, they 
will capture different amounts of variance. For our work, this test is preferrable to measuring the 
angles between subspaces, because it takes into account the variance of the neural activity 
along different dimensions. To measure the alignment of the posture and goal subspaces, we 
projected the posture component into the posture and goal subspaces and compared the 
amount of variance captured by each. For completeness, we repeated this procedure with the 
goal component.  

We first identified the 10-D space that captured the greatest variance in the trial-averaged 
neural activity for each session using PCA (see ‘Principal component analysis’ above). This 10-
D space accounted for the majority of the variance in the trial-averaged neural activity (90 ± 4%, 
mean ± s.d. across datasets). Neural activity from each trial was projected into this 10-D space 
before further analysis. This step ensures (1) that our analyses focus on aspects of the activity 
with greatest variance, and (2) that when comparing the variance captured by a subspace to 
that captured by random subspaces (procedure below), the random subspaces are drawn from 
the space occupied by neural activity. We then divided the trials from each task condition (e.g., 
posture 1, target 1) into two equally-sized folds for cross-validation. We included only postures 
for which there were at least 10 trials to each target direction (90% of postures across datasets). 
This ensured that there were at least 5 trials for each condition in each of the 2 cross-validation 
folds. 

We next measured the amount of posture-related variance captured by the goal subspace. 
Using trials from the first fold, we identified the posture component by computing the 𝑇 × 𝑃 
posture marginalization for each of the 𝑁 neural units as described in the ‘Targeted 

dimensionality reduction section’ above. The columns of each of the 𝑁 posture marginalizations 
were concatenated vertically, forming 𝑁 column vectors of size 𝑇𝑃 × 1. These column vectors 

were then concatenated horizontally and transposed, forming the 𝑁 × 𝑇𝑃 posture component. 
To identify the goal subspace, we first used an analogous procedure to compute the 𝑁 × 𝑇𝐺 
goal component on trials from the second fold. We then applied PCA to the goal component to 
identify the goal subspace. We used PCA instead of dPCA to identify the subspace, since the 
loss function of dPCA can encourage the identification of orthogonal subspaces for each task 
variable41. We kept only the top 2 PCs of the goal subspace, as these accounted for the majority 
(85 ± 7%, mean ± s.d. across datasets) of the variance in the goal component. We projected the 
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posture component from the first fold into the goal subspace from the second fold and 
measured the amount of variance captured. We then repeated this entire procedure using the 
second fold to identify the posture component and the first fold to identify the goal subspace. 
The amount of posture-related variance captured by the goal subspace was taken to be the 
mean across the two folds. 

We used the same technique to measure the variance of each component in each subspace. 
Specifically, we measured the amount of posture-related variance captured by the posture 
subspace, goal-related variance captured by the posture subspace, and goal-related variance 
captured by the goal subspace. When identifying the posture subspace, we again kept only the 
top 2 PCs, as they accounted for the majority (92 ± 8%, mean ± s.d. across datasets) of the 
variance in the posture component. 

To compute confidence intervals for these measurements, we again used neural activity from 
the second fold to identify posture and goal subspaces. We then used bootstrap resampling to 
produce 10,000 resampled versions of the first fold. For each of these bootstrap resamples, we 
computed posture and goal components, projected each into the posture and goal subspaces, 
and measured the amount of variance captured. We repeated this procedure using the first fold 
to identify subspaces and the second fold for projection. This produced 20,000 bootstrapped 
estimates of variance captured in each component by each subspace. These bootstrapped 
estimates were then combined across sessions for each monkey and task. For each monkey 
and task, the 95% confidence interval was taken as the 2.5th percentile to the 97.5th percentile 
of this combined bootstrapped distribution. To assess whether variance captured in each 
component by the posture and goal subspaces were significantly different (p<0.05), a paired, 
two-tailed bootstrap test was performed using the session-combined bootstrap distributions. For 
example, the variance in the posture component captured by the posture and goal subspaces 
on each bootstrap resample were paired. 

To estimate the distribution of variance in each component captured by random subspaces, we 
drew 10,000, 2-dimensional random subspaces in the 10-D PC space. Drawing these spaces 
from within the 10-D space explaining the most variance in the activity (identified with PCA) 
ensured that random subspaces are drawn from dimensions where neural activity resides. Each 
random subspace was constructed by drawing two vectors in the 10-D PC space and 
orthonormalizing them. Each component of each vector was drawn from a standard normal 
distribution. We projected the posture and goal components from each of the two folds into 
these 10,000 subspaces and measured the amount of variance captured. This procedure 
produced 20,000 variance captured measurements for each component. The measurements for 
each component were then combined across sessions and monkeys for each task. This 
resulted in one distribution for each component for each task. 

Assessing the consistency of the posture subspace across tasks 

To assess the consistency of the posture subspace across tasks (Figure 5), we tested whether 
it was possible to identify a single subspace from which arm posture could be read out 
regardless of task. To test this, we analyzed neural activity from the multiple tasks paradigm. In 
this paradigm, Monkey E performed three tasks (BCI, isometric force, and reaching) from three 
initial arm postures, which were matched across tasks. We first visualized neural activity from 
each task to determine whether it was clustered by posture in a posture subspace identified 
across all tasks. If so, this would suggest a consistent posture subspace across tasks. We then 
asked whether arm posture could be accurately classified from neural activity using a single 
classifier across tasks. This would further indicate a consistent posture subspace across tasks. 
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For all analyses in Figure 5, we averaged the z-scored firing rates over all timesteps in the 
analysis window to produce a single 𝑁 × 1 firing rate estimate per trial, where 𝑁 is the number 
of recorded neural units. The analysis windows used for each task of the multiple tasks 
paradigm were the same as those used when analyzing individual task paradigms. Neural 
activity from all trials was then collected into a matrix of size 𝑁 × 𝐾, where 𝐾 was the number of 
trials in the dataset. PCA was performed on this matrix to identify the top principal components 
within the 𝑁-dimensional population activity space. Each trial of neural activity was then 
projected onto the top 10 principal components, producing a matrix of size 10 × 𝐾. Reducing the 
dimensionality of the neural activity in this way allowed us to better estimate the covariance 
matrix of the activity with limited trials. 

To create the visualizations in Figure 5b, we used linear discriminant analysis (LDA) to identify 
neural dimensions that separated the 10-D neural population activity by posture, regardless of 
task or target direction. This was done only to visualize the data, and cross-validated 
classification analyses were performed subsequently (see below). The class-specific means for 
LDA were computed by taking the mean of the activity from each posture. The covariance 
matrix for LDA was computed by first computing the covariance matrix for each posture 
separately, then averaging them across postures. We subsampled trials so that there were (1) 
equal numbers of trials from each task in each posture and (2) approximately equal numbers of 
trials from each target within each task-posture combination. 

We next used maximum likelihood estimation to classify neural activity from each trial by 
posture (Figure 5c). We used the statistical model from LDA, in which each posture has its own 
mean, and all postures share a single covariance matrix. All classification analyses were cross-
validated. We performed three separate classification analyses: ‘within task,’ ‘train on one task, 
test on others,’ and ‘train on all tasks.’ The ‘within task’ analysis assessed how well we could 
classify posture within each task, and the other analyses assessed how well classifiers 
generalized across tasks. Our metric for measuring classifier performance was the percentage 
of correct classifications. 

For the ‘within task’ analysis, we trained a classifier using trials from one task and tested it using 
held-out trials from the same task. This was done separately for each of the three tasks. We 
used 5-fold cross-validation. We subsampled trials within each task so that there were equal 
numbers of trials from each target direction in each posture. We then subsampled from the 
remaining trials such that the number of trials in the training set for each task was equal. 

For the ‘train on one task, test on others’ analysis, we tested each classifier from the ‘within task’ 
analysis on the two tasks it was not trained on. In this setting, the training and testing trials 
correspond to different tasks, so there was no need for cross-validation. However, to fairly 
compare to the ‘within task’ setting, we used the same training and test partitions. After training 
each classifier on four folds of data, we tested it on the corresponding test fold of another task 
(e.g., trained on folds 1-4 of isometric force trials and tested on 5th fold of BCI trials).  

For the ‘train on all tasks’ analysis, we trained a single classifier on trials from all tasks then 
tested it on each task separately. To fairly compare to the ‘within task’ setting, we again used the 
same training and test partitions. We formed training sets using trials from 4 folds of each task, 
then tested on the remaining fold from each task (e.g., we trained on trials from folds 1-4 of BCI, 
isometric force, and reaching, and tested separately on fold 5 of BCI, isometric force, and 
reaching). We subsampled trials so that each training set (1) contained equal numbers of trials 
from each task and (2) matched the size of the training set used for each individual task in the 
‘within task’ analysis.  
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We performed a final visualization in Figure 5d to understand how the posture subspace can be 
similar across tasks, yet overall neural activity is distinct across tasks. To do this, we grouped 
trials by task, regardless of posture or target direction. We subsampled trials within each task so 
that there were equal trial counts for each posture and target combination. We then applied LDA 
to identify dimensions that separated neural activity by task. Because there were 3 tasks, this 
procedure resulted in a 2-dimensional subspace. While the neural activity from the 3 tasks was 
well-separated in the 2-D space returned by LDA, the task means were not evenly-spaced along 
the first LDA dimension. Therefore, we manually chose one dimension from within this subspace 
along which data from all three tasks were visibly separated for visualization. The posture 
dimensions in Figure 5d are the same as those in Figure 5b. 

Assessing the similarity in neural trajectories across postures 

To assess the similarity of neural trajectories across postures (Figure 6, Figure S8), we asked 
how well pairs of trajectories from different postures matched if we translated them to bring 
them into alignment. If a pair matched perfectly after translation, this would indicate that the 
trajectories had the same shape but started in different locations due to posture-related effects 
in neural activity. We allowed for translation, but not scaling, because we wanted to focus on the 
robustness of trajectory shape. Each pair of trajectories corresponded to the same target 
direction and task, so that any difference in trajectory shape was due only to posture. Our 
procedure is illustrated in detail for one example comparison in Figure S8. 

We performed this analysis within the 10-D space identified by applying PCA to the trial-
averaged neural activity for each session (see ‘Principal component analysis’ above). Neural 
activity from individual trials was projected into this 10-D space. We then removed any 
conditions (i.e., combinations of posture and target, such as posture 1, target 1) containing 
fewer than 10 trials so that there were adequate trial counts for subsampling.  

For each session, we compared every possible pair of trial-averaged trajectories from different 
postures but the same target direction (e.g., we compared posture 1, target 1, which we refer to 
as ‘condition 1’, to posture 2, target 1, which we refer to as ‘condition 2’). This led to 
∑ 𝑃𝑡(𝑃𝑡 − 1)/2𝑇

𝑡=1  comparisons per session, where 𝑃𝑡 is the number of postures remaining for 

the 𝑡th target after removing conditions with inadequate trial counts, and 𝑇 is the number of 
targets. 

For each comparison, we randomly sampled trials from each condition without replacement to 
form 2 groups (e.g., condition 1, group 1; condition 1, group 2; condition 2, group 1; condition 2, 
group 2). Each group contained 𝑁𝑀/2 trials, where 𝑁𝑀 is the minimum number of trials for any 
condition in the session. We then computed trial-averaged trajectory for each condition and 
group (we refer to these trial-averaged trajectories as simply ‘trajectories’ hereafter). Dividing 
into groups in this way allowed us to estimate a lower bound for the difference between a pair of 
trajectories (procedure below). 

We next assessed how similar trajectories from the two conditions were. To do this, we 
measured the ‘difference after translation’ between the trajectories from group 1 of each 
condition. We first brought the trajectories into alignment by translating the trajectory from 
condition 2, group 1 by the vector connecting its mean (taken across timesteps) to the mean 
(taken across timesteps) of condition 1, group 1. We then measured the Euclidean distance 
between these trajectories at each timestep and averaged the distances across timesteps.  

We compared the difference after translation to estimates of its lowest possible value and its 
highest possible value. To estimate the lowest possible value, we measured the difference after 
translation between trajectories from different groups of the same condition (e.g., condition 1, 
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group 1 and condition 1, group 2). To estimate the highest possible value, we measured the 
difference before translation between the trajectories from group 1 of each condition. This was 
computed by measuring the Euclidean distance between the trajectories from condition 1, group 
1 and condition 2, group 1 at each timestep and averaging the distances across timesteps. 

For interpretability of results, we normalized the difference before translation and difference after 
translation. We did this by dividing each by our estimate of the lowest possible value for the 
difference after translation. Therefore, after normalization, a value of 1 corresponds to the 
difference in trajectories arising solely due to analyzing a finite number of trials. We repeated 
this entire procedure 20 times for each comparison, resampling trials on each repeat. For each 
metric (i.e., difference before translation and difference after translation), we took the mean 
across the 20 repeats.  

To visualize the results, we plotted the difference before translation versus the difference after 
translation for each comparison (Figure 6c). This format allows for each comparison to be 
compared to its approximate lowest possible value of 1 (horizontal dashed line) and its highest 
possible value (diagonal dashed line, corresponding to no decrease in trajectory difference after 
translation). Due to the finite number of trials analyzed, it was possible for normalized values to 
be below 1. This occurred when the trial-averaged trajectories from across conditions were 
more similar in shape than those from different groups within the same condition. 
 
We also computed the mean percentage reduction in trajectory difference (before versus after 
translation) across all comparisons for each animal. This was reported in the main text 
accompanying Figure 6. When computing this reduction, we de-biased the differences before 
and after translation for each comparison by subtracting an estimate of the bias from each. To 
estimate the bias for the difference before translation, we took the mean difference before 
translation of trajectories from different groups of the same condition. For example, to compute 
this bias when comparing condition 1 to condition 2, we measured the difference before 
translation between condition 1 group 1 and condition 1 group 2. We also measured the 
difference before translation between condition 2 group 1 and condition 2 group 2. We 
combined all of these measurements across repeats and took the mean. This was our estimate 
of the bias for the difference before translation for this comparison. An analogous procedure 
was used to estimate the bias for the difference after translation. 
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Statistics for main text figures 

Figure 
Panel 

Subject Data counts Error bars P value Statistical 
test 

2b E (Array 
1) 

1 example 
session; 5 
postures and 8 
targets 

SEM over 
trials 

  

2d E (Array 
1) 

1 example 
session; 5 
postures and 8 
targets 

   

2e E (Array 
1) 

1 example 
session; 5 
postures and 8 
targets  

   

2f E (Array 
2) 

1 example 
session; 4 
postures and 8 
targets  

   

2g N 1 example 
session; 3 
postures and 8 
targets  

   

2h R 1 example 
session; 2 
postures and 8 
targets  

   

3b,c,e,f E 1 example 
session; 5 
postures and 8 
targets 

   

3d E 5 sessions; 
10000 
resampling 
repeats per 
session 

2.5th to 97.5th 
percentile of 
bootstrapped 
sampling 
distribution 

vPP vs. vPG = 8.8 x 10-25 
 
vPP is posture-related 
variance captured by 
posture subspace  
 
vPG is posture-related 
variance captured by goal 
subspace 
 

Bootstrap 
test, two-
sided 

3d N 2 sessions; 
10000 
resampling 
repeats per 
session 

2.5th to 97.5th 
percentile of 
bootstrapped 
sampling 
distribution 

vPP vs. vPG = 2.5 x 10-39 Bootstrap 
test, two-
sided 

3d R 2 sessions; 
10000 
resampling 

2.5th to 97.5th 
percentile of 
bootstrapped 

vPP vs. vPG = < 1 x 10-

100 
Bootstrap 
test, two-
sided 
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repeats per 
session 

sampling 
distribution 

3g E 5 sessions; 
10000 
resampling 
repeats per 
session 

2.5th to 97.5th 
percentile of 
bootstrapped 
sampling 
distribution 

vGG vs. vGP = 8.0 x 10-28 
 
vGG is goal-related 
variance captured by goal 
subspace  
 
vGP is goal-related 
variance captured by 
posture subspace 

Bootstrap 
test, two-
sided 

3g N 2 sessions; 
10000 
resampling 
repeats per 
session 

2.5th to 97.5th 
percentile of 
bootstrapped 
sampling 
distribution 

vGG vs. vGP = 4.3 x 10-

174 
Bootstrap 
test, two-
sided 

3g R 2 sessions; 
10000 
resampling 
repeats per 
session 

2.5th to 97.5th 
percentile of 
bootstrapped 
sampling 
distribution 

vGG vs. vGP = 1.0 x 10-59 Bootstrap 
test, two-
sided 

4b E 1 example 
session; 5 
postures and 2 
targets 

   

4c E 3 sessions; 
10000 
resampling 
repeats per 
session 

2.5th to 97.5th 
percentile of 
bootstrapped 
sampling 
distribution 

vPP vs. vPG = 4.2 x 10-21 
vGG vs. vGP = 3.5 x 10-

293 

Bootstrap 
test, two-
sided 

4e R 1 example 
session; 2 
postures and 8 
targets 

   

4f E 3 sessions; 
10000 
resampling 
repeats per 
session 

2.5th to 97.5th 
percentile of 
bootstrapped 
sampling 
distribution 

vPP vs. vPG = 3.2 x 10-74 
vGG vs. vGP = 6.0 x 10-

315 
 

Bootstrap 
test, two-
sided 

4f N 5 sessions; 
10000 
resampling 
repeats per 
session 

2.5th to 97.5th 
percentile of 
bootstrapped 
sampling 
distribution 

vPP vs. vPG = 3.5 x 10-53 
vGG vs. vGP = 3.9 x 10-64 

Bootstrap 
test, two-
sided 

4f R 2 sessions; 
10000 
resampling 
repeats per 
session 

2.5th to 97.5th 
percentile of 
bootstrapped 
sampling 
distribution 

vPP vs. vPG = 9.6 x 10-

207 
vGG vs. vGP = 9.3 x 10-95 
 

Bootstrap 
test, two-
sided 
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