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Abstract 
Coronavirus disease 2019 (CoVID-19) caused by Severe Acute 
Respiratory Syndrome Coronavirus 2 has affected more than 100 
million lives. Severe CoVID-19 infection may lead to acute respiratory 
distress syndrome and death of the patient, and is associated with 
hyperinflammation and cytokine storm. The broad spectrum 
immunosuppressant corticosteroid, dexamethasone, is being used to 
manage the cytokine storm and hyperinflammation in CoVID-19 
patients. However, the extensive use of corticosteroids leads to 
serious adverse events and disruption of the gut-lung axis. Various 
micronutrients and probiotic supplementations are known to aid in 
the reduction of hyperinflammation and restoration of gut microbiota. 
The attenuation of the deleterious immune response and 
hyperinflammation could be mediated by short chain fatty acids 
produced by the gut microbiota. Butyric acid, the most extensively 
studied short chain fatty acid, is known for its anti-inflammatory 
properties. Additionally, butyric acid has been shown to ameliorate 
hyperinflammation and reduce oxidative stress in various pathologies, 
including respiratory viral infections. In this review, the potential anti-
inflammatory effects of butyric acid that aid in cytokine storm 
depletion, and its usefulness in effective management of critical illness 
related to CoVID-19 have been discussed.
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is the causative factor for the Coronavirus disease 2019  
(CoVID-19)1. SARS-CoV-2 has affected nearly 100 million peo-
ple around the globe2. SARS-CoV-2 enters the host by binding 
to its receptor, angiotensin converting enzyme 2 (ACE2), which 
is expressed mainly in the lungs and intestine3–5. Upon infec-
tion, SARS-CoV-2 causes mild to severe inflammation, which 
disrupts homeostasis and the integrity of infected organs6,7.  
Furthermore, severe infection of CoVID-19 results in systemic 
inflammation, thrombosis, acute respiratory distress syndrome 
(ARDS) and multiple organ failure, which may lead to death8–10. 
The corticosteroid immunosuppressant, dexamethasone, which 
attenuates hyperinflammation and cytokine storm, is being used 
to treat seriously ill CoVID-19 patients and has been found 
to improve survival in hospitalised patients11,12. However, the  
prolonged usage of dexamethasone causes serious adverse  
effects and gut dysbiosis13,14. Besides, the hyperinflammation  
and thrombotic complications associated with CoVID-19 can 
also be alleviated by various nutrients including vitamins,  
polyunsaturated fatty acids, minerals, and even amino acids15–20. 
The growing number of studies indicate the potential role of 
nutritional supplement, probiotics, and gut microbiome in  
mitigating the inflammation and in preventing viral infections 
including respiratory viral infections21. Alterations of the gut  
microbiome has been observed during SARS-CoV-2 infection, 
which significantly reduces the abundance of beneficial  
microbiome and its metabolites, such as short chain fatty acids 
(SCFAs) including butyric acid22–24.

Butyric acid or butyrate can act primarily as an anti-inflammatory 
molecule and various studies have reported its role in  
mitigating hyperinflammation via several mechanisms25–27. 
For the past several years, our group has worked on the role of  
proinflammatory regulators in the pathogenesis of various  
inflammatory disorders and identified that the role of histone 
deacetylase (HDAC) inhibitor in activating anti-inflammatory  
molecules. Further, this leads to the simultaneous down  
regulation of proinflammatory membrane receptors, down-
stream signalling molecules and respective cytokines, resulting 
in inflammatory homeostasis. Our in vitro preliminary experi-
ments using various cell lines have revealed that the molecular  
mechanism of butyrate in neutralising inflammatory devas-
tation, induction of anti-inflammatory molecular expression 
and its translocation to the site of action, is almost similar to  
dexamethasone28. Consequently, we hypothesise if the SCFA, 
butyric acid, a HDAC inhibitor, which is synthesized by the 
gut microbiota, could have strong anti-inflammatory functions 
with anti-fibrotic properties. Therefore, this article reviews 
the anti-inflammatory properties of butyric acid or butyrate 
and its associated molecular pathways involved in controlling 
the cytokine storm and hyperinflammation associated with  
SARS-CoV-2 infection. Based on the various positive reports, 
we presume that butyric acid possesses potent anti-inflammatory  
activity, which suggests it as an alternative to dexamethasone  
for the preventive management of primary and secondary  
complications related to CoVID-19.

Coronavirus disease 2019
The CoVID-19 pandemic is caused by SARS-Cov-2, which 
belongs to genera β-coronaviruses and is the seventh known  
coronavirus to infect humans4. Spike protein of SARS-CoV-2 
binds to ACE2, a type I membrane protein29 expressed in the lung,  
heart, kidney, and intestine3,30,31. The majority of SARS-CoV-2 
infected cases present with mild symptoms like dry cough, sore 
throat, fatigue and fever9,10,32. Less common symptoms such as 
myalgia, expectoration, pharyngalgia, dizziness, nausea, head-
ache, haemoptysis, diarrhoea, abdominal pain, and vomiting  
have also been reported. Lymphocytopenia along with elevated 
expression of C-reactive proteins (CRP) and inflammatory 
cytokines are also common9,10,32,33. Infection can progress into 
severe disease with dyspnoea, grinding glass-like abnormalities and 
patchy consolidation areas in lungs observed upon imaging; viral  
pneumonia usually appears after 2–3 weeks of infection9,10,32,33. 
However, some patients have developed organ failure, septic 
shock, myocarditis, acute cardiac injury, arrhythmia, pulmo-
nary oedema, severe pneumonia, acute kidney injury, and ARDS.  
Inflammation, oxidative stress, and fibrosis associated with 
CoVID-19 is perhaps partially mediated by angiotensin II (AngII), 
a substrate for ACE2, which degrades it to anti-inflammatory 
angiotensin (1–7). The accumulation of AngII results in hyper-
inflammation induced by nucleotide-binding oligomerization  
domain (NOD) like receptors family pyrin domain-containing 
3 (NLRP3) inflammasome and nuclear factor kappa B  
(NF-κB) activation34. Disrupted immune response in CoVID-19 
is further characterized by decreased expression of human  
leukocyte antigen D related (HLA-DR) on CD(cluster of  
differentiation)14 monocytes, accompanied by decrease in 
number of CD4 and CD19 lymphocytes, and natural killer cells 
along with the continuous production of proinflammatory tumour 
necrosis factor (TNF)-α and interleukin (IL)-6 secreted by  
circulating monocytes, subsequently leading to cytokine storm 
and hyperinflammation7. Hypercytokinemia and hyperinflam-
mation associated with CoVID-19 results in acute lung injury, 
ARDS and death of the patients8,35,36. Furthermore, the SARS-
CoV-2 infection may lead to liver injury and its dysfunction, 
and dysbiosis in the gut, where high expression of ACE2 is  
observed. Myocardial damage by interaction of SARS-CoV-2 
with ACE2 expressed in cardiac pericytes has also been  
observed37. In addition, the high complication of disseminated 
intravascular coagulation is known to be associated with the severe 
form of CoVID-1938.

SARS-CoV2 infection significantly alters gut microbiota,  
increasing the number of opportunistic pathogens such as 
Clostridium hathewayi, Actinomyces viscosus, Bacteroides  
nordii, Streptococcus, Rothia, Erysipelatoclostridium and  
Veillonella along with significant reduction in beneficial  
bacteria such as Lachnospiraceae bacterium 5_1_63FAA,  
Eubacterium rectale, Ruminococcus obeum, Fusicatenibacter, 
Eubacterium hallii, Anaerostipes, Agathobacter, Roseburia, 
Dorea formicigenerans, Clostridium butyricum, Clostridium  
leptum and Faecalibacterium prausnitzii, which includes butyric 
acid producing bacteria (BPB). Abundance of BPB is negatively  
correlated with inflammatory and thrombosis markers including 
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CRP, Procalcitonin and D-dimer. However, the plethora of 
opportunistic Coprobacillus species, Clostridium ramosum 
and C. hathewayi are positively associated with the CoVID-19  
severity, but beneficial species Alistipes onderdonkii and Faec-
alibacterium prausnitzii show negative correlation. In addition, 
the probiotic bacteria, Lactobacillus and Bifidobacterium are 
also decreased in CoVID-19 patients22,24,39. The resulting gut  
dysbiosis may lead to aberrant inflammation and increased 
severity of CoVID-19 due to the disruption in the gut-lung  
axis34,39–41. The reduction in BPB may impact lung inflammation 
and subsequent injury associated with CoVID-1942,43.

Nutrients in mitigating the Covid-19 pathogenesis
Nutrition and nutrients play a vital role in enhancing immune 
response along with reduction of inflammation and oxida-
tive stress44–46. Better nutritional status of CoVID-19 patients is  
associated with less adverse outcomes18,47–52. Vitamin D is involved 
in reducing respiratory infections, such as influenza, and a 
reduced plasma 25-hydroxyvitamin D (25(OH)D) concentration 
in SARS-CoV-2 patients has been observed53. Moreover, people  
with vitamin D deficiency are at higher risk of getting infected 
with SARS-CoV-254,55. Co-supplementation of vitamin D along 
with glutathione precursor L-cysteine significantly increases 
serum 25(OH)D levels and augments vitamin D regulatory 
gene expression, which in turn reduces the oxidative stress and  
inflammatory responses in CoVID-19 patients56. Vitamin D sup-
plementation in SARS-CoV-2 infected patients attenuates the 
production of proinflammatory cytokines like Interferon (IFN)-γ, 
IL-6, IL-2 and TNF-α by inhibiting NF-κB and other pathways57–59. 
CoVID-19 associated inflammatory signalling pathways includ-
ing NF-κB, Mitogen-Activated Protein Kinase (MAPK)  
and phosphatidylinositol 3-kinase/ protein kinase B (PI3K/
AKT) and innate immune response pathways, such as Toll-like  
signalling and NOD-like signalling modulation and regulation  
can be mediated by the combination of curcumin, vitamin C, and 
glycyrrhizic acid60. Vitamin C has been known to improve the 
immune condition by enhancing differentiation and prolifera-
tion of B- and T-cells, but severe vitamin C deficiency is associ-
ated with pneumonia and respiratory tract infections61. Intrave-
nous administration of vitamin C can significantly decrease IL-6  
levels62,63. Glycyrrhizic acid and curcumin exhibits anti-viral,  
anti-inflammation, anti-cancer, and immune system benefits60. The 
combination of vitamin D/magnesium/vitamin B12 significantly  
reduced the subsequent need for oxygen therapy and/or inten-
sive care support in older CoVID-19 patients57. Vitamin B12 is 
crucial in maintaining the healthy gut microbiome which plays a 
vital role in immune responses57. Fat soluble vitamin E acts as an 
antioxidant that scavenges Reactive Oxygen species (ROS) and  
inhibits devastating effects of hyperinflammation64. Moreover, 
the supplementation of vitamin E stimulates T cell function and  
confers protection against upper respiratory infections65.

Selenium is one of the key micronutrients known to positively 
impact CoVID-19 patient recovery66,67. Selenium status regulates 
the expression of glutathione peroxidase 1 (GPX1), a cytosolic 
selenoenzyme known for its antioxidative properties. The  
antioxidant enzyme GPX1 mitigates the production of ROS and 
further leading to mutations in the viral genome68. In addition, 
attenuating ROS also helps in the inhibition of proinflammatory 

NF-κB activation and further nuclear translocation69. Severe 
endothelial injury and widespread pulmonary micro thromboses 
are accompanied with platelet activation and aggregation in 
patients with severe CoVID-19 manifestations. The synthetic  
Rupatadine (histamine1 receptor antagonist) and natural  
flavonoids with anti-inflammatory properties are known to 
inhibit the platelet activating factor70. Elderly individuals with 
deficiency of nutrients, such as vitamin C, vitamin D, calcium, 
folate, and zinc are prone to increase severity of SARS-CoV-2  
infection71. Folic acid may inhibit furin protease and inactivates 
chymotrypsin-like protease (3CLpro)72. Zinc (Zn2+) deficiency  
contributes to impaired cell mediated immune response and 
increased susceptibility to various infections. However, increased 
intracellular levels of Zn2+ disrupt viral RNA replication 
including SARS-CoV-2, where Zn2+ inhibits RNA (Ribonucleic 
acid) dependent RNA polymerase (RdRp) elongation and  
template binding73. Among CoVID-19 patients, iron deficiency is  
strongly associated with increased inflammation and longer stay in 
hospitals74.

Health beneficial compounds, including minerals, antioxidants, 
phytochemicals, vitamins, and minerals present in fruits and veg-
etables, can exert antioxidative, anti-inflammatory and antiviral 
effects during various non-infectious and infectious disease71.  
Alliin, an S-allyl cysteine sulfoxide compound present in gar-
lic has shown to have inhibitory action on 3CLpro, a protease that 
plays a vital role in SARS-CoV-2 replication75. Salvianolic acid 
A and curcumin have the potential to bind to 3CLpro with greater 
affinity76. Resveratrol acts as an anti-inflammatory molecule that  
inhibits the NFκB pathway and thereby reduces circulatory 
cytokines, such as IL-6 and TNF-α levels, which are observed 
in severe SARS-CoV-2 infection77. Sea cucumber (Stichopus 
japonicus) derived sulphated polysaccharide showed significant 
anti-viral activity against SARS-CoV-2 infection78. Omega-3  
polyunsaturated fatty acids, including eicosapentaenoic acid  
and docosahexaenoic acid have been shown to exhibit  
anti-inflammatory effects by downregulation of the NF-κB  
pathway71,79,80. Free fatty acids such as oleic acid, arachidonic 
acid and linoleic acid have shown antiviral activity at micromolar  
concentrations81. Dietary fibre intake alters the intestinal micro-
flora and enhances relative proportion of SCFAs, which exhibit 
anti-inflammatory properties through fatty acid receptors like  
G-protein-coupled receptor (GPCR) 41 and 4382–84.

Probiotics: suppressors of respiratory tract 
infections and inflammation
Probiotics are living microorganisms that provide health benefits 
to the host upon administration at appropriate doses85. Probiot-
ics exert a wide range of beneficial effects such as host micro-
biome balancing, stimulation of immune system, enhancement 
of intestinal barrier function or inhibiting pathogens by direct  
interactions40,46,86,87 (Table 1). Several microorganisms belong-
ing to the family of Enterococcus species (E. fecalis, E. faecium), 
Bifidobacterium species (B. bifidum, B. longum, B. lactis),  
Lactobacillus species (L. acidophilus, L. casei, L. rhamnosus), 
and Saccharomyces (S. boulardii, S. cerevisiae) are considered as  
probiotics40. Probiotic supplementation causes significant reduc-
tion in the incidence of oral and respiratory tract infections88,89. 
Dietary supplementation of cow’s milk and fermented rice with 
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Table 1. Ameliorative role of probiotics in suppressing respiratory tract infections and hyperinflammation.

Organism Dose and Duration Type of study Outcome Reference

S. salivarius K12, 
S. salivarius M18, 
L. reuteri, 
L. sakei, and 
L. paracasei

First month: 3 tablets/day, 
Next two months: 
one tablet/day

double-blind, 
randomized, placebo-
controlled trial

↓ RTIs in paediatric population 88

L. paracasei CBA L74
For 3 Months: 5.9 × 1011 
CFU/day dietary product 
deriving from cow’s milk or 
rice fermentation

double-blind, 
randomized, placebo-
controlled trial

↓ incidence of URTIs in children 
attending day care or preschool 90

L. casei Shirota

For 12 weeks: 1× 1011 
CFU/day

randomized controlled 
trial

↓ incidence of URTIs in healthy 
middle aged office workers 91

For 12 weeks: 65 mL/day 
fermented milk, 
containing 108 CFU/mL

controlled open trial ↓ acute RTIs in young 
Vietnamese children 92

L. plantarum DR7 For 12 weeks: 1 × 109 
CFU/day

randomized, double-
blind, placebo-controlled 
study

↓ duration and frequency URTIs 
↓ TNF-α and IFN-γ 
↓oxidative stress 
↑ IL-10 and IL-14 

93

L. gasseri A5 For 4 weeks: 1 × 107 
CFU/day

In vivo (Female BALB/c 
and C57BL/6 mice)

↓mite induced allergic 
inflammation 94

L. paracasei ST11 For 9 days: 108 CFU/day In vivo study (mice)

↓vaccinia virus replication, 
dissemination 
and infection associated lung 
inflammation

95

Lactobacillus gasseri 
SBT2055

For 24h: 50 μg/ml 
In vitro (HEp-2 human 
laryngeal epithelial cells 
and MLE12 mouse lung 
epithelial cells) ↓ RSV replication and associated 

lung inflammation 96

For 21 days: 2 × 109 
CFU/day In vivo (mice)

E. faecalis (heat killed) For 12 days: 8.5 × 1010 
CFU/kg/ day 

pre-treatment, in vivo 
(CCR2-deficient and 
C57BL/6 mice)

↓ monocyte chemoattractant 
protein-1 in influenza infection 97

Probiotic mixture 
containing 6 
Lactobacillus 
and 
3 Bifidobacterium

For 16 weeks: 0.6 g/kg/day 
(6 billion CFU/g) 

In vivo (male SD rats, 6 
weeks old)

↓systemic adiposity and 
inflammation 98

C. butyricum B1 For 8 weeks: 1×109 cells/
day 

In vivo (male C57BL/6 
mice)

↓ Non-alcoholic steatohepatitis 
and inflammation. 
↔ enterohepatic 
immunoregulation 

99

L. plantarum Y44
For 12 weeks : 4×107 
CFU/mL/ day or 4×109 
CFU/mL/day

In vivo (C57BL/6 obese 
mice)

↓intestinal inflammation 
↑gut bacteria and SCFAs 
production

100

L. acidophilus DDS-1 3 × 109 CFU/g In vivo (C57BL/6 obese 
mice)

↓proinflammatory cytokine levels 
↑gut microbiota and SCFAs 101

B. infantis 
CGMCC313-02

0.2 mL/day 
(5 × 1010 CFU/mL)

In vivo (Male BALB/c 
mice)

↓ allergen induced secretion of 
IgE, IgG1 and proinflammatory 
cytokines.

102
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L. paracasei CBA L74 helps in prevention of common infectious  
disease including upper respiratory tract infections in children90. 
Daily intake of fermented milk containing probiotic L. casei 
strain ‘Shirota’ has been shown to reduce the incidence  
and duration of respiratory tract infections in healthy middle 
aged office workers and young children via modulation of the 
immune system91,92. Daily ingestion of the probiotic L. paracasei 
ST11 can reduce the degree of virus replication and dissemi-
nation thereby attenuating lung inflammation and subsequent 
death in mice infected with vaccinia virus95. L. gasseri SBT2055  
exhibits antiviral activity against human respiratory syncytial 
virus (RSV) by silencing SWI2/SNF2-related cAMP Response  
Element-Binding Protein (CREB)-binding protein activator  
protein, which is involved in RSV replication. L. gasseri SBT2055 
reduced the expression of proinflammatory cytokines in lungs  
upon RSV infection96. CC chemokine receptor 2 acts as a  
receptor for monocyte chemoattractant protein-1 (MCP-1), which 
induces increased lung inflammation and subsequently decreases 
survival associated with influenza virus infection. Prophylactic 
oral administration of heat-killed E. faecalis can protect mice  
from influenza virus infection and subsequent lung inflammation 
by modulation of MCP-1 production. Alternatively, lipoteichoic 
acid of E. faecalis binds to toll like receptor 2 and exerts antiviral 
and anti-inflammatory activity during influenza infection97.  
Oral administration of probiotics L. paracasei, L. gasseri, and 
B. longum improved immune response and reduced mortality 
in influenza infected mice105 by reducing the inflammation and  
oxidative stress associated with it106,107.

Probiotics, in combination with enteral nutrition, given to post-
operative gastric cancer patients aids in increased production 
of antibodies and reduction of inflammatory cytokines108. Oral 
administration of L. plantarum ameliorates intestinal inflamma-
tion and lipid metabolism disorders by modulating gut microbiota  
in turn producing more SCFAs in high-fat diet induced obese 

mice100. This disrupted enterohepatic immunoregulation, which 
can be ameliorated by intervention of Clostridium butyricum B1 
via its metabolite butyric acid99. Probiotic mixture of Lactobacil-
lus and Bifidobacterium prevents the non-alcoholic fatty liver dis-
ease by suppressing systemic adiposity and inflammation through 
butyric acid and its receptor GPR109A98. Treatment with probiotic 
strain L. acidophilus DDS-1 upsurges the abundance of benefi-
cial bacteria such as Lactobacillus spp and Akkermansia spp and  
also the levels of butyrate, while downregulating the produc-
tion of inflammatory cytokines IL-6, IL-1β, IL-1α, MCP-1, Mac-
rophage Inflammatory Protein (MIP)-1α, MIP-1β, IL-12 and 
IFN-γ in aging mice101. L. paracasei KW3110 suppresses hyper-
inflammation via activation of M2 macrophages and exhibit anti-
inflammatory effects via suppression of IL-β production and  
caspase 1 activation by promoting IL-10 production103. Probiotic 
complex of L. acidophilus, L. casei, L. fermentum, L. paraca-
sei, Streptococcus thermophilus, Bifidobacterium longum,  
B. bifidum, B. breve, L. rhamnosus, L. plantarum, L. helveticus, 
and L. salivarius in combination with zinc and coenzyme 
Q10 can improve autoimmune arthritis via downregulation of  
proinflammatory cytokines including IL-6, IL-17 and TNF-α  
and inhibition of T-helper cell 17 (Th17) cell differentiation109–111. 
Oral administration of B. infantis suppresses allergic inflamma-
tion in lungs by significantly reducing serum levels of Immu-
noglobulin (Ig)E, IgG1, IL-4 and IL-13102. Daily administration 
of L. plantarum DR7 for 12 weeks can prevent development of  
upper respiratory tract infections among young adults through 
various mechanisms including inhibition of respiratory infection 
causing bacteria such as Staphylococcus aureus, Streptococcus 
pneumoniae, Streptococcus pyogenes and Streptococcus mutans, 
stimulation of proinflammatory cytokine production such as  
IL-10 and IL-4, and enhancement of antioxidant potential 
of RBC membrane93. Significant reduction in the number of  
Bifidobacteria and Lactobacilli along with increased number 
of Escherichia coli is observed in the gut of children with  

Organism Dose and Duration Type of study Outcome Reference

L. paracasei KW3110
1.25–5 
μg/mL For 24 

hours
J774A.1 cells ↓ cytokine IL-1β via IL-10 

activation and signalling 103
100 μg/mL human monocytes

S. thermophilus DSM 
32345, 
L. acidophilus DSM 
32241, 
L. helveticus DSM 
32242, 
L. paracasei DSM 
32243, 
L. plantarum DSM 
32244, 
L. brevis DSM 27961, 
B. lactis DSM 32246, 
and 
B. lactis DSM 32247

For 21 days: 2.4×109/day in 
3 equal doses/day cohort study

8 – fold decrease in risk of 
developing respiratory failure 
associated with CoVID-19.

104

RTIs-Respiratory tract infections; URTIs- Upper respiratory tract infections; CFU-Colony forming unit; RSV-Respiratory syncytial virus; CCR2- C-C 
chemokine receptor type 2; IL-Interleukin; IFN-Interferon; TNF-Tumour necrosis factor, SCFAs-short chain fatty acids; CoVID19- Coronavirus disease 
2019. ↓-Reduce; ↑-Enhance; ↔- Balance. 
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recurrent respiratory tract  infections. Oral probiotic supplement 
containing Bifidobacterium infantis, L. acidophilus, E. faecalis 
and Bacillus cereus restored the intestinal flora along with 
reduction in incidence of respiratory tract infections and use of  
antibiotics23.

Exopolysaccharides produced during milk fermentation by pro-
biotic L. paracasei acts as a substrate for the gut microbiome. 
Fermentation of this exopolysaccharide increases the number 
of beneficial microbiomes belonging to phyla Firmicutes and  
Lentisphaerae, accompanied by the decrease in Actinobacteria, 
Proteobacteria and Bacteroidetes. Fermentation of exopolysac-
charide enhances SCFAs production mainly butyric acid112. Aque-
ous probiotic supplements containing L. acidophilus NCIMB 
30175, L. plantarum NCIMB 30173, L. rhamnosus NCIMB 30174  
and E. faecium NCIMB 30176 induces an increase in butyric 
acid producing bacteria resulting in increased production of 
butyric acid exhibiting immunomodulatory activity via down-
regulation of proinflammatory cytokines such as MCP-1, Chem-
okine (C-X-C motif) ligand (CXCL)-10 and IL-8 in vitro113.  
Oral administration of multistrain probiotic mixture containing 
L. helveticus DSM 32242, B. lactis DSM 32246, L. paracasei 
DSM 32243, L. plantarum DSM 32244, L. brevis DSM 27961, 
L. acidophilus DSM 32241, Streptococcus thermophilus DSM 
32345 and B. lactis DSM 32247 decreased development of res-
piratory failure associated with CoVID-19 by 8 times along with 
reduction in other symptoms such as diarrhoea, fever, asthenia,  
headache, myalgia, and dyspnoea104,114. Use of probiotics may 
restore the healthy gut microbiome in CoVID-19 patients and 
exhibit antiviral effects through gut-lung axis. The immunomod-
ulatory role of probiotics helps in viral shedding, regulation 
of hypercytokinemia and associated multiple organ failure in  
severe CoVID-19 cases40,115–117.

Is butyrate an alternative to dexamethasone?
Dexamethasone is a synthetic corticosteroid that acts as an 
anti-inflammatory agent, widely affecting innate and acquired  
immune system via glucocorticoid receptor118,119. Low dose 
dexamethasone treatment significantly supresses neutrophil  
infiltration and subsequent pulmonary inflammation and sig-
nificantly improves lung function in early phase of ARDS120.  
Lower respiratory tract transcriptomic profiling of patients with 
CoVID-19 associated ARDS shows dysregulated immunoregu-
lation and inflammation. This dysregulated immune response 
can be modulated by dexamethasone121. A short course of  
dexamethasone significantly reduces CRP levels and accelerates 
recovery122. Dexamethasone treatment in CoVID-19 patients who 
were receiving mechanical ventilation support results in lower 
mortality rate123. Severe CoVID-19 cases have been brought to 
remission state after 6 mg once a day intravenous administration of  
dexamethasone124.

Dexamethasone is indicated as a therapeutic option for immune 
thrombocytopenic purpura associated with CoVID-19124,125.  
Administration of dexamethasone before 30 hours of ARDS onset 
can significantly reduce the period of mechanical ventilation and 
mortality12. Dexamethasone provides an excellent protective  
effect against hypoxia associated with CoVID-19118. Intravenous 

dexamethasone treatment for CoVID-19 patients along with  
standard care significantly decreases the number of ventilator 
dependent days over 28 days11. High dose pulse therapy of  
dexamethasone increased the survival rate in CoVID-19 patients  
presented with hyperinflammation126. However, dexamethasone, 
a broad spectrum immunosuppressant, inhibits lymphocytes  
function and prevents macrophage mediated removal of apoptotic 
cells, which leads to reduced viral shedding and increases 
subsequent viremia in mild to moderately ill CoVID-19  
patients124,127,128. Prolonged use of corticosteroids is associated 
with serious adverse effects such as short-term hyperglycaemia,  
cataracts, glaucoma, hypertension, psychological effects, weight 
gain, increased risk of secondary infections and osteoporosis13,129. 
Use of such corticosteroids may induce gut dysbiosis14.

Intestinal microflora widely affects host health and alterations in 
the gut microbiome is correlated with several disease including 
respiratory disease130. Commensal gut microbiome and its metab-
olites can modulate host immunity and can also impact on pro  
inflammatory and immune-regulatory response131. Increased pro-
duction of microbiome metabolite SCFAs may improve health 
condition132. Depletion of SCFA production makes mice more 
susceptible for allergic lung inflammation. Biological effects 
exerted by SCFAs is dependent mainly on two mechanisms: SCFA 
mediated (i) activation of GPCRs and (ii) inhibition of HDAC.  
SCFAs, via HDAC inhibition, positively impacts the functions 
and numbers of T-helper 1 cells, T-regulatory cells, and Th17 
effector cells resulting in reduced inflammatory response in air-
way diseases130. The short chain fatty acid, butyrate or butyric 
acid is produced in the colon by anaerobic bacteria such as  
Roseburia intestinalis, Faecalibacterium prausnitzii, Clostrid-
ium butyricum, Megasphaera elsdenii, Mitsuokella multiacida, 
Eubacterium spp., Fusobacterium spp., Butyrivibrio spp. and 
Eubacterium hallii133. Butyrate concentration in the colon can 
reach from 10 to 20 mM and serves as major source of energy for  
colonocytes. Sodium butyrate supplementation enhances the 
abundance of beneficial bacteria such as Coprococcus, Lachnos-
piraceae, Ruminococcus, Bifidobacteriaceae and Actinobacteria  
improving intestinal barrier integrity in obese mice134.

Primarily, butyric acid exhibits anti-inflammatory and tissue 
protective function in the large intestine135. Butyric acid is a 
potential inhibitor of pro-inflammatory molecule NF-κB135–137 
(Figure 1). Tight junction protein expression in intestinal 
epithelial cells is also influenced by butyrate mediated  
regulation138. Butyrate treatment on epithelial colon cells signifi-
cantly downregulated the proinflammatory molecules including  
Toll-like receptor (TLR)2, TLR4, IL-6, IL-12A, IL-1β, IL-18, 
TNF, MAPK13, MAPK10, MAPK3, AKT1, AKT2, AKT3,  
NF-κB1A, NF-κB1, CXCL1, CXCL2, CXCL3, CXCL6, CXCL8, 
Chemokine ligands (CCL)2, Serpin peptidase inhibitor, clade A 
(alpha-1 antiproteinase, antitrypsin), member 1 (SERPINA1),  
SERPINA2, Colony Stimulating Factor (CSF) 3, Intercellular 
Adhesion Molecule 1 (ICAM1), Vascular Endothelial Growth 
Factor A (VEGFA), Major Vault Protein (MVP), Cathelicidin 
Antimicrobial Peptide (CAMP) and insulin-like growth factor 
binding protein (IGFBP)3, along with inhibition of proinflam-
matory pathways, including (i) triggering receptor expressed on  

Page 7 of 18

F1000Research 2021, 10:273 Last updated: 17 MAY 2021



myeloid cells (TREM-1) signalling, (ii) production of nitric 
oxide (NO) and ROS, (iii) high-mobility group box-1 (HMGB1) 
signalling, (iv) IL-6 signalling, and (v) acute phase response  
signalling25. Pre-treatment with butyric acid can attenuate heart 
depression along with reduction in inflammation and oxidative 
stress associated with septic shock in mice139. Acute lung injury 
along with ARDS characterized by excessive inflammation can 
be induced by various factors such as endotoxins, infections,  
hypoxia and complement activation. Lipopolysaccharide (LPS) 
induced acute lung injury (ALI) and inflammation can be attenu-
ated by 4-phenyl butyric acid (4-PBA), a derivative of butyric  
acid and also by sodium butyrate26,140.

Prophylactic treatment of sodium butyrate significantly reduces 
myeloperoxidase activity and inflammatory cell infiltration into 
lungs which is correlated with the inhibition of proinflammatory 
cytokine, HMGB1 expression and NFκB26. The TLR 4/NF-κB 
pathway involved in the LPS is targeted by sodium butyrate, 
which attenuates the LPS induced lung injury27. Hyaluronan 

ester with butyric acid treatment induces apoptosis in mesangial 
cells after exposure to oxidative stress and thereby reducing cell 
proliferation via p38 MAPK pathway141. N-(1-carbamoyl-2-phe-
nyl-ethyl) butyramide (FBA), a butyrate releasing compound, 
confers protection to mice from colitis induced by dextran sodium 
sulphate by suppressing neutrophils recruitment and subsequent  
release of pro-inflammatory molecules mediated by HDAC-9/
NF-κB inhibition and peroxisome proliferator-activated receptor  
gamma (PPAR-γ) upregulation142. Butyrate inhibits IL-13 and 
IL-15 production by Type 2 innate lymphoid cells. Butyrate 
downregulates various RNA binding proteins and thereby post 
transcriptionally downregulating the expression of inflammatory 
genes143. Sodium butyrate attenuates AngII induced hyperten-
sion, cardiac hypertrophy, cardiac fibrosis, and inflammation by 
inhibiting Cyclooxygenase-2 (COX2)/ Prostaglandin E2 (PGE2) 
pathway in a HDAC5/ HDAC6 dependent manner144. Butyrate 
reduces AngII induced endothelial dysfunction145. Sodium 
butyrate attenuates lung inflammation by promoting forkhead 
box P3 (FOXP3) expression and suppression of IL-9 expression. 

Figure 1. Proinflammatory Angiotensin II, Interleukins, Tumour necrosis factor-α and Triggering receptor expressed on myeloid 
cells 1 (TREM-1) mediates the activation of Mitogen-activated protein kinase (MAPK), Extracellular signal-regulated kinase 
(ERK1/2) and Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) intracellular signalling pathways. The downstream 
activators of these pathways induces the reactive oxygen species (ROS) generation and transcription factor, NF-κB dependent expression 
of proinflammatory molecules. HDACs, which deacetylates Signal transducer and activator of transcription 1 (STAT1), and promotes the 
nuclear translocation and subsequent activity of NF-κB. Target genes of NF-κB, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 
increases the NF-κB activity via positive feedback loop. Histone deacetylase (HDAC) inhibitor, butyrate mediates its effects through GPCRs: 
Free fatty acid receptors 2/3 and GPCR 109A or by directly binding to HDAC active sites. Inhibition of NF-κB activity by butyrate attenuates 
inflammation and oxidative stress associated with various pathologies including CoVID-19. Butyrate also activates the transcription factor B 
lymphocyte-induced maturation protein-1 (BLIMP-1) and enhances the production of anti-inflammatory cytokines.
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Butyrate also reduces the infiltration of proinflammatory Th9 
cells and eosinophils into lungs146. Mice treated with butyrate 
exhibited a significant reduction of inflammatory infiltrates in 
the airways, tissue, and vascular disruption, and subsequently 
less haemorrhaging in the lungs induced by influenza infection82. 
HDAC inhibitor sodium butyrate can suppress ACE2 expression 
in gut epithelial cells which can help in reducing gastrointestinal  
symptoms associated with CoVID-19147.

Pancreatitis and associated fibrosis induced by L-Arginine 
can be attenuated by sodium butyrate, which reduces collagen 

deposition and nitric oxide along with inhibition of profibrotic  
pancreatic stellate cells148. Butyric acid ameliorates bleomycin 
induced pulmonary fibrosis by attenuating leukocytes infiltration, 
oxidative stress and NF-κB activation149.

Consequently, based on the evidence presented, the potential 
anti-inflammatory and tissue protective effects of butyric acid 
on lungs and gut, along with its ability to modulate gut micro-
biome diversity, enhancing production of endogenous butyric  
acid could be a better preventive approach to manage CoVID-19 
over dexamethasone (Figure 2). However, there is a need 

Figure 2. A. SARS-CoV-2 transmitted through aerosols reach the lungs via respiratory tract and enters the host cell by binding to its 
receptor, ACE2 present on the surface of pneumocytes. Followed by endosome mediated internalization, SARS-CoV-2 causes cell injury and 
subsequent hyperinflammation and cytokine storm, resulting in fibrosis of lungs. These cytokines reach the gut via blood and lymphatic 
vessels that instigates local inflammation in gut, ushering to leaky gut and gut dysbiosis, resulting in diarrhoea and malabsorption together 
with reduced production of short chain fatty acids. B. Dexamethasone a synthetic broad-spectrum immunosuppressant can inhibit cytokine 
storm associated with CoVID-19. As an alternative, oral administration of probiotics or gut microbiome metabolite, SCFAs may ameliorate 
gut inflammation, restore gut integrity, and gut microbiome. This enhances the production of endogenous SCFAs and reaches the lungs via 
blood and lymphatic vessels, and may inhibit hyperinflammation and cytokine storm along with induction of anti-inflammatory cytokines 
production which recovers the lung from injury and the acute respiratory distresses associated with CoVID-19.
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for more detailed studies and clinical trials to determine the 
potency and long-term effect of butyric acid in the preventive  
management of seriously ill CoVID-19 patients.

Conclusion
Seriously ill CoVID-19 patients are succumbing to respira-
tory distress syndrome due to significant hyperinflammation 
and cytokine storm. A broad-spectrum immunosuppressant,  
dexamethasone, is widely used to treat such cases. However, the  
prolonged use of this corticosteroid leads to severe adverse events 
and disrupted immune responses. There are growing number 
of advanced research studies in search of an alternative to dex-
amethasone for the better management of critical CoVID-19 
patients. Hence, this review extensively searched for evidence 
to show the anti-inflammatory properties of butyric acid or  

butyrate and its associated molecular pathways involved in  
preventing SARS-CoV-2 infected patients from cytokine storm 
and hyperinflammation. It has been observed that the SARS-
CoV-2 infection significantly decreases butyric acid producing 
bacteria in the host gut. Further, previous research shows that a 
histone deacetylase inhibitor, butyric acid has proven to be anti-
inflammatory in lung inflammation including inflammation 
associated with respiratory viral infection. Therefore, based 
on the various positive reports, we presume that butyric acid  
possesses potent anti-inflammatory activity, making it a suitable  
alternative candidate for the preventive management of primary  
and secondary complications related to CoVID-19.

Data availabilty
No data is associated with this article.
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Abstract can be rewritten, some sentences are incomplete. Various pathologies but only 
respiratory infection is mentioned. 
 
Authors mentioned the usefulness of probiotics in management of tissue inflammation, some 
more clear idea on mechanism to mitigate the inflammation, particularly the viral load is 
demanded. 
 
Chemistry of butyrate and dexamethasone and its structure activity relationship in preventing the 
cytokine storm is necessary. 
 
Figure 1 - over expressions of anti-inflammatory cytokines is mediated with STAT1 junction 
proteins and nuclear translocation. Is it possible mention the linking pathway between these? 
 
Figure 2 - whats is the linker molecules in Gut-Lung axis? 
 
Future prospective at end would certainly increase the quality of the manuscript.
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Stephen O. Mathew   
Department of Microbiology, Immunology and Genetics, University of North Texas Health Science 
Center, Fort Worth, TX, USA 

The authors have written a comprehensive review on the role of butyrate as a natural alternative 
to dexamethasone in the management of COVID-19. Various micronutrients and probiotic 
supplementations are known to aid in the reduction of hyperinflammation and restoration of gut 
microbiota. The attenuation of the deleterious immune response and hyperinflammation could be 
mediated by short chain fatty acids (SCFA) produced by the gut microbiota. Butyric acid is well 
known for its anti-inflammatory properties and ability to reduce oxidative stress and 
hyperinflammation in many diseases. In this review, the potential anti-inflammatory effects of 
butyric acid that aid in cytokine storm depletion, and its usefulness in effective management of 
critical illness related to COVID-19 have been discussed. 
 
While the review is well written it seems like the title does not fully reflect the content of the 
review. More than 50% of the review talks about gut microbiome and probiotics and nutrients that 
play a role in COVID-19 pathogenesis which is not reflected in the title. Only in the second half they 
talk about the role of butyrate. The title needs to be revised to fully reflect the article. 
 
There are several new publications that discuss the role of butyrate in COVID-19 pathogenesis 
which could be added to make this a comprehensive review like J Li et al. (2021)1; Sarkar, P et al.
 (2020)2; Wang L et al. (2017)3. 
 
COVID-19 pathogenesis is exacerbated in individuals who have co-morbidities. What is the role of 
butyrate in co-morbidities? This has not been discussed. 
 
Innate immune cells play a major role in the COVID-19 pathogenesis. Although the role of butyrate 
is described in adaptive immune response, its role in innate immunity in the context of COVID-19 
pathogenesis is minimally mentioned. 
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Some of the molecules like PGE2, ROS-IKK pathway has not been described in Figure 1 legend. 
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The review article by Nithin et al. discusses whether butyrate can be a natural alternative to 
dexamethasone in the management of COVID-19. The manuscript is well written and with a clear 
explanation of purpose. The authors illustrate divergent signaling pathways associated with the 
pathophysiology of COVID-19. They also point out the issues that dexamethasone has and why 
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butyrate can be an alternative. Listed below are some of my concerns:
The authors mention many benefits of butyrate in this review. I suggest the authors should 
also mention whether there are any side effects of butyrate in specific groups, such as 
pregnant women and those with underlying conditions. Such a description would enable a 
more comprehensive assessment of this compound. 
 

1. 

The authors provided a schematic of pro-inflammatory intracellular signaling pathways and 
in same schematic describe the mechanism of action of butyrate. There are many signaling 
pathways in this schematic and readers are easy to get confused. I suggest the authors 
simplify the schematic or separate it into two different schematics, one for butyrate 
regulation and another one for the regulation of pro-inflammatory mediators.

2. 
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A suggestion to the authors: There are several published reports suggesting the use of butyrate to 
treat cytokine storm in Covid-19 that are not cited in this paper. For completeness the authors may 
wish to include those references in this comprehensive paper. They all can be found via Google 
Scholar - search "Covid Butyrate"
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