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Abstract

Mathematical models of vector-borne infections, including malaria, often assume age-inde-

pendent mortality rates of vectors, despite evidence that many insects senesce. In this

study we present survival data on insecticide-resistant Anopheles gambiae s.l. from experi-

ments in Côte d’Ivoire. We fit a constant mortality function and two age-dependent functions

(logistic and Gompertz) to the data from mosquitoes exposed (treated) and not exposed

(control) to insecticide-treated nets (ITNs), to establish biologically realistic survival func-

tions. This enables us to explore the effects of insecticide exposure on mosquito mortality

rates, and the extent to which insecticide resistance might impact the effectiveness of ITNs.

We investigate this by calculating the expected number of infectious bites a mosquito will

take in its lifetime, and by extension the vectorial capacity. Our results show that the pre-

dicted vectorial capacity is substantially lower in mosquitoes exposed to ITNs, despite the

mosquitoes in the experiment being highly insecticide-resistant. The more realistic age-

dependent functions provide a better fit to the experimental data compared to a constant

mortality function and, hence, influence the predicted impact of ITNs on malaria transmis-

sion potential. In models with age-independent mortality, there is a great reduction for the

vectorial capacity under exposure compared to no exposure. However, the two age-depen-

dent functions predicted an even larger reduction due to exposure, highlighting the impact of

incorporating age in the mortality rates. These results further show that multiple exposures

to ITNs had a considerable effect on the vectorial capacity. Overall, the study highlights the

importance of including age dependency in mathematical models of vector-borne disease

transmission and in fully understanding the impact of interventions.
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Author summary

Interventions against malaria are most commonly targeted on the adult mosquitoes,

which transmit the infection from person to person. One of the most important interven-

tions are bed-nets, treated with insecticides. Unfortunately, extensive exposure of mosqui-

toes to insecticide has led to widespread evolution of insecticide resistance, which might

threaten control strategies. Piecing together the overall impact of resistance on the efficacy

of insecticide-treated nets is complex, but can be informed by the use of mathematical

models. However, there are some assumptions that the models frequently use which are

not realistic in terms of the mosquito biology. In this paper, we formulate a model that

includes age-dependent mortality rates, an important parameter in vector control since

control strategies most commonly aim to reduce the lifespan of the mosquitoes. By using

novel data collected using field-derived insecticide-resistant mosquitoes, we explore the

effects that the presence of insecticides on nets have on the mortality rates, as well as the

difference incorporating age dependency in the model has on the results. We find that

including age-dependent mortality greatly alters the anticipated effects of insecticide-

treated nets on mosquito transmission potential, and that ignoring this realism potentially

overestimates the negative impact of insecticide resistance.

Introduction

Malaria is a life-threatening vector-borne parasitic disease, which is endemic in 87 countries,

mainly in the African Region [1]. The World Health Organization’s (WHO) “Global Technical

Strategy for Malaria 2016–2030” outlines global targets in the fight against malaria, including a

90% reduction of malaria case incidence by 2030 [2]. Significant progress towards these targets

has occurred, where both the number of cases and the number of deaths due to malaria have

decreased between 2010–2019, as outlined in a reported published by WHO in 2020 [1]. In

2019, there were around 229 million cases of malaria globally, with 94% of them being in the

African Region. Additionally, during the same year, 409,000 deaths due to malaria have been

estimated worldwide.

The vectors responsible for the malaria parasite’s transmission, through blood feeding,

belong to the Anopheles genus of mosquitoes. The success of the malaria programmes to date

is thanks to a range of interventions, most commonly targeted at these vectors. For example, in

sub-Saharan Africa around half of the people at risk are sleeping under insecticide-treated nets

(ITNs) [1] which are a way to utilise contact pesticides. Between 2000 and 2015, ITNs contrib-

uted to the aversion of many cases; 68% of the cases that were prevented due to any interven-

tion are attributed to ITNs, making them a crucial intervention [3]. Bed-nets are currently

treated with pyrethroids, and there is evidence of an increase in pyrethroid resistance in

malaria vectors, which threatens the elimination efforts [1, 4]. Hence, due to mutations and

natural selection, mosquitoes develop the ability to resist the harmful effects of insecticides,

leading to what is called “insecticide resistance” [4]. We note that there are new dual active

ingredient (dual-AI) ITNs against malaria being tested [5–7], nevertheless, it is important to

evaluate the potential impact that insecticide resistance actually has on the efficacy of current

malaria interventions [8]. Alout et al. [9] claim that despite insecticide resistance, vector con-

trol is still crucial and can be effective against malaria transmission. This is in agreement with

the systematic review and meta-analysis by Strode et al. [10], where the authors concluded that

ITNs are more effective than untreated bed-nets, despite insecticide resistance. There has been

a mixture of results between different studies [11–15], however, we aim to confirm and add to
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the existing knowledge regarding long-term impact of insecticide on longevity by using highly

resistant field-derived mosquitoes from Côte d’Ivoire in laboratory experiments.

By targeting mosquitoes, ITNs target the key point in the transmission cycle, not only

reducing the opportunity for blood-feeding on humans, but increasing vector mortality and,

therefore, decreasing the number of infectious blood-meals a mosquito will contribute during

its life. The use of vector control to reduce or even eliminate infection is well supported by

mechanistic transmission models originally developed for malaria by Ross and Macdonald

and used extensively ever since [16]. A key metric linked to transmission models is the basic

reproduction number, R0, which describes the number of secondary cases produced by a single

case in an otherwise susceptible population [17]. Garret-Jones [18] took the purely entomolog-

ical components of R0 and named them vectorial capacity. It is defined in [19] as “the expected
number of infective mosquito bites that would eventually arise from all the mosquitoes that
would bite a single fully infectious person on a single day”, i.e. the average number of humans

that get infected due to one infectious human per day. These metrics have been used to study

the dynamics of vector-borne diseases and also quantitatively assess the possible impact of

interventions to control them.

Contact pesticides were being used at the time Macdonald was researching vector control,

and that is when he realised that transmission potential was affected by two important factors

relating to mosquito longevity [16]:

(a). a mosquito which is infected will only become infectious if it survives the time needed

for the pathogen to develop, commonly known as the extrinsic incubation period (EIP),

and

(b). once the mosquito is infectious it must take a blood-meal in order to transmit the infec-

tion on to a host.

Hence, Macdonald concluded that the number of infectious bites taken by a mosquito will

increase the longer the mosquito survives [16, 19]. The longer the EIP is, the less chance a mos-

quito has to survive it, therefore the younger a mosquito is when it gets infected, the more

likely it is to transmit the infection. Thus, the transmission potential relies heavily on the sur-

vival of the mosquitoes [16]. Due to Macdonald’s analysis, many control programmes aim to

reduce the lifespan of mosquitoes [16].

The vectorial capacity depends on the mortality rate of the mosquito, which is typically

assumed to be age-independent. Studies have suggested that this assumption, namely that

mosquitoes do not senesce, may not be realistic enough for transmission models and can

underestimate the impact of vector control strategies [20–24]. The assumption is often used to

simplify, otherwise complex, mathematical models, and not because of its biological relevance

[24, 25]. On the other hand, it is rare that suitable age-dependent vector mortality data are

available to inform more complex models; in addition to average life expectancy with and

without ITNs in place, the distribution of life expectancy and how this is impacted by interven-

tion is also required. In the present study, we bring more complex mosquito modelling

together with detailed experimental data to demonstrate how we may rethink the way the vec-

torial capacity is calculated.

To investigate the impact of multiple insecticidal exposures on the mosquitoes and their

ability to transmit malaria, we address the following research questions:

1. Does the mortality rate of the insecticide-resistant mosquitoes change due to insecticide

exposure through ITNs?

2. If it does change, how is the vectorial capacity impacted?
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3. When considering age-dependent models, how different is the vectorial capacity compared

to assuming mortality is age independent?

To answer these, we use data collected in Côte d’Ivoire. Laboratory experiments were con-

ducted on field-derived female Anopheles gambiae s.l. mosquitoes, one of the main malaria

vectors in Côte d’Ivoire [26]. The setup of the experiments allowed the comparison of the

mosquitoes’ survival rates when they were exposed to standard ITNs versus when they were

exposed to untreated nets. We fitted various survival functions to these data to estimate biolog-

ically realistic mosquito mortality rates and used these to obtain the vectorial capacity esti-

mates of the mosquitoes with and without exposure to ITNs. By including realistic survival in

the calculation of the vectorial capacity, we can observe how the assumed effectiveness of anti-

vectorial interventions is affected.

Materials and methods

Ethics statement

All experimental methods were consistent with Penn State IBC protocol no. 48219. The Penn-

sylvania State University Institutional Review Board determined that the experiments whereby

uninfected mosquitoes were attracted to a host did not meet the criteria for human subjects

research. The experimental research formed a part contribution to a larger set of studies

reviewed and approved by the Côte d’Ivoire Ministry of Health ethics committee (039/MSLS/

CNER-dkn), the Pennsylvania State University’s Human Research Protection Program under

the Office for Research Protections (STUDY00003899 and STUDY00004815).

The modelling analysis of the effect on the vectorial capacity with and without the presence

of insecticides is conducted using data that were collected in Bouaké, Côte d’Ivoire. Here the

focus is on the malaria parasite Plasmodium falciparum, which is one of the six Plasmodium
species known to regularly infect humans, and both the most prevalent and deadly parasite in

sub-Saharan Africa [27]. We present a detailed outline of the experimental setup, along with a

presentation of the data, followed by a breakdown of the computation of the vectorial capacity

using these data.

Experimental setup and data

The laboratory experiment was conducted on field-derived Anopheles gambiae s.l. at 26 ± 1˚C

and consisted of two treatments:

(a). control (non-exposed): in the presence of an untreated net

(b). treated (exposed): in the presence of an ITN

where a one-way tunnel with two cages was used; a ‘holding’ cage for the mosquitoes and a

‘host’ cage for the volunteer’s foot that was covered with a treated or untreated net (see Fig 1).

The mosquitoes in the experiment are considered to be extremely resistant to the pyrethroid

deltamethrin, which was used to treat the ITNs. More details regarding the experimental setup

are presented further on.

Mosquito populations. Anopheles gambiae s.l. mosquitoes were collected as larvae in nat-

ural breeding habitats around Bouaké, in central Côte d’Ivoire, and colonised at the Pierre

Richet Institute. These are highly pyrethroid-resistant mosquitoes. The 1014F kdr mutation is

almost fixed (� 90%), and 1575Y, as well as upregulation of CYP6M2, CYP6P3, and CYP9K1

result in a� 1500-fold resistance to deltamethrin relative to a standard susceptible strain [28].

Larvae were reared at 27 ± 2˚C, 60 ± 20% RH and ambient light in metallic bowls of 300 larvae
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with 1L of deionised water. They were fed daily with TetraMin baby fish food following a stan-

dardised ‘high food’ regime as described in Kulma et al. [29]. Adult mosquitoes were kept in

32.5 × 32.5 × 32.5cm mosquito cages, in the same environmental conditions as the larvae, and

maintained on 10% sugar solution. Mosquitoes were four to five days old at their first exposure

to insecticide and randomly assigned to a net treatment. Females had constant access to egg

laying substrate (a wet cotton pad) and were maintained on a 10% sugar solution cotton that

was renewed daily. Sugar was removed to starve mosquitoes for four hours before each experi-

mental run.

Human host preparation. The volunteers involved in this experiment were not actively

infected with malaria. They avoided the use of fragrance, repellent products, tobacco, and

alcohol for 12 hours before and during testing. For the experiment, feet were washed with

unscented soap and rinsed with water the day before a test. The ‘host’ cages were also washed

with soap and rinsed with water every time after a test was conducted—to avoid the accumula-

tion of insecticide particles. Cages were not interchanged between treatments, i.e. a cage used

in a control treatment was always used for a control treatment. Note that the data were ana-

lysed anonymously.

Insecticide-treated nets (ITNs). As mentioned, two types of nets were used: an unwashed

PermaNet 2.0 (Vestergaard Frandsen SA, DK) and an untreated polyester net (Coghlan’s) for

the control treatment. The PermaNet 2.0 is a long-lasting insecticidal net made of polyester

and coated with 55mg=m2 � 25% deltamethrin. We confirmed net efficacy by exposing sensitive

mosquitoes (Kisumu strain) to WHO tubes lined with a piece of ITN; all mosquitoes died

within 24 hours when exposed to the ITN, while the untreated nets killed none. For the wild-

type mosquitoes, as these exhibit such a high level of resistance, there was negligible knock-

down or mortality (< 1% knockdown one hour post exposure and no mortality 24 hours later)

from ITN exposure in WHO cone assays [30].

Multiple exposure assay. In malaria-endemic settings with high ITN usage, mosquitoes

potentially contact ITNs every time they attempt to feed. To capture this effect, we used a tun-

nel test in which mosquitoes had to fly a short distance between two cages to locate the host

Fig 1. Setup of experiment. The figure depicts the one-way tunnel with the volunteer’s foot covered in a net in the

‘host’ cage on the left, and the ‘holding’ cage on the right. Both cages are of the same size, 32.5 × 32.5 × 32.5cm. The

cages are connected with a PLEXIGLAS tube (l = 30cm, d = 14.6cm). Depending on the chosen treatment for the

experiment, the net is either an unwashed PermaNet 2.0 or an untreated net, measuring 25 × 25cm in both cases. In

this setup the mosquitoes have direct access to the foot for blood feeding.

https://doi.org/10.1371/journal.pcbi.1009540.g001
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and blood-feed. The tunnel apparatus comprised a standard 32.5 × 32.5 × 32.5cm mosquito

cage as a ‘holding’ cage, a 32.5 × 32.5 × 32.5cm mosquito cage as the ‘host’ cage, and a PLEXI-

GLAS tube (l = 30cm, d = 14.6cm) forming the tunnel between cages (as shown in Fig 1). The

holding cages were initially populated with 120 pupae each. After adult emergence, 50 females

and 10 males were randomly selected to remain in each holding cage until their death, with the

excess removed and discarded. We compared the two net treatments, where the foot of a

human host was wrapped in a netting sock so the mosquitoes could land on the foot and feed

if they chose. Treatments were replicated five times, giving a total of 500 female mosquitoes.

Every four days at around 6pm (dusk) the mosquitoes were exposed to a human foot placed in

the ‘host’ cage. The mosquitoes were allowed to visit the cage for 30 minutes. At the end of 30

minutes, the total number of mosquitoes that had taken a full or partial blood-meal was

recorded. The tunnel was then dismantled and all mosquitoes returned to their respective

holding cages. The surveillance of the mosquitoes started when they were four days old and

tests were repeated every four days until all mosquitoes had died. The number of mosquito

deaths was recorded daily. The net treatment was randomly allocated to one human host

experimenter to ensure there were no biases due to possible differences in attraction between

hosts.

During an initial inspection of the data, it was decided that Replicate 1 would be excluded

from further analysis. The feeding trend (S1 Fig) of Replicate 1 suggests that the mosquitoes

were not feeding and could therefore explain the mortality trend (S2 Fig). The differences in

Replicate 1 highlight the fact that mosquito behaviour, for example feeding and host searching,

likely depends on a lot of parameters that need further exploration in order to improve trans-

mission models. It seems that there is no significant difference between mosquitoes tested in

each treatment in Replicate 1, and this is because they almost never visit the cage with the foot,

and thus were not exposed to insecticide during their life. If we were to compare Replicate 1

with the other replicates, it seems probable that blood-meals improve longevity, hence why in

both treatments of Replicate 1 the mosquitoes die so early. However, the objective here is to

better identify differences of the survival rates between the two treatments, the impact on vec-

torial capacity, and contrasts when taking age dependencies into account. Since Replicate 1

does not follow the behaviour of the mosquitoes in the rest of the replicates, it is removed from

further analysis for consistency.

In the results that follow, the replicates were all combined together, as one larger, aggre-

gated survival dataset, with data from 200 mosquitoes per treatment being examined in total.

Fig 2 shows the data used for the calculations. The relevant data can be found in the supporting

information (S1–S6 Tables).

Vectorial capacity

Garrett-Jones [18] introduced vectorial capacity, denoted as C, in order to estimate the risk of

the introduction of malaria. C is commonly defined mathematically as:

C ¼
ma2e� mn

m
ð1Þ

where m is the mosquito density relative to humans, α is the biting rate, p is the survival rate, μ is

the mortality rate, and n is the duration of the EIP, i.e. the number of days between the day a

mosquito gets infected until its bites become infectious, and is able to transmit the infection [22].

It is important to note that this form of the vectorial capacity is predicated on some key

assumptions. The first is assuming perfect transmission, and it can be overcome by including

the product cb, denoting the vector competence [25, 31, 32]. However, for the purposes of this
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study, we will also assume perfect transmission. A second assumption is that the bite rate is

fixed and constant with age. It is often calculated as the reciprocal of the average length of the

gonotrophic cycle [33]. Hence, assuming a gonotrophic cycle of length four, we have α = 0.25

days−1, i.e. the mosquitoes feed once every four days, which is in line with the experimental

setup, where the mosquitoes were allowed to feed every four days. In our calculations, we will

use α = 0.25 and keep m as an unknown constant. However, we further investigate the remain-

ing parameters.

Extrinsic incubation period (EIP), n. Another notable assumption is the use of a fixed

EIP in Eq (1), with the expression e−μn representing the probability that a mosquito survives

the n-day EIP [34]. However, this can be modified to account for non-fixed EIP. A popular

choice is to assume the EIP follows an exponential distribution [25]. If the average EIP dura-

tion is the same as with the fixed EIP (n), then the vectorial capacity becomes:

C ¼
ma2

m

s

sþ m
; ð2Þ

where s ¼ 1

n is the incubation rate.

As mentioned, the EIP represents the time period where the malaria parasites ingested by

the mosquito are developing inside it in order to be able to transmit the infection. The Centers

for Disease Control and Prevention states that n is at least 9 days, but is dependent on tempera-

ture and the different kind of species of the parasites [35]. In a recently published paper by

Stopard et al. [36], a mechanistic model fitted to data from [37–40] gave an estimate for the

median (50th percentile—EIP50), at 27˚C, to be 10.2 days. In addition to the median, the

authors provide values for the 10th and 90th percentile (EIP10 and EIP90, respectively), so, using

these we can calculate a mean value for the EIP for a given distribution at this temperature.

Fig 2. Proportion of alive mosquitoes. Visualisation of the data used for the calculations. The scatter plots show the proportion of alive

mosquitoes at each time for 50 mosquitoes in each replicate, and the line shows the proportion of the total number of alive mosquitoes for 200

mosquitoes. Data are plotted up until the final remaining mosquito per replicate died. Replicate 1 was excluded for reasons outlined in the text.

https://doi.org/10.1371/journal.pcbi.1009540.g002
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Taking into account the information on the shape of the EIP, it would be more realistic to

consider a different distribution which lies somewhere between the exponentially distributed

or fixed EIPs. A mathematically neat choice which meets this criteria and is flexible with the

addition of a single extra parameter is the Erlang distribution. The Erlang distribution is a spe-

cial case of the gamma distribution, which has been used for the incubation period in many

vector-borne disease models [41–45].

The probability density function (PDF) of the Erlang distribution [46] is given by:

f ðx; k; lÞ ¼
l
kxk� 1e� lx

ðk � 1Þ!

for x, λ� 0, where k is the shape parameter and λ is the rate parameter. The mean is given by
k
l
, which we set equal to 1

s
. Therefore, with λ = kσ we have:

f ðx; k; sÞ ¼
ðksÞkxk� 1e� ksx

ðk � 1Þ!
: ð3Þ

We match EIP10 and EIP90 from [36] to our distribution to infer values for k and σ. We then

take bkc, since the Erlang distribution requires k to be an integer, obtaining k = 31. Using this

value for k and the value for EIP50 from [36], we finally end up with σ = 0.097. Thus, we esti-

mate the mean EIP to be 10.3 days.

Mortality rate, μ. The mortality rate is often assumed to be constant, which drastically

simplifies mathematical calculations [24]. Nevertheless, it can be seen from our data that this

assumption is not the most realistic. Styer et al. argue in [20] that ignoring mosquito senes-

cence results in inaccurate predictions with respect to vector control effectiveness. For a more

realistic approach, we consider an age-dependent mortality rate. Henceforth, we consider the

following functions for μ:

Age � Independent : mAIðaÞ ¼ mconst ð4Þ

Logistic ½47� : mLðaÞ ¼
m1

1þ em2ð� aþm3Þ
ð5Þ

Gompertz ½23� : mGðaÞ ¼ g1e
ag2 ð6Þ

where a� 0 is the age of the mosquitoes, and the (positive) parameters μconst, μ1, μ2, μ3, g1, and

g2 are estimated by fitting the data. These functions are often used in demography and popula-

tion models, since they describe a mortality that increases with age [22, 48]. The logistic func-

tion has an initial exponential increase and then slows down to reach a plateau, whereas the

Gompertz continues to increase exponentially. In the field of survival analysis they are often

referred to as ‘hazard functions’. For clarity we note that the Gompertz function (Eq (6)) is the

hazard function derived from the Gompertz distribution. However, this is not the case for the

logistic function (Eq (5)), here this represents a sigmoid curve often referred to as the logistic

function.

Survival functions

In order to fit the data, a survival function, S(a), is considered for each mortality function. Its

relationship with the mortality function [49] is expressed as:

SðaÞ ¼ expð�
R a

0
mðxÞ dxÞ: ð7Þ
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Using Eq (7), we obtain the survival function for each of the mortality functions:

Age � Independent : SAIðaÞ ¼ e� amconst ð8Þ

Logistic : SLðaÞ ¼ e� m1a

�
em2ðm3 � aÞ þ 1

em2m3 þ 1

�� m1
m2

ð9Þ

Gompertz : SGðaÞ ¼ e�
g1
g2

eag2 � 1ð Þ
ð10Þ

In what follows, we outline how we obtain estimates for the parameters found in these func-

tions, and, additionally, how we calculate confidence intervals for them and the calculations

computed in the Results section.

Maximum likelihood estimation. We use the maximum likelihood estimation method to

estimate the various parameters present in the survival functions given the experimental data

where the k mosquito deaths occur at times t = {ti: 1� i� k}. To do so, we calculate the log-

likelihood functions (ℓ) for each mortality type (for more information refer to the S1 File). We

obtain parameter estimates by maximising the log-likelihood functions.

Age � Independent : ‘AIðmconst; tÞ ¼ k logðmconstÞ � mconst

Xk

i¼1

ti

Logistic : ‘Lðm1; m2; m3; tÞ ¼ k logðm1Þ þ k
m1

m2

log ð1þ em2m3Þ � m1

Xk

i¼1

ti

�
m1

m2

þ 1

� �
Xk

i¼1

log 1þ em2ðm3 � tiÞ
� �

Gompertz : ‘Gðg1; g2; tÞ ¼ k logðg1Þ þ k
g1

g2

þ g2

Xk

i¼1

ti �
g1

g2

Xk

i¼1

eg2ti

We obtain an estimate for μconst by setting
d‘AI

dmconst
¼ 0. Hence, m̂const ¼

kPk

i¼1
ti
. For the age-depen-

dent functions, the values of the parameters cannot be computed analytically, therefore, we use

the Optim.jl [50] package in Julia [51] to minimise the negative log-likelihood.

Wald confidence intervals. The 95% Wald confidence interval of our parameter estimates

are given by m̂const � 1:96 1ffiffiffiffiffiffiffiffiffiffiffiffi
Iðm̂constÞ
p for the age-independent case, and ŷ i � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðIðθ̂Þ� 1
Þii

q

for

the age-dependent cases. Here, Iðm̂constÞ ¼ � ‘
00

AIðm̂const; tÞ is the observed Fisher information,

and ½IðθÞ�ij ¼ � E @2

@yi@yj
‘ðθ; tÞ

h i
is the Fisher information matrix (FIM).

Monte Carlo simulations. We use Monte Carlo simulations to compute 95% confidence

intervals for the functions of the parameters reported in the Results section. We do so by simu-

lating 10,000 random samples from the multivariate normal distribution fitted to the parame-

ter estimates. In the multiple parameter cases, we use the estimated parameters as the mean

and the inverse of the FIM as the covariance matrix. We then take the quantile values at 2.5%

and 97.5% to obtain marginal confidence intervals of the functions of interest.

Results

Using the data and the methods outlined above, we obtain estimates for the unknown parame-

ters in the mortality functions so that we can calculate the vectorial capacity. The parameter

estimates are shown in Table 1. Using these values and our Monte Carlo simulations, we plot
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the survival functions in Fig 3 and the mortality functions in Fig 4, comparing each treatment.

Note that on the survival plots we add the Kaplan-Meier estimator, a non-parametric method

frequently used in survival analysis, which we obtain using the Survival.jl package.

In order to investigate the differences in the vectorial capacity between the control and

treated cases, and between the various mortality functions, we need to reconsider the way the

vectorial capacity is calculated. In the results that follow, the uncertainty comes from the

parameter estimates from the mortality functions (see Table 1). All other parameters included

in the calculations have fixed values as described in the Methods section.

Rethinking the vectorial capacity

We outline the calculations required to obtain the expected number of bites a mosquito takes

after being infected and show how this is linked to the vectorial capacity. This will give a more

realistic value for C. To aid our calculation of the expected number of infectious bites, we pose

the following four questions:

1. What is the probability of a mosquito surviving the EIP given an infectious blood-meal is

taken at age a0?

2. How many bites will the mosquito take if it has survived the EIP?

3. What is the expected number of infectious bites a mosquito takes in its lifetime if it has

taken an infectious blood-meal at age a0?

4. What is the expected number of infectious bites a mosquito takes in its lifetime?

Fig 5 depicts a timeline of these events for visualisation purposes. We attempt to answer these

questions in four steps. In each step we explore the three different mortality functions: CASE (I)

being the age-independent (Eq (4)), CASE (II) the logistic (Eq (5)), and CASE (III) the Gompertz

(Eq (6)), and subsequently compare their results. More detailed calculations can be found in

the S2 File.

Step 1: P(mosquito survives EIP | infectious blood-meal at a0).

CASE ðIÞ : Pðsurviving EIP j infectious blood � meal at age a0Þ

¼
ks

ksþ mconst

� �k ð11Þ

CASE ðIIÞ : Pðsurviving EIP j infectious blood � meal at age a0Þ

¼

Z 1

t¼0

ðksÞktk� 1e� kst

ðk � 1Þ!
e� m1t

em2ðm3 � ða0þtÞÞ þ 1

em2ðm3 � a0Þ þ 1

� �� m1
m2

dt ð12Þ

Table 1. Maximum likelihood estimates for the parameters.

μ1 μ2 μ3

Control 0.193 ± 0.0854 0.132 ± 0.0331 29.5 ± 7.02

Treated 0.265 ± 0.180 0.253 ± 0.128 14.7 ± 6.78

g1 g2 μconst

Control 0.0094 ± 0.00275 0.0693 ± 0.00988 0.0383 ± 0.00530

Treated 0.0137 ± 0.00447 0.136 ± 0.0199 0.0671 ± 0.00930

95% Wald confidence intervals for the parameter values (3 significant figures) obtained through maximum likelihood estimation for the control and treated cases.

https://doi.org/10.1371/journal.pcbi.1009540.t001
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Fig 3. Fitted survival functions. Plots for the proportion of surviving mosquitoes at each day for the control (non-exposed) and treated (exposed) cases

using the three different survival functions (age-independent, logistic, Gompertz). In the treated column, all mosquitoes are dead by day 33. The fits are

extended to day 64 for a better comparison between the two treatments. The shaded area around the control and treated curves represents the 95%

confidence interval due to the error propagated from the parameter estimates in each function using Monte Carlo simulations. The shaded area around

the Kaplan-Meier estimator represents the pointwise log-log transformed 95% confidence interval.

https://doi.org/10.1371/journal.pcbi.1009540.g003
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Fig 4. Comparison of mortality for the two treatments. The dashed line represents where all mosquitoes are already dead in the

experiment for the treated case. The shaded area represents the 95% confidence interval due to the error propagated from the

parameter estimates in each function using Monte Carlo simulations.

https://doi.org/10.1371/journal.pcbi.1009540.g004
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CASE ðIIIÞ : Pðsurviving EIP j infectious blood � meal at age a0Þ

¼

Z 1

t¼0

ðksÞktk� 1e� kst

ðk � 1Þ!
e�

g1
g2
ea0g2 ðeg2 t � 1Þ dt ð13Þ

CASES (II) and (III) cannot be solved analytically, but we integrate them numerically using the

QuadGK.jl package in Julia. The results for the three cases are plotted and shown in Fig 6.

Fig 5. Mosquito timeline after taking an infectious blood-meal. We assume that a mosquito takes an infectious blood-meal at age a0. In order for it to

become infectious, it must survive the EIP. After surviving the EIP, at age a1, the mosquito will take infectious blood-meals up until its death, at a2.

[Note: the mosquito might not survive the EIP, hence, it is possible that a2 < a1.] The mosquito clip-art used to produce this figure was obtained from

www.clker.com under the CC0 1.0 Universal Public Domain Dedication license.

https://doi.org/10.1371/journal.pcbi.1009540.g005

Fig 6. Probability the mosquito survives the extrinsic incubation period given that it takes an infectious blood-meal at age a0. The plots show the

values of Eqs (11), (12) and (13) over different ages. The shaded area represents the 95% confidence interval due to the error propagated from the

parameter estimates using Monte Carlo simulations.

https://doi.org/10.1371/journal.pcbi.1009540.g006
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From this first step we notice that the age-independent case is not biologically realistic.

Comparing it with the age-dependent cases, we can see that as a0 increases, the probability a

mosquito will survive the EIP decreases significantly, which makes sense, given that there is

evidence mosquitoes senesce both in the data used here, but also from Styer et al. and Ryan

et al. [20, 24]. We also notice that the Gompertz function’s curve approaches zero faster, which

could be somewhat more realistic, whereas the logistic function reaches a plateau above zero.

Comparing the two treatments, control and treated, we notice that the probability is lower ini-

tially with treatment, but also that the age-dependent functions approach zero much faster,

which is in line with the mosquitoes having a lower life expectancy in the treated case (Fig 3).

Step 2: P(z = j | mosquito exits EIP at a1). We are interested in the probability mass func-

tion (PMF) of the number of bites, z, supposing the mosquito exits the EIP at age a1, and dies

at age a2.

CASE ðIÞ : Pðz ¼ j j exits EIP at age a1Þ ¼
mconsta

j

ðmconst þ aÞ
jþ1 ð14Þ

CASE ðIIÞ : Pðz ¼ j j exits EIP at age a1Þ

¼

Z 1

a2¼a1

ajða2 � a1Þ
j

j!
e� ðaþm1Þða2 � a1Þ

m1

1þ em2ðm3 � a2Þ

em2ðm3 � a2Þ þ 1

em2ðm3 � a1Þ þ 1

� �� m1
m2

da2

ð15Þ

CASE ðIIIÞ : Pðz ¼ j j exits EIP at age a1Þ

¼

Z 1

a2¼a1

ajða2 � a1Þ
j

j!
ea2g2 � ða2 � a1Þag1e

�
g1
g2

ea2g2 � ea1g2ð Þ da2

ð16Þ

CASES (II) and (III) are again solved numerically. We plot some heatmaps to visualise the solu-

tions of Eqs (14), (15), and (16) (Fig 7). In the plots we include the average number of bites,

which is calculated using:

Eðz j exits EIP at age a1Þ ¼
X1

j¼0

½j� Pðz ¼ j j exits EIP at age a1Þ�:

We also plot the PMFs for a specific age (a1 = 15) which can be found in S3 Fig.

In Fig 7 we can see that, for the age-dependent cases, the older the mosquito is when it exits

the EIP, the higher the probability that the number of bites it takes is small. The two age-

dependent functions give similar results, but the age-independent function shows again that it

is not biologically realistic, since it has a constant average and a constant probability across all

ages. In the treated case, their is a higher probability that there are low, or even zero, bites com-

pared to the control case; this happens for all choices of mortality function.

Step 3: E(z | infectious blood-meal at a0). We can now calculate the expected number of

infectious bites a mosquito takes, given that it takes an infectious blood-meal at age a0:

Eðz j blood-meal at a0Þ ¼
X1

j¼0

½j� Pðz ¼ j j blood-meal at a0Þ� ð17Þ

Hence, we need to calculate the PMF of the number of bites, given that an infectious blood-

meal is taken at age a0. To do so, we use the results from Steps 1 and 2. For example, in CASE (I)

we multiply the results from Eqs (11) and (14), however care must be taken for when j = 0,
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where we need to consider that we definitely have zero bites if the mosquito does not survive

the EIP.

CASE (I):

Pðz ¼ j j blood � meal at a0Þ

¼

ks
ksþmconst

� �k
mconsta

j

ðmconstþaÞ
jþ1 if j 6¼ 0

ks
ksþmconst

� �k
mconst
mconstþa

þ 1 � ks
ksþmconst

Þ
k

� �
if j ¼ 0

�

8
>><

>>:

Therefore

Eðz j infectious blood � meal at a0Þ ¼
a

mconst

ks
ksþ mconst

� �k

: ð18Þ

Fig 7. Heatmaps of the probability the number of bites is equal to some j given that the mosquito exits the extrinsic incubation period (EIP) at

age a1. The heatmaps are obtained from the fitted parameters. The error bars on the mean markers represent the 95% confidence interval due to the

propagated error for the fitted parameters using Monte Carlo simulations.

https://doi.org/10.1371/journal.pcbi.1009540.g007
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CASES (II) and (III):

Pðz ¼ j j blood � meal at a0Þ

¼

Z 1

a1¼a0

½Eq ð15Þ or Eq ð16Þ�

ðksÞkða1 � a0Þ
k� 1e� ksða1 � a0Þ

ðk� 1Þ!
exp �

Z a1

a0

mðxÞdx

 !

da1

ð19Þ

where we use Eq (15) for CASE (II) and Eq (16) for CASE (III). The above is true for j 6¼ 0. When

j = 0, we must add (1 − Eq (12)) to Eq (19) for CASE (II), or (1 − Eq (13)) for CASE (III), following

the same logic as in CASE (I). This is again integrated numerically (this time using the Cuba.jl

[52, 53] package in Julia) and put into Eq (17) to obtain the required solution. The results are

depicted in Fig 8 for both treatments.

The expected number of bites decreases significantly if we consider an age-dependent mor-

tality function, as we can see in Fig 8. There is also an obvious difference between the two treat-

ments, where in the treated case the number of bites are a lot lower to begin with. Once again

the logistic function seems to be plateauing above zero.

Step 4: EðzÞ. We can now use the previous steps to calculate the expected number of

infectious bites a mosquito will take in its lifetime:

EðzÞ ¼
Z 1

a0¼0

Eðz j infectious blood � meal at a0Þ

�Pðinfectious blood � meal at a0Þ da0

ð20Þ

Fig 8. The expected number of bites a mosquito will take in its lifetime given it has taken an infectious blood-meal at age a0. The shaded area

represents the 95% confidence interval due to the error propagated from the parameter estimates using Monte Carlo simulations.

https://doi.org/10.1371/journal.pcbi.1009540.g008
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CASE (I):

EðzÞ ¼
a

mconst

ks
ksþ mconst

� �k

which, as expected, is the same as Eq (18) as it does not depend on age. Looking back at the

vectorial capacity (Eqs (1) and (2)), we can see that this is represented there by a

m
e� mn and a

m

s

sþm

respectively. This is because the assumed EIP distribution in each case is different (fixed and

exponentially distributed), whereas we have assumed an Erlang distribution.

We solve Eq (20) for CASES (II) and (III) numerically and obtain a single number for each.

The results for all cases and both treatments can be found in Fig 9. We observe that the

expected number of bites is lower if we consider age-dependent mortality functions, where we

have 3.26 (2.96, 3.64) for the logistic function and 3.33 (3.03, 3.76) for the Gompertz, versus

4.41 (3.66, 5.40) for the age-independent. With treatment, the numbers are even lower for all

cases, where for the age-dependent functions, the expected number of bites is <1.

Using all of the above, we can calculate the relative difference in the vectorial capacity

between the control and treated cases for the age-dependent and age-independent mortality

functions. We do so by assuming that the mosquito density, m, and the bite rate, α, are con-

stant. Hence we can use the results from Eq (20) to make our comparisons (Fig 10).

Between the control and treated cases for each function there is a significant reduction in

the vectorial capacity, where the percentage for the age-independent treated case relative to the

control is at 42.6% (40.9, 44.3), or, equivalently, there is a reduction of 57.4% (55.7, 59.1). How-

ever, we also notice that the age-dependent functions have a bigger decrease: the difference in

the reduction percentages between the age-independent and the logistic cases is�16.32 and

between the age-independent and the Gompertz cases is�15.31. In all previous calculations,

we have seen that the age-independent function is not very realistic, whereas the logistic and

Fig 9. The expected number of infectious bites a mosquito will take in its lifetime. The error bars represent the 95% confidence interval due to the

error propagated from the parameter estimates through Monte Carlo simulations.

https://doi.org/10.1371/journal.pcbi.1009540.g009
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Gompertz functions behave as we might expect from our understanding of vector senescence.

The Gompertz function might be slightly closer to biological realism, however the difference

between the two is minimal. Both functions seem to be good candidates, though we might

have a stronger preference for using the Gompertz function in future calculations, since it only

requires two fitted parameters, compared to three in the logistic function.

Discussion

Mathematical modelling can contribute by recommending improved or optimised interven-

tion strategies for various (vector-borne) diseases, but there are many challenges that model-

lers have to overcome to provide policy-relevant insights [54, 55]. One must find a balance

between creating easy-to-use models and ensuring that biological simplifications do not alter

the resultant policy recommendations by over or underestimating the impact of different

intervention measures. One such challenge for modelling malaria is to accurately quantify the

mortality of the mosquitoes. In the present study, we have demonstrated that using age-depen-

dent mortality functions is important; the EIP is typically long compared to a mosquito’s life-

span and combined with senescence this has a substantial impact on our calculation of the

vectorial capacity. Here, the age-independent assumption provides us with a conservative esti-

mate for the impact of ITNs. This could result in less appropriate recommendations for policy

decisions, especially if constant mortality is used in cost-effectiveness analyses or to optimise

other policy objectives (e.g. selecting strategies to minimise costs, deaths, etc.).

Fig 10. Violin plots showing the relative difference in the vectorial capacity with treatment. The figure shows the full distribution of the

results for each function obtained from the Monte Carlo simulations. The error bars represent the 95% confidence interval due to the

propagated error of the parameter estimates using Monte Carlo simulations.

https://doi.org/10.1371/journal.pcbi.1009540.g010
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This study echos results from other studies (e.g. [22, 23, 25]), which advocate for incorpo-

ration of more biological realism in vector-borne disease modelling. Brand et al. [25] consider

different distributions for the EIP to show how R0 changes. On the other hand, Bellan and

Novoseltsev et al., [22, 23] respectively, highlight the importance of age-dependent mortality.

In these studies, however, the traditionally fixed EIP is considered, and the calculations for the

vectorial capacity are approached from a different perspective. Bellan [22] incorporates a fixed

parameter for the impact of insecticides on the longevity of the mosquitoes, due to the lack of

real-life data. Similarly, in [23], the authors consider multiple patterns for age-dependent mor-

tality which are generalised for multiple vector species. A strength of our approach is to be able

to compare and contrast the impact of vector ageing assumptions on vectorial capacity based

on survival data. We note that age-dependent or age-specific mortality rates are not an uncom-

mon addition in agent-based models of malaria, as we can see in [56–58], but are typically

omitted in compartmental-type models. We have shown that without accounting for age the

effectiveness of the anti-vectorial intervention against highly-pyrethroid-resistant An. gambiae
s.l. mosquitoes would be underestimated; therefore it seems prudent to include vector senes-

cence across agent-based and compartmental models. This highlights the clear need for better

availability of real-world data for different vector-parasite systems to improve modelling

predictions.

The two age-dependent functions that are explored in this paper are often used for mos-

quito survival analysis [20, 22, 23, 48]. Styer et al. investigated a large-scale mortality study

using Aedes aegypti mosquitoes and concluded that the logistic mortality functions fit the data

better on most occasions except one, where the Gompertz function was a better fit [20]. Clem-

ents and Paterson explored the survival patterns in many different mosquito species and found

that their patterns are explained well by using a Gompertz function [48]. Although the logistic

and Gompertz are rather flexible functions, other functional forms may be more suitable for

different vector species—in this case the general framework presented in here could be readily

adapted if required.

We observe an interesting feature of the mosquito survival data for the control case where

suddenly the Kaplan-Meier curves flatten from day 40. One hypothesis not explored in this

study is that this could arise if the mosquito population is comprised of two sub-populations

with different mortality rates. A model with frailty—one sub-population with higher mortality

rate and one with lower—could fit the data more closely around this 40-day mark, although

our fits (see Fig 3) do capture the survival tail fairly well, especially in the case of the logistic

mortality function. One argument against implementing a frailty model here is the number of

parameters; partitioning the population into high and low groups has at least two extra param-

eters—one for the proportion of the population in the low group, and one for relative scaling

of the mortality rate. Frailty seems to be the most intuitive explanation for this long tail, how-

ever there could be other plausible mechanisms or this could be attributed to slightly noisy

data. Ultimately, we have chosen to avoid added extra parameters and risk “overfitting” a

model. For the purposes of arguing that age-independent models fitted to lab data produce

substantially different results to age-dependent models fitted to the same data, the current

functions seem to be sufficient, however exploring frailty could be an interesting future avenue

of research.

It is important to note that we have included the assumption of perfect transmission when

considering the vectorial capacity. In reality, vector competence and host prevalence does

affect the transmission potential. Here, we opted for perfect transmission as we could not esti-

mate the vector competence from our data and field prevalence will be variable depending on

factors such as the relative vector to host density. We believe that including a realistic value for

vector competence and host prevalence in our calculations (as part of the step 4 calculation)
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would likely show that there is a further proportional decrease in the vectorial capacity when

comparing age-dependent to age-independent mortality rates, because the distribution

describing the timing of the first infectious blood meal (a0) will shift to older ages and this has

a more pronounced effect when there is age-dependent mortality (see Fig 8).

The data and results show there is a significant increase in mosquito mortality when several

blood-meal opportunities are offered by a host protected with an ITN vs. an untreated net.

The consequence for mosquitoes is a reduced vectorial capacity induced by the presence of an

insecticide. The fact that standard ITNs do not immediately kill young and unfed mosquitoes

following a single and forced exposure to insecticide (which is the standard susceptibility test

by WHO [30]) is not sufficient information to assess the efficacy of ITNs against the malaria

vectors. In fact, when the EIP and mortality rates are taken into consideration, along with

multiple exposures (which is more in line with free-flying mosquitoes that are regularly host-

searching and feeding), the end result is that ITNs still retain some functionality against resis-

tant mosquitoes and work better than untreated nets. These results are in accordance with

other publications [10, 12, 13]. The experiments in this study were in a laboratory setting, so

there may be an underestimation of the effect of insecticide in the field, in which case the effect

on the vectorial capacity could be greater. We agree with previous authors, [8, 13, 59, 60], that

encourage an update in the way ITN efficacy and resistance are measured. For example, mos-

quito condition (i.e. one or more blood-feeds), age (we especially care about old mosquitoes

and it has been shown previously that resistance declines with age [61]), and exposure history

(multiple exposures over time since mosquitoes can encounter nets at each gonotrophic cycle)

are some of the factors which combined determine the overall number of mosquitoes in a

cohort potentially able to transmit malaria.

There are many unanswered questions regarding the behaviour of mosquitoes. One of

these relates to feeding and biting patterns. In our model, we have assumed a constant biting

rate of one bite every four days on average. We could argue that we could use a different value

for each treatment. However, this was not included here since additional data is required to

make appropriate estimations for a biting rate. Given that the experiment here gave access to

the mosquitoes for feeding every four days, it seems more appropriate to keep this assumption.

Having daily access to feeding could give more insight to estimating another biting rate. Fur-

thermore, it would be interesting to investigate feeding and biting patterns that depend on age.

Furthermore, it is important to note that the nets in this experiment were new and intact to

better understand the impact of maximum insecticide exposure on longevity of resistant mos-

quitoes. This approach follows numerous WHO lab and field bio-efficacy protocols [30]. In

realistic control settings in malaria-affected regions, the ITNs encountered by mosquitoes are

likely more variable and will change as the nets age and become damaged or lose insecticide

due to washing. Understanding the functional impact of older, ‘imperfect’ nets, including the

effects on age-dependent mortality as highlighted in the current manuscript, is an important

area for further research [8, 60].

There have also been studies where it is suggested that there are parasite-induced beha-

vioural changes [62–65]. This could mean that the feeding and biting patterns of the mosqui-

toes change significantly before, during, and after the EIP. For example, mosquitoes, having

survived the EIP, could bite multiple humans to complete one blood-meal, potentially trans-

mitting the infection to more than one person. Shaw et al. found evidence that the EIP can be

shortened if an infected mosquito feeds an additional time [66]; this could mean that if mos-

quitoes feed during the EIP and the EIP shortens, the result is more infectious blood-meals

and a larger vectorial capacity, hence an increase in malaria transmission. Therefore, it could

be useful to explore other feeding patterns and bite rates.
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For our calculations, we have used the Erlang distribution for the EIP. It is important to note

that the mortality data were collected at 26±1˚C, whereas the values we obtained for the EIP

come from data at 27˚C in [36]. Data collected at various temperatures capturing the full distri-

bution of the EIP would be extremely useful. The EIP is affected by many factors, as shown by

Ohm et al. [67], where it is emphasised that transmission models can be improved if we have a

better understanding of the EIP. Some studies focus on a temperature-dependent EIP [68–70],

however, given that the experiment our data were collected from was at constant temperature

conditions, we have not included this here. Nevertheless, it is important to keep in mind that

some factors depend on temperature in real life, so control programmes might need adjust-

ments depending on the time of year. Incorporating temperature dependency is something else

that can be explored in the future, following in the footsteps of studies like [69] and [71].

In this study we focused on the mortality rate and how to include age dependency in the

model. The data from the experiment allowed us to estimate the various parameters related to

the mortality rate. However, the other parameters we included in our calculations, i.e. the bite

rate and the parameterisation of the EIP distribution, were fixed values with no possibility to

estimate them from our data. Hence, in our calculations, the only source of uncertainty

included is coming from our mortality parameters. It is worth noting that the uncertainty in

our vectorial capacity calculations is likely to be greater, had we allowed for variability in these

other parameters as well.

Furthermore, to truly capture the whole picture of malaria in Côte d’Ivoire, bringing

together data for human malaria cases and other on-going control strategies with this mos-

quito data would help calculate the human consequences for malaria transmission and control.

This could be done by constructing a modified Ross–Macdonald-type host-vector disease

model [72], matching it to the data, and concurrently incorporating an age-dependent mortal-

ity rate and an Erlang-distributed EIP for the vectors.

Conclusion

In this paper, we have used a modelling framework to investigate the impact of insecticide

exposure on mosquitoes and their ability to transmit malaria, along with the impact of age-

dependent mortality. Firstly, our results suggest that the mortality rates increase due to insecti-

cide exposure even in mosquitoes classified as highly resistant following the WHO definition.

Our analysis found that under a control (no insecticide exposure) scenario there would be a

higher expected number of infectious bites by mosquitoes than under a treated scenario (with

insecticide exposure). The vectorial capacity is substantially reduced when the mosquitoes are

exposed to ITNs based on the experiment conducted, despite being resistant to the pyrethroids

used on the nets. In addition, if age dependency is included in our model, the expected number

of infectious bites is predicted to have a greater relative reduction by using insecticides than if

we use constant mortality.

Without detailed vector data on survival with and without insecticides, this type of model-

ling analysis would not be possible. We strongly advocate for collection, not only of average

mosquito life expectancies, but also distributions of survival for other vector-parasite systems

where quantitative analyses of different interventions against the disease are desirable. We also

suggest that modellers pay close attention to whether more could be done to factor in senes-

cence into vector-borne disease strategy evaluations.

The above methodology could be easily used to check the insecticide resistance of mosqui-

toes from experiments using other pyrethroids and/or mosquito species, if similar experimen-

tal data on mosquito survival were available. The results could then be used to further examine

how age dependency impacts the effectiveness of various interventions against mosquitoes.
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