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Microarray profiling identifies 
extracellular circulating miRNAs 
dysregulated in cystic fibrosis
Justin E. Ideozu1,2,3*, Xi Zhang1,2,3, Vittobai Rangaraj1, Susanna McColley1,3 & Hara Levy1,2,3*

Extracellular circulating miRNAs (ECmiRNAs) play a crucial role in cell-to-cell communication and serve 
as non-invasive biomarkers in a wide range of diseases, but their abundance and functional relevance 
in cystic fibrosis (CF) remain poorly understood. In this study, we employed microarray technology to 
identify aberrantly expressed plasma ECmiRNAs in CF and elucidate the functional relevance of their 
targets. Overall, we captured several ECmiRNAs abundantly expressed in CF. Expression levels of 
11 ECmiRNAs differed significantly between CF and healthy control (HC) samples (FDR < 0.05, log2 
FC≥2). Among these, 10 were overexpressed while only hsa-miR-598-3p was underexpressed in CF. The 
overexpressed miRNAs included three let-7 family members (hsa-let-7b-5p, hsa-let-7c-5p and hsa-let-
7d-5p), three 103/107 family members (hsa-mir-103a-3p; hsa-mir-103b; hsa-mir-107), hsa-miR-486-5p, 
and other miRNAs. Using in silico methods, we identified 2,505 validated targets of the 11 differentially 
expressed miRNAs. Hsa-let-7b-5p was the most important hub in the network analysis. The top-ranked 
validated targets were involved in miRNA biogenesis and gene expression, including AGO1, DICER1, 
HMGA1, and MYC. The top pathways influenced by all targets were primarily signal transduction 
pathways associated with CF, including PI3K/Akt-, Wnt/β catenin-, glucocorticoid receptor-, and mTor 
signaling pathways. Our results suggest ECmiRNAs may be clinically relevant in CF and warrant further 
study.

Cystic fibrosis (CF) is a multisystem genetic disease caused by mutations in the cystic fibrosis conductance regula-
tor (CFTR) gene1,2. Recent advances in molecular methods have led to the identification of over 2000 CF-causing 
variants (http://www.genet.sickkids.on.ca/), but phenotypic variability presented among patients with the same 
CFTR genotype remains a major therapeutic challenge3,4. This has driven an intense search for novel molecular 
drivers relevant to CF pathophysiology that may hold promise as biomarkers or therapeutic targets5,6.

Accumulating evidence suggests a plethora of cellular microRNAs (miRNAs) are dysregulated in CF7–10 and 
may characterize its lung phenotypes11,12. miRNAs are small non-coding RNA species (~20–25 nt in length) that 
regulate 30% of human genes and numerous fundamental biological processes13,14. Because their expression levels 
can be modulated in vivo and in vitro to mediate the expression of their target genes15, including CFTR16, they are 
promising therapeutic targets for human diseases. Interestingly, miRNA dysregulation has been associated with 
several other human diseases including various cancers17,18 and chronic respiratory diseases19. Although much 
insight about miRNA dysregulation in CF has been gained from studying epithelial7–9 and CF plasma-induced 
blood cells12, knowledge of extracellular miRNA abundance and expression remains poorly understood.

Extracellular circulating miRNAs (ECmiRNAs) are present outside their parental cells and have been detected 
in many biological fluids including blood plasma and serum20. In order to exist stably in the extracellular environ-
ment and exert their function, miRNAs secreted from parental cells are encapsulated within extracellular vesicles, 
including exosomes, or bound to proteins and lipids20,21. ECmiRNAs play a crucial role in promoting intercellular 
signaling and are capable of influencing the expression of their target genes in recipient cells20,22. ECmiRNA 
expression profiles may correlate with changes in cellular signaling events and can be disease-specific23. Altered 
expression levels of ECmiRNAs have been reported in many human diseases24. In CF, the diagnostic potential of 
serum miRNAs for liver disease have been demonstrated25, but there is sparse literature on CF-relevant plasma 
ECmiRNAs.

1Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, 60611, USA. 2Human Molecular Genetics 
Program, Stanley Manne Children’s Research Institute, Chicago, IL, 60614, USA. 3Feinberg School of Medicine at 
Northwestern University Chicago, Chicago, IL, 60611, USA. *email: ezela123@gmail.com; LevyH@NJHealth.org

OPEN

https://doi.org/10.1038/s41598-019-51890-7
http://www.genet.sickkids.on.ca/
mailto:ezela123@gmail.com
mailto:LevyH@NJHealth.org


2Scientific Reports |         (2019) 9:15483  | https://doi.org/10.1038/s41598-019-51890-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

In this study, we utilized microarray-based technology to identify plasma ECmiRNAs differentially expressed 
between CF and healthy controls (HC), and to characterize the functional relevance of their mRNA targets. We 
report that several miRNAs are abundantly expressed in CF plasma. Among these, 11 miRNAs were significantly 
differentially expressed between CF and HC samples. In silico analysis revealed that the top-ranked validated 
targets of the differentially expressed miRNAs were genes involved in miRNA biogenesis and gene expression, 
and the top-ranked pathways influenced by all the validated targets were primarily within signal transduction 
pathways known to be involved in CF pathogenesis.

Results
Baseline characteristics of study samples.  We performed miRNA microarray profiling to identify 
ECmiRNAs differentially expressed between CF and HC plasma samples. Clinical and demographic information 
for the CF patients and HCs who provided samples are shown in Table 1. The mean age (±SD) for CF patients 
whose samples were used in the discovery and validation phases were 16.6 ± 4.8 and 22.3 ± 4.4, respectively. CF 
samples were evenly split between male and female patients. The mean (±SD) sweat chloride level was 101. ± 3.1 
for CF patients in the discovery group and 103.2 ± 3.6 for those in the validation group. Analysis of pulmo-
nary function test data showed the CF patients in the discovery group had a mean (±SD) FEV1% predicted of 
70.4 ± 18.5, while 84 ± 22.6 was recorded for those in the validation cohort. The HC samples had a mean age 
(±SD) of 22.8 ± 2.6, with males accounting for 70% of the samples. Overall, no significant differences in demo-
graphic and clinical data were observed between samples in discovery and validation group (Table 1).

Quality assessment of microarray data.  The signal value of the control probe sets spiked in during 
array preparation were analyzed in all samples to evaluate the success of labeling and hybridization procedures. 
As shown in Fig. 1, all spike-in control labeling probe sets showed log2 signal values ≥9.96 (Fig. 1A) and the 
hybridization control probe sets for each CF and HC sample showed increasing log2 signal values corresponding 
to their increasing concentrations (Fig. 1B). These preliminary assessments confirmed the success of microarray 
processing for each sample (Thermofisher Scientific, USA). Further evaluation of the RNA-normalized miRNA 
expression datasets showed even distribution among biological replicates, which indicated no obvious outlier 
samples (Fig. 1C). Exploration of unsupervised principal component analysis using normalized miRNAs expres-
sion signatures showed that the CF and HC samples clustered distinctly (Fig. 1D), suggesting an underlying 
association between CF status and ECmiRNA expression signatures.

Identification of CF-relevant ECmiRNAs.  In order to identify the ECmiRNAs differentially expressed 
between CF and HC samples, the high-quality microarray datasets were mapped to miRbase mature miRNA 
annotation (v20) and quantified with Partek Quantify to Annotation model. The expression signatures of 2,546 
miRNAs in the miRbase registry were captured. Among these, the top 10 most abundant ECmiRNAs in CF were 
identified (Fig. 2). miR-92a-3p exhibited the highest expression level in CF, but the levels were not significantly 
different from those in the HC samples. Intriguingly, 5 of the top 10 abundantly expressed ECmiRNAs were 
also significantly differentially expressed (FDR < 0.05, log2 FC≥2) between CF and HC samples (Fig. 2). By 
employing a liberal significance threshold (F-test, p < 0.05, log2 FC≥2), 117 (4.6%) miRNAs were identified as 
differentially expressed between CF and HC samples (Fig. 3A, Table S1). Of these, 40 (34.2%) were overexpressed 
in CF while 77 (65.8%) were underexpressed in CF compared to HC. To increase the discriminatory accuracy 
of identifying differentially expressed miRNAs influenced by CF, we corrected for multiple testing using a more 
stringent significance threshold (FDR < 0.05, log2 FC≥2). At this threshold, 11 miRNAs were found to be differ-
entially expressed between CF and HC samples (Fig. 3B). Among these, 10 miRNAs were overexpressed in CF 
and one miRNA was underexpressed. The overexpressed miRNAs included hsa-miR-486-5p, 3 family members 
of let-7 (hsa-let-7b-5p, hsa-let-7c-5p and hsa-let-7d-5p), hsa-miR-103a-3p, and other miRNAs, while hsa-miR-
598-3p was underexpressed in CF. Further hierarchical clustering and PCA plotted using the 11 most variable 
miRNAs showed clear segregation of the CF and HC samples (Fig. 3C,D, respectively). These 11 miRNAs were 
prioritized for functional analyses.

Status Clinical parameters
Discovery 
cohort

Validation 
cohort P valuea

Cysticfibrosis

Number (n) 5 5 Not significant

Age in years, mean ± SD 16.6 ± 4.8 22.3 ± 4.4 Not significant

Gender (Male:Female) 2:3 3:2 Not significant

Sweat chloride, mean ± SD 101.6 ± 3.1 103.2 ± 3.6 Not significant

FEV1 % predicted, 
mean ± SD 70.4 ± 18.5 84 ± 22.6 Not significant

Healthy controls

Number (n) 5 5 Not significant

Age in years, mean (SD) 23 ± 1.6 22.6 ± 3.5 Not significant

Gender (Male:Female) 5:0 2:3 Not significant

Table 1.  Demographic and clinical characteristics of the study cohort. aP value was estimated using a t-test. All 
CF samples were homozygous for DF508del CFTR mutation and negative for mucoid Pseudomonas aeruginosa 
infection.
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Figure 1.  Quality assessment of miRNA microarray profiling. Each sample is represented in blue (CF) or red 
(HC). (A) Signal values (log2) of synthetic miRNAs greater than 9.96 indicates the labeling procedure was 
successful and the lack of RNases in the samples. (B) The increasing signal values of hybridization probe sets 
corresponding to their increasing relative concentration is an indication that hybridization, wash, stain, and 
scan procedures were successful. (C) The Sample Box plot shows a similar distribution of normalized expression 
values in all samples indicating no obvious outlier sample. (D) Unsupervised principal component analysis 
graph of normalized miRNA array data. Each dot represents a study sample assigned to one of the experimental 
groups, which are highlighted in either blue or red. A clear segregation of CF and HC samples indicates differing 
expression of miRNAs between the two groups. The first 3 principal components (X, Y, and Z) explain 74% of all 
variation in the expression dataset.

Figure 2.  Several plasma ECmiRNAs are abundantly expressed in CF. The top 10 most abundant plasma 
ECmiRNAs in CF are represented on the x-axis and their normalized expression values are represented on the 
y-axis. Among the top 10 abundant ECmiRNAs, 5 showed significant differential expression between CF and 
HC samples (FDR < 0.05, |log2 FC|≥ 2). Significance was estimated using t-tests. * indicates P < 0.05.
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RT-qPCR validation of ECmiRNAs differentially expressed in CF.  Using the results of our 
high-throughput microarray miRNA profiling, we first performed stability testing using the expression signatures 
of 20 least variable ECmiRNAs between CF and HC to identify the most stable ECmiRNA (Fig. 4A,B). The results 
showed hsa-miR-4665-3p had the smallest ranking value, which corresponds to the most stable candidate to use 
as an endogenous control for RT-qPCR (Fig. 4A). We selected the top three differentially expressed ECmiRNAs 
(hsa-miR-486-5p, hsa-let-7b, and hsa-miR-103a-3p) between CF and HC samples for validation via RT-qPCR. 
The analysis was performed using an independent cohort of CF and HC samples (Table 1). All three ECmiRNAs 
were significantly (p < 0.05) overexpressed in CF (Fig. 4C), confirming the results from the microarray screening.

Identification of miRNAs hubs and functional enrichment analysis of their targets.  We 
employed the miRNet algorithm to identify experimentally validated mRNA targets of the 11 differentially 
expressed miRNAs in CF and to characterize their functional relevance. In total, 2,505 unique targets for the 
miRNAs were retrieved (Table S2). As shown in Fig. 5A, analysis of the network interaction graph showed that 
hsa-let-7b-5p was the most important hub in the network as it interacted with more nodes, with the highest node 
degree and betweenness compared to other nodes, while hsa-miR-451a had the lowest node degree (Table 2). 
Among the 2,505 targets, we depicted the top 10 miRNA-gene targets based on the results of their node degree 
and betweenness (Fig. 5B). As shown in Table 2, the top target list was dominated by genes involved in miRNA 
biogenesis and gene regulation. MYC, which encodes a protein crucial for gene expression, cell cycle progression, 
cell proliferation, and apoptosis, was one of the most important target hubs in the network. DICER1, which is 
known to play a crucial role in the biogenesis of miRNAs, was also one of the top 10 targets (Fig. 5B). We further 
performed canonical pathway analysis (non-disease) to elucidate the biological relevance of the miRNA targets. 
We identified several significant pathways (adjusted p < 0.05) influenced by the miRNA targets (Table S3). The 

Figure 3.  Plasma ECmiRNA expression signatures differ in CF and HC. (A,B) Volcano plot showing miRNAs 
differentially expressed in CF compared HC samples using p < 0.05 and FDR < 0.05, respectively. The 
expression value of each miRNA is represented on the vertical axis and the fold change differences are shown 
on the horizontal axis. (C) Hierarchical clustering showing differential expression of miRNAs in CF and HC 
samples. Red indicates high relative expression, and green indicates low relative expression. (D) Principal 
component analysis graph of the 11 differentially expressed miRNAs. Each dot represents a study sample 
assigned to one of the experimental groups, which are highlighted in either blue (CF) or red (HC). The 3 
principal components (X, Y, and Z) plotted for the 10 samples explain 98% of the expression variance due to CF.
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top significant canonical pathways were primarily associated with signal transduction, including pathways such 
as PI3K/Akt signaling, Wnt/β-catenin signaling, glucocorticoid receptor signaling, and mTor signaling (Fig. 5C).

Discussion
ECmiRNA play a crucial role in cell-to-cell communication and have shown great promise as non-invasive bio-
markers in a wide range of diseases20,26, but knowledge of their abundance and functional relevance in CF remains 
poorly understood. In this study, we employed high-throughput microarray technology to identify differentially 
expressed extracellular miRNAs in CF compared to HC, and to elucidate the functional relevance of their mRNA 
targets. To our knowledge, no previous studies have reported plasma miRNA expression levels in patients with 
CF. Our results showed that several miRNAs are abundantly expressed in the extracellular milieu of CF patients, 
and that the top differentially expressed miRNAs targeted genes are involved in crucial biological processes, as 
well as miRNA biogenesis.

We identified 11 ECmiRNAs whose expression levels differed significantly between CF patients and HC. 
Among these, 10 miRNAs were overexpressed while only hsa-miR-598-3p was underexpressed in CF (Fig. 3B). 
In CF, altered expression of several miRNAs has been reported in epithelia7–9 and blood cells12. Although there 
is sparse literature on dysregulated ECmiRNAs in CF, a study that profiled circulating serum ECmiRNA levels 
in CF patients via qPCR array of 84 miRNAs identified a combination of miRNAs (miR-122, miR-25, miR-21) 
with diagnostic potential for CF liver disease25. In contrast to that study, we did not find significant differential 
expression of these three miRNAs between CF and HC plasma samples. This discrepancy could be explained by 
the fact that ECmiRNAs levels are influenced by sample source/type and different pathophysiological conditions, 
including disease progression20,26. Indeed, using hierarchical clustering and principal component analysis graph-
ing, we found the expression signatures of 11 different ECmiRNAs that clearly segregated CF patients from the 
HC (Fig. 3C,D, respectively).

miR-486-5p was the most significant differentially expressed ECmiRNA between the CF and HC plasma sam-
ples (Fig. 3B). miR-486-5p is known to play a crucial role in hematopoietic cell differentiation via regulation of 
FOXO and AKT expression27, and its aberrant expression in plasma has been reported in numerous cancers28,29. 
Increased plasma expression levels of miR-486-5p was observed and demonstrated as a biomarker in both gas-
tric28 and pancreatic cancers29. Similarly, we found striking elevated levels of miR-486-5p in CF plasma compared 
to HC by microarray. The results were subsequently validated with RT-qPCR using a unique cohort of CF patients 
and HC (Fig. 4C). Further study is encouraged to investigate the potential role of miR-486-5p in CF.

Figure 4.  Differentially expressed miRNAs validated by RT-qPCR. (A) The results of miRNA stability testing 
are illustrated. Smaller ranking values correspond to miRNAs with high stability. hsa-miR-4665-3p was 
identified as the most stable candidate to use as an endogenous control for RT-qPCR. (B) Bar chart showing 
corresponding normalized microarray expression value for each miRNA tested. (C) Expression profiles of 
3 validated miRNAs (hsa-miR-486-5p, hsa-let-7b-5b and hsa-miR-103a-3p) captured via microarray and 
RT-qPCR are shown. The RT-qPCR results confirmed that the differentially expressed miRNAs detected by 
microarray exhibit significantly higher expression levels in CF compared to HC subjects. Significance was 
estimated using t-tests. * indicates P < 0.05.
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Figure 5.  Identification of miRNA hubs and pathway enrichment of their targets. The differentially expressed 
miRNAs and their experimentally validated mRNA targets are illustrated in network interaction graphs. 
Each node represents a miRNA or mRNA. (A) Hubs of the 11 differentially expressed miRNAs are shown in 
individual networks. Nodes interacting with the miRNA are highlighted in blue. As shown, hsa-let-7b had the 
highest interaction (blue dots), indicating it is the most important in the network, whereas has-miR-451a had 
the lowest node interaction. (B) The top 10 genes (red node) and 11 dysregulated ECmiRNAs in CF (blue node) 
are highlighted in the network interaction graph. HMGA1 is the most important gene in the network based 
on ranking highest in node degree and betweenness, whereas PBX2 ranked lowest among the top 10 targets 
depicted (see Table 2). (C) The top 10 canonical pathways (non-disease) significantly influenced by the validated 
miRNA targets are represented in a bar chart (adjusted p < 0.05). Among these, PI3K/AKT was the most 
enriched pathway with an enrichment score of 15.4.

Node Degree Betweenness

hsa-let-7b-5p 1215 1912155

hsa-let-7c-5p 516 437494.1

hsa-mir-103a-3p 453 667385

hsa-let-7d-5p 394 226216.3

hsa-mir-222-3p 394 716252.1

hsa-mir-185-5p 359 660043.5

hsa-mir-107 300 295251.4

hsa-mir-486-5p 67 122272.2

hsa-mir-103b 61 104926.3

hsa-mir-451a 31 48759.1

hsa-mir-598-3p 25 45443.85

HMGA1 6 34668.45

MYC 6 31210.28

DICER1 6 26774.36

ARIH1 6 25835.22

AGO1 6 25835.22

CALU 5 12963.25

CDK6 5 30866.04

IGF1R 5 20690.76

MDM4 5 12963.25

PBX2 5 18718.67

Table 2.  Top miRNAs and genes in the network interaction.
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Additionally, we found three members of the let-7 (lethal-7) miRNA family (hsa-let-7b-5p; hsa-let-7c-5p; 
hsa-let-7d-5p) were significantly differentially expressed between CF and HC plasma samples. Let-7 was one of 
the earliest discovered miRNAs in humans. The Let-7 family comprises of several miRNAs that share the same 
highly conserved seed sequence, suggesting their targets and function may be similar across a diverse range of 
animal species30. For example, we found the three differentially expressed let-7 miRNAs share several similar 
targets (Table S2), including AGO1, DICER1, and HMGA1, which are crucial for many biological processes, par-
ticularly miRNA biogenesis and gene expression30. These three mRNA targets were also among the top 10 targets, 
with the highest node degree and betweenness in the interaction network (Table 2). Interestingly, we also iden-
tified three members of the let-7 family miRNAs (hsa-let-7a-5p; hsa-let-7b-5p and hsa-let-7d-5p) to be among 
the top 10 most abundant ECmiRNAs in CF (Fig. 2). Although, hsa-let-7a-5p was of high abundance in CF, the 
expression levels were not significantly different compared to the HC samples (Fig. 2). Notably, hsa-let-7b-5p was 
equally of high abundance (Fig. 2) and had the highest interaction in the network analysis (Fig. 5A).

Let-7b is one of the most studied of the let-7 miRNA family and its functional role has been characterized in 
some cell types. For example, let-7b was demonstrated to regulate immunity-related genes such as IL6 and TNF 
in monocytes and SERPINE1 in lipopolysaccharide-induced macrophages31, implying that let-7b dysregulation 
in cells may impair immune responses to pathogenic agents. Let-7b was also demonstrated to be involved in 
regulating the activation of hepatic stellate cells by interacting with lin28 in human alcoholic liver disease32. In 
plasma, aberrant let-7b expression levels has been implicated in many diseases including breast cancer33, prostate 
cancer34, hepatitis C35, and ischemic stroke36. The significant elevated expression levels of let-7b-5p found in CF 
plasma in this study, as well as its identification as the most important node in our network analysis, underscores 
the need to investigate its functional role in the extracellular spaces of CF patients.

Additionally, we found three members of the 103/107 miRNA family (hsa-mir-103a-3p; hsa-mir-103b; 
hsa-mir-107) were significantly overexpressed in CF plasma compared to the HC samples. Previous studies have 
shown that miR-103/107 are involved in several biological processes including angiogenesis37, apoptosis38, auto-
phagy39, glucose homeostasis, and insulin sensitivity40. Members of the 103/107 miRNA recognize similar targets 
by virtue of having the same seed sequence (GCAGCAU). Their aberrant expression has been implicated in 
human diseases such as Alzheimer41, breast cancer42, diabetes43, obesity44, and schizophrenia45. These miRNAs 
regulate the expression of genes involved in crucial biological pathways. For example, it has recently been demon-
strated in preadipocytes that by targeting Wnt3a, miR-103/107 aggravates endoplasmic reticulum stress mediated 
apoptosis and inhibits the canonical Wnt/β-catenin signaling pathway38. Although in CF cells, the role of miR-
103/107 is unknown, dysregulated Wnt/β-catenin signaling has been reported in CF epithelial cells5,46. With the 
results of our functional analysis also identifying the Wnt/β-catenin signaling pathway as one of top significantly 
enriched canonical pathways in CF (Fig. 5C), further studies to investigate the regulatory role of the miR-103/107 
in CF cells are warranted.

By modulating the expression of their target genes, miRNAs can contribute to biological pathway dysfunc-
tion, a common feature of many human diseases, including CF5. As shown in Fig. 5C, canonical pathway analysis 
of the genes targeted by the 11 differentially expressed miRNAs in CF identified several significantly enriched 
pathways. Among these, the top 10 enriched pathways were primarily signal transduction pathways and included 
mTOR signaling, PI3K/Akt signaling, and Wnt/β-catenin signaling (Fig. 5C). This is consistent with our recent 
report indicating several signaling pathways are defective in CF5. Interestingly, inhibition of the PI3K/Akt/mTOR 
signaling pathway leads to increased expression and stability of CFTR, which suggests it is a potent therapeutic 
target for CF47. With recent research demonstrating that plasma-derived extracellular vesicles can be engineered 
to deliver miRNAs to recipient cells where they can alter the expression of their target genes and subsequently 
mediate biological processes22, it is conceivable miRNAs may not only serve as biomarkers but as therapeutic 
targets to modulate dysfunctional pathways in CF.

In summary, we utilized microarray technology to identify and characterize the functional relevance of aber-
rantly expressed extracellular miRNAs in CF patients. Until now, there was limited literature about ECmiRNA 
abundance and their altered expression in CF. For the first time, using plasma samples, we showed that several 
ECmiRNAs are differentially expressed between CF and HC samples. We showed that the top validated targets of 
the dysregulated miRNAs are genes involved in miRNA biogenesis and gene expression. In addition, canonical 
pathway analysis indicated that the dysregulated miRNAs target genes were enriched mostly in signal transduc-
tion pathways. Overall, our findings support previous studies by demonstrating that plasma ECmiRNA expres-
sion profiles are influenced by disease states. These results indicate that ECmiRNAs may be clinically relevant 
in CF. In CF, the substantial clinical variation seen among patients warrants a need to identify novel molecular 
markers that can define the disease states and therapeutic responses. Future studies using larger sample sizes are 
encouraged to investigate the utility of ECmiRNAs as biomarkers for CF and its phenotypes.

Methods
Sample subjects and plasma processing.  Blood plasma isolated from a total of 10 CF and 10 healthy 
control (HC) subjects were utilized for this study. All the CF samples (homozygous for DF508del CFTR muta-
tion) were collected from patients recruited at Ann & Robert H. Lurie Children’s Hospital of Chicago. The study 
was approved by the Institutional Review Board (IRB# 2015-400) and informed consent was obtained from the 
subjects and/or their parents or legal guardians. All methods were performed in compliance to the institutional 
guidelines and regulations. All CF subjects were diagnosed based on pilocarpine iontophoresis sweat test (sweat 
chloride ≥60 mmol/L) and/or CFTR genotype, as previously described48,49. Other clinically relevant variables 
such as pancreatic function status, mucoid Pseudomonas aeruginosa infection status, and the forced expiratory 
volume in 1 second (FEV1) % predicted were recorded for each CF patient at the time of sample collection. The 
10 HC plasma samples were acquired from Cellular Technology Limited (CTL, USA) and tested negative for 
common pathogens in accordance with the manufacturer’s protocols (Fig. 6).
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Half of the CF and HC samples (5 samples per group) were used for comparison during the discovery and 
validation phases. For each CF sample, peripheral blood was drawn into BD Vacutainer® Mononuclear Cell 
Preparation Tube (Beckon Dickinson, USA) and centrifuged at 1,700 × g for 20 min at 20 °C to separate cells from 
plasma. The supernatant was then transferred to a new conical tube, centrifuged at 1300 g for 10 min at 4 °C to 
pellet residual cells, and ~0.5 mL of supernatant was aliquoted in into new vials and frozen at 20 °C until further 
processing.

RNA isolation.  A total of 100 μL plasma collected from each sample was mixed with 400 μL TRIzol Reagent 
(Invitrogen Life Technologies, USA), incubated for 5 min at room temperature, and utilized for RNA extraction 
using the RNA Clean & Concentrator kit according to manufacturer’s recommendation with brief modification 
(ZymoResearch, USA). Prior to the addition of chloroform and phase separation, each plasma sample used in 
the validation phase was spiked with 4.2 × 108 copies of C. elegans synthetic miRNA (cel-miR-39) in accordance 
with the manufacturer’s recommendation (Qiagen, USA). In-column DNASE I treatment was performed for all 
plasma samples prior to RNA elution according to the manufacturer’s protocol (ZymoResearch, USA). Plasma 
total RNA was eluted in 10 μL nuclease-free H2O and stored at −80 °C.

miRNA microarray profiling.  An Affymetrix Genechip miRNA 4.0 array was used according to the man-
ufacturer’s instruction (Thermofisher Scientific, USA) to identify plasma ECmiRNAs differentially expressed 
between CF (n = 5) and HC (n = 5) samples. For each sample, 8 µL of plasma RNA was labelled using the FlashTag 
Biotin RNA Labelling kit and spiked with synthetic control miRNAs for accessing labelling performance. 
Hybridization was performed by injecting the labelled samples, which were mixed with hybridization cocktail 
(130 μL total volume), into the 100 Format miRNA microarrays and subsequent incubation in a 48 °C hybridiza-
tion oven with continuous agitation at 60 rpm for 16 hrs. The microarrays were then washed and stained with the 
Genechip Fluidics Station 450 using a locally installed miRNA 4.0 protocol. The washed and stained arrays were 
then scanned using the Affymetrix Genechip 3000 Scanner (Thermofisher Scientific, USA).

RT-qPCR validation.  The other half of the CF (n = 5) and HC (n = 5) samples, representing a unique cohort, 
was utilized for RT-qPCR to validate the expression levels of selected differentially expressed miRNAs via the 
qScript MicroRNA System (Quantabio, CA, USA). Briefly, the qScript microRNA cDNA Synthesis kit (Quantabio, 
CA, USA) was used in a polyadenylation step to prepare plasma RNA samples, spiked with cel-miR-39 (Qiagen, 
USA), for cDNA synthesis. Next, qScript Reverse Transcriptase and other reagents were added to convert the 
poly(A) tailed miRNAs into cDNA using an oligo-dT adapter primer with a unique 5′ end sequence accord-
ing to the manufacturer’s recommendation. RT-qPCR was then performed using the PerfeCTa SYBR Green 
Kit (Quantabio, USA) with an automated Fast SYBR Green protocol in a 7500 RT-PCR System (Thermofisher 
Scientific, USA). The 15 µL PCR mixture included 7.5 μL PerfeCTa SYBR Green SuperMix (2×), 0.5 μL mature 
miRNA sequence (Integrated DNA Technologies, USA) as forward primer, 0.5 μL PerfeCTa universal reverse 
primer, and 2 μL cDNA. All reactions were performed in duplicate.

As there is currently no consensus RNA to use as endogenous control for the normalization of ECmiRNA 
expression data50, we selected 20 miRNAs in the microarray dataset with low coefficients of variance in all 
biological replicates and performed RNA stability testing with RefFinder based on four algorithms (geNorm, 

Figure 6.  Illustration of the workflow. A total of 20 blood plasma samples collected from CF patients (n = 10) 
and HC (n = 10) were profiled to examine differential expression of circulating extracellular miRNAs. All 
CF patients (p.Phe508del homozygotes) were diagnosed based on CFTR genotype and/or sweat chloride test 
(≥60 mmol/L) and were negative for Pseudomonas aeruginosa infection at the time of recruitment. Half (n = 5) 
of the samples in each group (CF and HC) were analyzed on an Affymetrix GeneChip miRNA 4.0 array during 
discovery and the other half were used for validation with RT-qPCR. Differentially expressed miRNAs were 
identified using Partek Gene-Specific Analysis algorithm and the functional relevance of their mRNA targets 
explored with the miRNET tool.
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Normfinder, BestKeeper, and the comparative Delta CT) to identify the most likely candidate to use as an endog-
enous control for normalization51. The expression value of synthetic cel-miR-39, which was spiked in during RNA 
purification, was used as the exogenous control for normalization and the relative expression levels of miRNAs 
were calculated using the 2−ΔΔCt method.

Statistical and bioinformatics analysis.  Microarray data were assessed for quality using Transcriptome 
Analysis Console software (v.4.0.1). Arrays with log2 signal value of the spiked-in controls ≥9.96 indicated a 
successful labeling protocol and a lack of RNases in the RNA sample. For the hybridization procedure, success 
was achieved if the signal value of controls corresponded with their increasing concentration (Thermofisher 
Scientific, USA). The high-quality probe cell intensity (CEL) files were then imported into Partek Flow installed 
in a local storage area network (SAN). Robust Multi-Chip Analysis (RMA) was enabled for microarray data 
background correction, quantile normalization, and summarization prior to alignment to the human reference 
genome (hg19) with Bowtie (v1.0.0). The miRbase Mature MicroRNA (v20) was used as the reference index and 
annotation model. The Partek Quantify to Annotation model, with a minimum feature-read overlap of 100%, 
was used for estimating miRNA abundance. Differential miRNA expression analysis was performed with the 
Gene-Specific Analysis algorithm (Partek Inc, USA). Mature ECmiRNAs meeting a significance threshold of 
false-discovery rate (FDR) < 0.05 with at least 2-fold change (FC) difference were considered to be differentially 
expressed and prioritized for functional analysis.

Clinical variables were analyzed using IBM SPSS Statistics for Windows (version 24). Mean and standard devi-
ation were used for normally distributed data. A t-test was used to compare the groups. P < 0.05 was considered 
significant.

Identification of miRNA targets, hubs, and functional analyses.  The miRNET tool, which incor-
porates data from 11 databases (TarBase, miRTarBase, miRecords, miRanda, miR2Disease, HMDD, PhenomiR, 
SM2miR, PharmacomiR, EpimiR, and starBase)52, was used to identify validated mRNA targets for the differen-
tially expressed miRNAs and the important hubs in their network. Nodes with high degrees (number of connec-
tions with other nodes) and betweenness (shortest path going through the nodes) corresponded to important 
hubs in a network and were prioritized in network analyses. Functional analysis was performed with the IPA 
tool (Qiagen, CA, USA) using the validated miRNA targets to identify significantly enriched (adjusted p < 0.05) 
canonical pathways (non-disease specific).

Ethics approval and consent to participate.  The study was approved by the Institutional Review Board 
of the Ann & Robert H. Lurie Children’s Hospital of Chicago, USA (IRB# 2015-400) and written informed con-
sent was obtained from subjects or parents/legal guardians.

Data availability
The datasets generated during and/or analyzed during the current study are available in the Gene Expression 
Omnibus (GEO) repository, and can be accessed with accession number: GSE135119.

Received: 13 May 2019; Accepted: 7 October 2019;
Published: xx xx xxxx

References
	 1.	 Madacsy, T., Pallagi, P. & Maleth, J. Cystic Fibrosis of the Pancreas: The Role of CFTR Channel in the Regulation of Intracellular 

Ca(2+) Signaling and Mitochondrial Function in the Exocrine Pancreas. Front Physiol 9, 1585 (2018).
	 2.	 Riordan, J. R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 

1066–73 (1989).
	 3.	 Terlizzi, V. et al. Clinical expression of cystic fibrosis in a large cohort of Italian siblings. BMC Pulm Med 18, 196 (2018).
	 4.	 Lucarelli, M. New era of cystic fibrosis: Full mutational analysis and personalized therapy. World Journal of Medical Genetics 7, 1–9 

(2017).
	 5.	 Ideozu, J. E., Zhang, X., McColley, S. & Levy, H. Transcriptome Profiling and Molecular Therapeutic Advances in Cystic Fibrosis: 

Recent Insights. Genes (Basel) 10 (2019).
	 6.	 Levy, H. et al. Identification of molecular signatures of cystic fibrosis disease status using plasma-based functional genomics. Physiol 

Genomics (2019).
	 7.	 Oglesby, I. K. & McKiernan, P. J. MiRNA Expression in Cystic Fibrosis Bronchial Epithelial Cells. Methods Mol Biol 1509, 57–69 

(2017).
	 8.	 Bhattacharyya, S. et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol 

Chem 286, 11604–15 (2011).
	 9.	 Glasgow, A. M., De Santi, C. & Greene, C. M. Non-coding RNA in cystic fibrosis. Biochemical Society Transactions, BST20170469 

(2018).
	10.	 Oglesby, I. K. et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol 

184, 1702–9 (2010).
	11.	 Fabbri, E. et al. Expression of microRNA-93 and Interleukin-8 during Pseudomonas aeruginosa-mediated induction of 

proinflammatory responses. Am J Respir Cell Mol Biol 50, 1144–55 (2014).
	12.	 Zhang, X. et al. Cystic Fibrosis Plasma Blunts the Immune Response to Bacterial Infection. Am J Respir Cell Mol Biol (2019).
	13.	 Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human 

genes are microRNA targets. Cell 120, 15–20 (2005).
	14.	 Kreth, S., Hubner, M. & Hinske, L. C. MicroRNAs as Clinical Biomarkers and Therapeutic Tools in Perioperative Medicine. 

Anesthesia and Analgesia 126, 670–681 (2018).
	15.	 Li, S., Qian, T., Wang, X., Liu, J. & Gu, X. Noncoding RNAs and their potential therapeutic applications in tissue engineering. 

Engineering 3, 3–15 (2017).
	16.	 Fabbri, E. et al. A Peptide Nucleic Acid against MicroRNA miR-145-5p Enhances the Expression of the Cystic Fibrosis 

Transmembrane Conductance Regulator (CFTR) in Calu-3 Cells. Molecules 23 (2017).

https://doi.org/10.1038/s41598-019-51890-7


1 0Scientific Reports |         (2019) 9:15483  | https://doi.org/10.1038/s41598-019-51890-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

	17.	 Hammond, S. M. An overview of microRNAs. Adv Drug Deliv Rev 87, 3–14 (2015).
	18.	 Peng, Y. & Croce, C. M. The role of MicroRNAs in human cancer. Signal transduction and targeted therapy 1, 15004 (2016).
	19.	 Stolzenburg, L. R. & Harris, A. The role of microRNAs in chronic respiratory disease: recent insights. Biol Chem 399, 219–234 

(2018).
	20.	 Sohel, M. H. Extracellular/circulating microRNAs: release mechanisms, functions and challenges. Achievements in the Life Sciences 

10, 175–186 (2016).
	21.	 Yokoi, A. et al. Integrated extracellular microRNA profiling for ovarian cancer screening. Nat Commun 9, 4319 (2018).
	22.	 Pomatto, M. A. C. et al. Improved Loading of Plasma-Derived Extracellular Vesicles to Encapsulate Antitumor miRNAs. Mol Ther 

Methods Clin Dev 13, 133–144 (2019).
	23.	 Bellingham, S. A., Coleman, B. M. & Hill, A. F. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes 

from prion-infected neuronal cells. Nucleic Acids Res 40, 10937–49 (2012).
	24.	 Turchinovich, A., Weiz, L. & Burwinkel, B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37, 

460–5 (2012).
	25.	 Cook, N. L., Pereira, T. N., Lewindon, P. J., Shepherd, R. W. & Ramm, G. A. Circulating microRNAs as noninvasive diagnostic 

biomarkers of liver disease in children with cystic fibrosis. J Pediatr Gastroenterol Nutr 60, 247–54 (2015).
	26.	 Zhu, H. & Fan, G. C. Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis 1, 

138–149 (2011).
	27.	 Wang, L. S. et al. MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML 

progenitors. Blood 125, 1302–13 (2015).
	28.	 Komatsu, S., Kiuchi, J., Imamura, T., Ichikawa, D. & Otsuji, E. Circulating microRNAs as a liquid biopsy: a next-generation clinical 

biomarker for diagnosis of gastric cancer. J Cancer Metastasis Treat 4, 36 (2018).
	29.	 Xu, J. et al. Plasma miRNAs Effectively Distinguish Patients With Pancreatic Cancer From Controls: A Multicenter Study. Ann Surg 

263, 1173–9 (2016).
	30.	 Lee, H., Han, S., Kwon, C. S. & Lee, D. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein &. 

Cell 7, 100–113 (2016).
	31.	 Marques-Rocha, J. L. et al. Regulatory roles of miR-155 and let-7b on the expression of inflammation-related genes in THP-1 cells: 

effects of fatty acids. J Physiol Biochem 74, 579–589 (2018).
	32.	 McDaniel, K. et al. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. J Biol Chem 292, 

11336–11347 (2017).
	33.	 Qattan, A. et al. Robust expression of tumor suppressor miRNA’s let-7 and miR-195 detected in plasma of Saudi female breast cancer 

patients. Bmc Cancer 17 (2017).
	34.	 Zedan, A. H. et al. microRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. 

Tumour Biol 40, 1010428318775864 (2018).
	35.	 Matsuura, K. et al. Circulating let-7 levels in plasma and extracellular vesicles correlate with hepatic fibrosis progression in chronic 

hepatitis C. Hepatology 64, 732–45 (2016).
	36.	 Long, G. W. et al. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. Bmc Neurology 13 (2013).
	37.	 Chen, Z. et al. Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. The Journal of clinical investigation 123, 

1057–1067 (2013).
	38.	 Zhang, Z., Wu, S., Muhammad, S., Ren, Q. & Sun, C. miR-103/107 promote ER stress-mediated apoptosis via targeting the Wnt3a/

beta-catenin/ATF6 pathway in preadipocytes. J Lipid Res 59, 843–853 (2018).
	39.	 Park, J. K. et al. MicroRNAs-103/107 coordinately regulate macropinocytosis and autophagy. J Cell Biol 215, 667–685 (2016).
	40.	 Trajkovski, M. et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474, 649 (2011).
	41.	 Satoh, J. MicroRNAs and their therapeutic potential for human diseases: aberrant microRNA expression in Alzheimer’s disease 

brains. J Pharmacol Sci 114, 269–75 (2010).
	42.	 Volinia, S. et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad 

Sci USA 109, 3024–9 (2012).
	43.	 Guay, C., Roggli, E., Nesca, V., Jacovetti, C. & Regazzi, R. Diabetes mellitus, a microRNA-related disease? Transl Res 157, 253–64 

(2011).
	44.	 Vinnikov, I. A. et al. Hypothalamic miR-103 protects from hyperphagic obesity in mice. J Neurosci 34, 10659–74 (2014).
	45.	 Santarelli, D. M., Beveridge, N. J., Tooney, P. A. & Cairns, M. J. Upregulation of dicer and microRNA expression in the dorsolateral 

prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69, 180–7 (2011).
	46.	 Strubberg, A. M. et al. Cftr Modulates Wnt/beta-Catenin Signaling and Stem Cell Proliferation in Murine Intestine. Cell Mol 

Gastroenterol Hepatol 5, 253–271 (2018).
	47.	 Reilly, R. et al. Targeting the PI3K/Akt/mTOR signalling pathway in Cystic Fibrosis. Sci Rep 7, 7642 (2017).
	48.	 Ideozu, J. E. et al. Increased Expression of Plasma-Induced ABCC1 mRNA in Cystic Fibrosis. Int J Mol Sci 18 (2017).
	49.	 Levy, H. et al. Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes. Genes and 

Immunity 13, 593–604 (2012).
	50.	 Schwarzenbach, H., da Silva, A. M., Calin, G. & Pantel, K. Data Normalization Strategies for MicroRNA Quantification. Clin Chem 

61, 1333–42 (2015).
	51.	 Zhang, Y. et al. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Salix matsudana 

under different abiotic stresses. Sci Rep 7, 40290 (2017).
	52.	 Fan, Y. et al. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. 

Nucleic Acids Res 44, W135–41 (2016).

Acknowledgements
We acknowledge the patients who participated in this study. We thank the staff of Cystic Fibrosis Centers at The 
Ann & Robert H. Lurie Children’s Hospital of Chicago and Children’s Hospital of Wisconsin for their support and 
assistance during recruitment and sample collection. This work was supported by grants from the NIH/National 
Heart, Lung, and Blood Institute (NHLBI, 1DP2OD007031-01 to HL) and Stanley Manne Children’s Research 
Institute (939001 to HL). The funders had no role in the study design, data collection, data analysis, interpretation 
of results, or writing of the manuscript.

Author contributions
J.E.I. and H.L. designed this study. J.E.I. performed the experiments and microarray, data analyses, prepared 
the figures and tables, and wrote the manuscript. X.Z. contributed to design and data analysis. V.R. coordinated 
clinical samples and processing. S.M. coordinated the research environment and contributed to supervision. H.L. 
supervised the project and finalized the manuscript. All authors reviewed and approved the final manuscript for 
submission.

https://doi.org/10.1038/s41598-019-51890-7


1 1Scientific Reports |         (2019) 9:15483  | https://doi.org/10.1038/s41598-019-51890-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Competing interests
The authors declare no competing interests.

Additional information
Supplementaryinformation is available for this paper at https://doi.org/10.1038/s41598-019-51890-7.
Correspondence and requests for materials should be addressed to J.E.I. or H.L.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-51890-7
https://doi.org/10.1038/s41598-019-51890-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Microarray profiling identifies extracellular circulating miRNAs dysregulated in cystic fibrosis

	Results

	Baseline characteristics of study samples. 
	Quality assessment of microarray data. 
	Identification of CF-relevant ECmiRNAs. 
	RT-qPCR validation of ECmiRNAs differentially expressed in CF. 
	Identification of miRNAs hubs and functional enrichment analysis of their targets. 

	Discussion

	Methods

	Sample subjects and plasma processing. 
	RNA isolation. 
	miRNA microarray profiling. 
	RT-qPCR validation. 
	Statistical and bioinformatics analysis. 
	Identification of miRNA targets, hubs, and functional analyses. 
	Ethics approval and consent to participate. 

	Acknowledgements

	Figure 1 Quality assessment of miRNA microarray profiling.
	Figure 2 Several plasma ECmiRNAs are abundantly expressed in CF.
	Figure 3 Plasma ECmiRNA expression signatures differ in CF and HC.
	Figure 4 Differentially expressed miRNAs validated by RT-qPCR.
	﻿Figure 5 Identification of miRNA hubs and pathway enrichment of their targets.
	Figure 6 Illustration of the workflow.
	Table 1 Demographic and clinical characteristics of the study cohort.
	Table 2 Top miRNAs and genes in the network interaction.




