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Abstract

The annotation of small molecules is one of the most challenging and important steps in

untargeted mass spectrometry analysis, as most of our biological interpretations rely on

structural annotations. Molecular networking has emerged as a structured way to organize

and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has

been widely applied to propagate annotations. However, propagation is done through man-

ual inspection of MS/MS spectra connected in the spectral networks and is only possible

when a reference library spectrum is available. One of the alternative approaches used to

annotate an unknown fragmentation mass spectrum is through the use of in silico predic-

tions. One of the challenges of in silico annotation is the uncertainty around the correct struc-

ture among the predicted candidate lists. Here we show how molecular networking can be

used to improve the accuracy of in silico predictions through propagation of structural anno-

tations, even when there is no match to a MS/MS spectrum in spectral libraries. This is

accomplished through creating a network consensus of re-ranked structural candidates

using the molecular network topology and structural similarity to improve in silico annota-

tions. The Network Annotation Propagation (NAP) tool is accessible through the GNPS

web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp.

Author summary

For genome analysis it is commonly accepted that one can hypothesize the function of

genes based on sequence similarity, using annotated reference sequences. Once a homol-

ogy hypothesis has been made based on reference annotations, it allows one to build

hypothesis in terms of function and ultimately understand the underlying biology. In con-

trast, mass spectrometry (MS) can detect many molecules, as ions, yet we often cannot

link a MS signal to a molecule. The reference libraries to annotate fragmented molecular
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data only cover a small portion of the known molecular space. The use of computational

(in silico) fragmentation predictions from structural libraries offers a promising alterna-

tive. One of the weaknesses of the molecular annotation using such in silico approaches is

that they currently annotate the molecules individually. However, molecular relationships,

based on spectral similarity, can be used to enhance the structural hypothesis inferred

from the annotation of molecules detected by mass spectrometry. We introduce an online

tool called “Network Annotation Propagation” that uses a combination of molecular net-

works, based on spectral similarity, from which we infer molecular similarity, together

with in silico fragmentation, to enable the scientific community to strengthen their MS

annotations.

Introduction

One way to gain insight into the molecules of a biological sample is through mass spectrome-

try. Mass spectrometers are incredibly sensitive equipment capable, under specific conditions,

of measuring attograms (10-18g) of molecules in a sample [1]. In a targeted mass spectrometry

analysis, such as airport security scans, for example, only molecular signatures of predeter-

mined compounds (e. g. explosive components) are searched. In an untargeted mass spec-

trometry experiment, we do not set the mass spectrometer to weigh specific molecules only,

instead, we have the potential to observe hundreds to thousands of ions from a single sample;

but most experiments report only on one or a few dozen molecules and often within the limit

of known pathways described in textbooks [2]. However, such pathways represent only a frac-

tion of molecules that are detected.

Untargeted mass spectrometry is usually performed as follows: liquid chromatography

based infusion is led into the instrument, then the ions are isolated inside the mass spectrome-

ter, accelerated in a chamber filled with helium gas, for example, which results in thermal acti-

vation due to the collisions with the gas. When the ion is sufficiently activated, some of the

molecule’s bonds break and the resulting fragments can be observed. Untargeted mass spec-

trometry of laboratory cultured organisms, or even cells is already very complex, and this com-

plexity increases in real world samples from plants, animals (including humans) and

environments, as the molecules can come from the host cells, diet, their microbiome as well as

any other environmental exposure. The way we convert the fragmentation spectrum of frag-

mented molecules, also referred to as an MS/MS, to identifications is through matching the

observed MS/MS spectra to spectra from reference MS/MS libraries, termed spectral library

search. The goal of the spectral library search is to find the best MS/MS match between an

unknown spectrum and a known spectrum of a previously characterized molecule in the

library. On average, through matching fragmented spectra with reference libraries, we can

annotate 2% (average of spectral library matching in all GNPS datasets) of the data [3],

although for well studied biological matrices, such as Escherichia coli, human cell lines, plasma

or urine this may be as high as 10% [4].

To better understand this complexity, we must be able to increase our annotation rates of

spectra across all projects in the public domain. Using spectral alignment to create molecular

networks [5], molecules can be grouped into molecular families (inferred structural analogs)

and annotations from known compounds can be propagated to connected spectra (neighbors)

in the network (Fig 1A). While molecular networking can double or even triple the annotation

rates [5], it requires a tedious process of manual inspection [6]. Reference libraries are com-

monly generated from commercially available standards, which resulted in very biased
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aa3386fd782e4875b6109fb32a93eb5a, http://

gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

229296bd89fc4eb19c4d4cb4e6d50744, http://
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library subnetwork with cosine score < 0.7 http://

gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

8b0b5a467da9416b81ab4f925a4f4b43; for Fecal,

Euphorbia dendroides extracts and Fungal dataset

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

f0cabc92247d44789900944a69874e8a, http://
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ce2a564dbd704c0595494e04798b0233, http://
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b753797b0dad4f1e84142dd59c84615b; and finally

for CASMI negative mode http://gnps.ucsd.edu/

ProteoSAFe/status.jsp?task=a3f02b1b648

a43b6a210063a4ee2f787 and positive mode http://

gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

231902c6d75f41df8403e454c96e8d4a. The

parameters can be accessed by cloning the job or

at the link “Networking Parameters and Written

Network Description”. The corresponding NAP jobs

can also be accessed through the web interface

with the following job IDs: for NIST library - http://

proteomics2.ucsd.edu/ProteoSAFe/status.jsp?

task=29d517e67067476bae97a32f2d4977e0,

http://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=d270e79876cb48deb6aabd52a4fc647e,

http://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=e2125577fe2646129becc248b96d42ba,

http://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=81e01fe178d3424686079903d908b536,

http://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=daa546b038604e5f83eaafb811bd0313,
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http://proteomics2.ucsd.edu/ProteoSAFe/status.
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molecular libraries in the public domain as well as commercial libraries. While we have begun

to capture annotations of spectra by the community from unpurified material, using the exper-

tise of public data depositors [5], one of the most promising ways to improve annotations is

through in silico matching to structural databases covering a broader range of the chemical

space. Computational tools are able to capture and infer structural information from mass

spectrometry data at a scale that dwarfs manual inspection rates. Although a variety of meth-

ods are used for in silico fragmentation matching [7], usually multiple candidate structures

match a given query spectrum. Several in silico fragmentation methods have proposed differ-

ent criteria to rank the most likely candidates, however, currently the correct structure is in

average ranked among the first tens of candidates [8]. This means that an end user still has to

wade through the top k matches and visually inspect the predictions, which is one of the rea-

sons why such approaches are slowly adopted by experimentalists. In the last ten years the

development of in silico fragmentation methods is experiencing a great improvement, in part

because experimental data and reference libraries have become available in the public domain,

providing training data for increasingly sophisticated algorithms to be developed [9–12]. The

development of the next generation in silico fragmentation annotation methods hold the

promise to increase the number of annotations and make this process much more efficient

[13], however we often have multiple candidate structures predicted for each fragmentation

spectrum and an end user does not have a good way to prioritize the candidate matches.

Although there are other approaches to propagate annotations in a mass spectrometry experi-

ment [14–18], since the introduction of molecular networking in 2012 by our labs, we and oth-

ers have demonstrated that the concept of propagation through spectral alignments works

extremely well [19–25].

We therefore set out to explore if a large portion of the “dark matter” of metabolomics [3]

experiments can be uncovered by combining molecular networking with existing in silico
methods to improve the annotation rates and quality through automated propagation. An

early hint of the utility of this approach was recently demonstrated. The Wolfender lab com-

bined an in silico library using the in silico fragmentation method CFM-ID [9], and molecular

networking results obtained through our community analysis platform Global Natural Prod-

uct Social (GNPS) infrastructure, followed by subsequent manual inspection of the results.

The Wolfender lab demonstrated that the combination of spectral networks and in silico frag-

mentation was an effective strategy for dereplication, a term used for identification of known

molecules [26]. While this work explores the advantage of the combination of two annotation

approaches, the in silico prediction method did not yet take advantage of the network topology.

The topology should be taken in account, once, under the assumption that neighbor nodes in

the spectral networks are structurally related, the in silico annotation of neighbor nodes should

result in structurally related candidates. Here we show that the ranking of in silico annotations

using the in silico prediction tool MetFrag [12, 27], can be improved using the topology of the

molecular network through building consensus among the candidate structures from neigh-

bors in the network. We further show this is effective even without any spectral library match.

The approach is called Network Annotation Propagation (NAP). There are two scoring

approaches utilized by NAP to re-rank candidates. When there is a spectral library match

within a molecular family of the molecular network (connected component of a graph), NAP

utilizes the MetFrag in silico prediction with the MetFusion [28] score to re-rank candidates

(which we term Fusion scoring) (Fig 1B and 1E). The in silico fragmentation tool MetFusion

combines the output of spectral library search and in silico fragmentation predictions by Met-

Frag to improve candidate structure ranking, by taking into account the structural similarity

of all in silico candidate structures to spectral library candidate structures. In NAP, the MetFu-

sion spectral library matches are replaced by the annotations of all direct neighbors in the

Propagating annotations of molecular networks using in silico fragmentation
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http://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=5fd60b02f8ab4274bf45fd5b715b5e0b;

NIST library subnetwork with cosine score < 0.7

http://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=74e04164a8374929a4548655742c0a4f;

for Fecal, Euphorbia dendroides extracts and fungal

http://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=9b6bddc2ba154b1397a53c7f7933430a,

http://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=8ae3aa45bfe449d7969975189b14f429,

http://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=fb02f64992bb4a0fb46b0e4832e69597;

for CASMI positive http://proteomics2.ucsd.edu/

ProteoSAFe/status.jsp?task=

7c5a16eba2eb42f88647e7d21e57f1bc and for

negative mode http://proteomics2.ucsd.edu/

ProteoSAFe/status.jsp?task=

e9745e159f6f433d9efb71e9813df29a. The

parameters from NAP can be accessed by cloning

the job through the web interface and

Supplementary Table 11. The ProteoSAFe web

interface can be found at https://gnps.ucsd.edu/

ProteoSAFe/static/gnps-theoretical.jsp, under the

workflow name NAP_CCMS and the code is

available at github (https://github.com/

DorresteinLaboratory/NAP_ProteoSAFe/).
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Fig 1. Representative scenarios of molecular networks obtained in an untargeted MS/MS experiment and possibilities for propagation. a) Introduction of

molecular networking and library matching. b, c and d represent varying degree of spectral annotation in the network. e, f and g illustrate how the propagation of

annotations can be used for each respective scenario (represented in the top panel). e) The Fusion scoring—The spectral library hit nodes (red) are employed to

recalculate the score of candidate structures (grey shapes associated to nodes) for nodes having structure candidates from in silico fragmentation search (blue), based

on their structural similarity (Represented by the green heatmaps, where darker green indicates a higher degree of similarity). f) and g) The Consensus scoring—a

Consensus scoring can be used, based on the joint similarity of neighbors (pink nodes) for spectral library hits and in silico annotations (f), or in silico annotation only,

when no library match is present (g).

https://doi.org/10.1371/journal.pcbi.1006089.g001
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network. When there are no or very few spectral library matches (Fig 1C and 1D), a network

consensus scoring will obtain the structural similarity from the candidate structures instead,

exploiting the structural similarity of the in silico candidates (which we term Consensus scor-

ing). This means that it is now possible to propagate annotations even when there are no spec-

tral matches to reference MS/MS data.

After ranking improvements by considering neighboring nodes in the network, we show,

using a spectral network of known spectra as benchmark data, that unsupervised cluster detec-

tion of candidate structures ranked using the network Consensus and Fusion scoring can find

up to 81% of the correct compound substructures present in the first ranked candidate within a

candidate structure list when reference libraries are considered while up to 63% correct com-

pound substructures present in the first ranked candidate are found when no reference libraries

matches are available within the molecular network. Additionally, because it takes significant

computational resources for both data storage and to compute the propagations, NAP has been

implemented as a ProteoSAFe workflow for High Performance Computing (HPC) onto the

GNPS analysis infrastructure at the UCSD Center for Computational Mass Spectrometry.

Results

Construction of network Fusion and network Consensus in NAP

The resulting molecular clusters of molecular networking can be categorized into three different

scenarios. First, clusters where we have a large number of matches to reference MS/MS spectra

(Fig 1B), secondly, clusters with one or very few spectral matches by connected component

(Fig 1C), and finally clusters with no spectral matches (Fig 1D). This range of scenarios requires

different solutions. NAP was designed to handle all three scenarios. The starting point for

NAP is the construction of a molecular network from data containing MS/MS spectra on the

GNPS web-platform. Nodes in the network correspond to clusters of similar fragmentation

spectra and edges represent spectral similarity between any two given nodes [5] (Fig 1A).

Molecular networks allow the generation of hypothesis regarding the structural relationship

of compounds connected in the network through annotation propagation. In parallel to molec-

ular network construction, each node (a consensus spectrum) is subjected to spectral library

search and in silico fragmentation search using MetFrag (Fig 1E–1G). The re-ranking of in silico
candidate structures is calculated by the weighted contribution of MetFrag’s score with a “spec-

tral summary” (see Methods section), as previously described in MetFusion [28] and therefore

we refer to this approach as network Fusion. We extended the Fusion principle to regions of

the network where there are no library hits, where the in silico candidate structures of a given

node can be re-ranked, by finding which candidate structure for this node maximizes the struc-

tural similarity to its neighbor node’s candidate structures (Fig 1G). The Fusion scoring has a

strict requirement that a library match has to be available as a direct neighbor (Fig 1B). How-

ever, in the case of sparse library matches in a molecular network or none at all (Fig 1C and

1D), we can apply network Consensus scoring (Fig 1G). The consensus scoring is built from the

n-first neighbor candidates, where n-first is a user selected parameter. It is also possible to com-

bine network Fusion scoring with network Consensus scoring through NAP (Fig 1F). In that

scenario network Consensus scoring is calculated after network Fusion scoring and uses its re-

ranked scores, instead of MetFrag’s, to propagate the spectral annotations to more distant

neighboring nodes.

Benchmarking NAP with a standard library

To benchmark NAP, we have created a molecular network with a subset of 5,467 MS/MS [M

+H]+ spectra from NIST17 library that are structurally unique and have spectral similarity

Propagating annotations of molecular networks using in silico fragmentation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006089 April 18, 2018 5 / 26

https://doi.org/10.1371/journal.pcbi.1006089


(cosine score> = 0.6) to at least one spectrum in the subset (Fig A in S1 Text). A further subset

(1,734 spectra), consisting of a network with only edges having a cosine score< 0.7 was

selected in order to ensure that the annotation propagation will not be biased by structural

identity [28], and the re-ranking can be performed with varying degree of structural similarity

to neighbor nodes. This validation is important for analogs that share a substructure that is

captured by spectral similarity, and helps to show that the propagation can be useful in that

scenario (Figs B and C in S1 Text). NAP is built on top of in silico fragmentation performed

with MetFrag, which searches for biologically relevant small molecule in a structure database

including GNPS, HMDB (Human Metabolome Database) [29], SUPER NATURAL II [30],

ChEBI (Chemical Entities of Biological Interest) [31] and DNP (Dictionary of Natural Prod-

ucts). In total this represents 367,204 unique small molecules (based on the first block of

InChIKeys).

First, we created ranked candidate lists for each spectrum (node in the network) individu-

ally with MetFrag, which were used as the base ranking for propagation. Departing from can-

didate ranking at single spectrum level we wanted to assess the impact of network Consensus
scoring on the results. In order to assess the influence of the n first parameter on the network

Consensus results, we applied the Consensus ranking method and varied the n-first parameter

from 1 to 20 (Fig 2A and Fig D in S1 Text). Because network Consensus does not consider

spectral library matches, the resulting ranking is based on the re-ranking of structures obtained

with MetFrag based on the propagation of all direct neighbors’ structural similarity. If neigh-

bor nodes deriving from highly similar spectra not grouped in the networking process (Fig 1A

—Step 1) are present, and structurally similar candidates are present in the candidate list, Con-
sensus scoring can help to obtain structurally related candidates (Fig E in S1 Text). By adjusting

the n-first parameter, it is possible to observe the relationship between the number of neighbor

structures considered with the ranking position of the correct structure of the node being re-

ranked (S1 Data).

The ranking of known molecular structure with MetFrag alone at single spectrum level had

a mean ranking position of 14.7 with a median of 5 (Fig 2B). If we only consider the top 5

ranked candidates of all direct neighbors with Consensus (n-first 5), we observe an average

ranking improved to 10.9 and median to 2. Further improvement was observed increasing the

n-first parameter to 10, improving mean to 10.2 and median to 2. Similarly, for n-first parame-

ters 15 and 20 we observed means of 9.8, 9.6 and median of 2 and 2, respectively (Fig 2A, Fig D

in S1 and S2 Data). Thus, the Consensus scoring was able to annotate the correct structure in

median on the top two candidates searching a reasonable large structure database derived

from biological sources (367,204 molecules). Looking at Fig 2A one could conclude that a

higher the n-first parameter always improves results, which is not necessarily the case, for

example, inspecting unique candidates ranked in the first positions by different parameter

numbers shows that n-first 1 had more unique correct compounds better ranked than n-first 5
to 20 (Fig F in S1 Text). The effect of the n-first parameter depends on the average number of

candidates obtained as well as the number of connections the nodes have, as each node takes

information from all directly connected nodes. Although we offer a default value of 10 n-first,
that parameter has to be adjusted for each study, and ideally, manually curated.

Next we set out to assess the other approaches in NAP, the impact of network Fusion scor-

ing, and from Consensus scoring (using as base ranking the Fusion scores) with n-first parame-

ter fixed to 10. The network Fusion score had 29.0% increase in the first position ranking and

overall 18.4% increase on rankings better than MetFrag alone for correct annotation among

the top twenty candidates (Fig 2B and S3 Data and S4 Data). If Consensus scoring is being

applied it means one or more neighbors possess in silico fragmentation candidates, and those

are used to re-rank the candidate list of the node being processed, under the assumption that

Propagating annotations of molecular networks using in silico fragmentation
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nodes connected by spectral similarity should possess structurally related first ranked candi-

dates. For instances where the direct neighbor was previously re-ranked by Fusion scoring, the

Consensus scoring can take advantage of this previous ranking, as the correct structure is more

likely to be ranked among the top n-first candidates (Fig 1F). The network Consensus scoring

had a 19.8% increase in the first position ranking and overall 13.0% increase on rankings better

Fig 2. NAP re-ranking assessment using the 5,467 NIST17 [M+H]+ benchmark data set that have known nearest neighbors in the molecular

network. a) The impact of setting the n-first parameter on percentage of correct annotations for network Consensus scoring. Where n-first indicates the n
number of top ranked candidate structures (from 5 to 20) considered from the neighbor nodes during the Consensus scoring. b) Percentage of correct

annotations ranking for each method. c) Number of spectra with improved ranking of correct annotations, that is, for which Fusion or Consensus scoring

ranked the correct structure better than MetFrag.

https://doi.org/10.1371/journal.pcbi.1006089.g002
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than MetFrag alone for correct annotation among the top 20 candidates, when propagating is

performed after Fusion scoring (Fig 2B and S3 Data and S4 Data).

The subset with edges of cosine score < 0.7 had very similar results to those described

above for the complete network (S5 Data and Fig G in S1 Text), showing that the propagation

is efficient under varying degree of spectral similarity. Overall, the average ranking of the cor-

rect annotation improved from 14.7 for MetFrag alone (and rank 23 for random assignment)

to 4.7 for network Fusion and 6.3 for network Consensus (using previous Fusion ranking). The

median improvement ranged from 5 for MetFrag alone (and rank 12 for random assignment)

to 1 for network Fusion and 2 for network Consensus (Fig 2A and S4 Data and S5 Data). Both

network Fusion and network Consensus scoring also have a larger number of unique (best

ranking observed only for one approach—Fusion, Consensus or MetFrag) correct rankings

when compared to MetFrag (Fig 2C). Interestingly, although 32.8% of improved annotations

were found by network Fusion and network Consensus overlap, network Consensus found

6.9% annotations with better ranking than network Fusion, while network Fusion had 24.4%

better annotations (Fig 2C). Those results suggest that, even in a network with nodes having

spectral library matches, the use of neighbor candidate structures can provide complementary

information for ranking.

Clustering candidate structures

To further validate the approach we tested whether NAP annotations were correct at substruc-

ture level. In order to group candidate structures based on their structural similarity and

dynamically assign groups inside candidate lists we used the Dynamic Tree Cut method [32]

for dynamic branch cutting and unsupervised group detection on the result of hierarchical

clustering (Fig 3). Grouping the structurally related candidates revealed that 84% of the struc-

tures assigned as first candidate by network Fusion scoring were contained in the same Classy-

Fire [33] chemical Class taxonomic classification of the known true structure (Correct Class),

compared to 44% for MetFrag only (Fig 3, S6 Data). The ClassyFire classification provides a

hierarchical classification that, similarly to unsupervised grouping, is based on structural simi-

larity, however, specific features of the compound classes can be captured by nested classifica-

tions, from Super Class to Class, for example (See Methods section for user manual link). For

network Consensus 78% were contained in the correct Class (66% considering Consensus with-

out Fusion). When the structural similarity group is considered with multiple ClassyFire chem-

ical classes, 84% of the structures assigned as first candidate with network Fusion and 76% for

network Consensus scoring (67% considering Consensus without Fusion) were contained in the

same structure similarity group of the known true structure (Correct substructure), compared

to 42% for MetFrag only (Fig 3) suggesting that in silico methods can benefit from chemical

classification as the best ranked structure is more likely to share a substructure with correct

structure and belong to the same chemical class.

Single spectrum searches

We tested the NAP on its ability to annotate the challenge spectra from the Critical Assessment

of Small Molecule Identification (CASMI) contest 2016 (http://www.casmi-contest.org/2016/

index.shtml). The CASMI contest aims at benchmarking computational tools in untargeted

mass spectrometry. The CASMI 2016 consisted of 146 spectra in positive ion mode, and 81

spectra in negative ion mode. The CASMI spectra were combined with all public spectral MS/

MS libraries (after removal of CASMI library) to form one molecular network (one for each

acquisition mode). The public MS/MS libraries were added as NAP needs a spectral network

as input and will only be able to propagate an annotation if two or more similar spectra are
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connected nodes in the network. After molecular networking, only the CASMI spectra and

their connected nodes were retained. The filtering resulted in 136 positive and 50 negative

spectra with at least one putative analog connected in the spectral library network. This means

not all data from CASMI 2016 had a related structure in the public libraries, especially for neg-

ative mode that has fewer MS/MS references in the public domain. The resulting network con-

tained 884 and 175 nodes for positive and negative modes respectively (Fig H in S1 Text). In

the network, 33 positive and 4 negative spectra from CASMI were connected to at least one

other challenge spectrum. The networks were composed of 107 and 44 molecular families (or

connected components) for positive and negative nodes, respectively (Fig H in S1 Text). NAP

was able to annotate 129 structures (6 structures had spectral analogs with names only and no

structural information annotated with InChI or SMILES), 113 correct structures were ranked

in first position, 10 on second, 4 in third, 1 in fourth and 1 in tenth place. Overall NAP, using

reference library annotations (Fusion ranking), had 54 better rankings than MetFrag alone (S7

Data). When reference libraries were not directly used (Consensus ranking) NAP was able to

annotate 130 structures (5 structures had spectral analogs with no structural information

annotated), 70 correct structures in first position, 19 on second, 6 in third, 10 in fourth and 25

from fifth to tenth place. Overall network Consensus had 36 better rankings than MetFrag

alone (S7 Data). For negative mode, NAP using Fusion scoring had one structure not anno-

tated, 44 in first place, 4 in second and 1 in fifth place, overall 19 better rankings than MetFrag

alone (S8 Data). For Consensus scoring in negative mode, we found one structure not anno-

tated, 31 in first place, 7 in second and 11 from third to tenth place, overall 8 better rankings

than MetFrag alone (S8 Data). Remarkably, even though we considered only 186 out of 227

challenge spectra, the strategy of network annotation propagation using MetFrag annotations

had a comparable performance to the best performing employed in category 3 of the CASMI

2016 [8], highlighting that molecular networking and re-ranking based on structural informa-

tion can complement such existing in silico fragmentation methods. The cumulated numbers

(indicated below between parentheses) of correct annotation with the top rank in positive and

negative ionization modes were, for NAP using network Fusion (157), for the network Consen-
sus scoring (using previous Fusion ranking) (101), for MS-Finder [34] (159) and CFM-ID

[157]. Note that NAP strategy with the spectral library network made from public spectral

libraries can be computationally intensive, especially when large number of spectra are used.

For that reason, we implemented NAP interface in the GNPS interface that uses high perfor-

mance computing. Step by step instructions on how to use NAP is provided in the supporting

information (Supplementary Tool Manual) and online (https://gnps.ucsd.edu/ProteoSAFe/

static/gnps-theoretical.jsp).

Assessing the utility of NAP with metabolomics data sets

Above NAP has only been tested with known reference standards but not against typical data

sets that are encountered in untargeted metabolomics experiments. We now set out to test

NAP against previously published public fecal and plant metabolomics data sets from GNPS

(MassIVE IDs: MSV000081120 and MSV000080502) [35–37] and a new fungal data set

Fig 3. Schematic representation of the molecular structure candidates clustering by structural similarity and dynamic cluster

assignment from the 5467 NIST17 [M+H]+ unique compound spectra with ClassyFire chemical taxonomy. The structurally

related group of candidate structures, detected by unsupervised clustering, containing the first candidates ranked by network Fusion
and network Consensus often contains the maximum common substructure shared between in silico candidates (for candidates inside

the group defined by clustering) and the known structure in the validation dataset (numbers shown in the bottom). The structurally

related groups are highlighted by colors, inside each group we also show class assignments. The classes/structures that were predicted

by unsupervised clustering were compared with the known compound.

https://doi.org/10.1371/journal.pcbi.1006089.g003
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(MSV000081671). We chose these sets because authors of these projects had annotated them

extensively. Fecal samples, analyzed with a Thermo Q Exactive instrument, represent complex

mixtures full of small molecules from various backgrounds including endogenous compounds

like amino acids, sugars, drugs and other xenobiotics, and food derived compounds. When

analyzing molecular networks derived of such sample types, although the data sets have been

inspected in great detail, there are still many molecular families [38, 39] that currently have

few library matches or none at all.

We therefore set out to test NAP using the structural databases of natural products collec-

tion described above as well as PubChem. One molecular family that consisted of 14 nodes

included two reference library matches: one to N-acetylgalactosamine and one to glucose from

the GNPS-EMBL-MCF spectral library (Fig 4). Both library matches initially result in level 3

annotation according to the guidelines forwarded by the metabolomics society in 2007 [40].

Manual inspection revealed that the node with parent mass 222.110 is indeed consistent with

N-acetylgalactosamine (Fig I in S1 Text) but N-acetylglucosamine is a likely candidate as well

because they exhibit similar fragment losses (Fig I in S1 Text) consistent with the level 3 anno-

tation. A comparison with standards would be required to achieve level 1 annotation [40].

Manual inspection of the data could not support the match to glucose (Fig J in S1 Text) and we

would consider this to be a false annotation as i) with the search parameters used we do not

have a match with FDR of 1% [41] and ii) glucosamine also results in mass fragments typical

for sugars. In total, five propagated nodes presented N-acetylglucosamine containing struc-

tures and two additional structures had sugar and acetate structural features, albeit one struc-

ture had two acetates and the sugars are not in a cyclic configuration and are of different size.

Upon matching the MS/MS spectrum of the node with precursor m/z of 294.118, each of

the candidate hits matched by MzCloud (www.mzcloud.org) contained N-acetylglucosamine

(or N-acetylgalactosamine) (Fig 4 and Fig L in S1 Text). Further inspection of the fragmenta-

tion of N-acetylglucosamine revealed that the specific N-acetyl containing fragments with m/z
96.0444 and 84.0444 (both [M+H]+) are present across all members of the subnetwork. Some

nodes did not return a N-acetylglucosamine containing structure within the top-10 candidates,

it is likely that for those precursor masses no N-acetylglucosamine containing candidates are

present in the reference structure library. Thus, the key take away from this NAP result is that

this fecal data set contains a putative N-acetylated sugar family of molecule. Finally, it is worth

noting that none of the top candidates found by MetFrag alone contained N-acetylglucosa-

mine substructures, indicating how the propagation of a library match within a molecular net-

work positively contributes to candidate ranking (Fig 4).

To further highlight the potential of NAP to aid structural annotation, we also processed a

previously described data set [36] from extracts of the plant Euphorbia dendroides. In Fig 5, we

illustrated how the network propagation from known molecular structures with available MS/

MS spectra can improve the candidate ranking of the neighboring nodes. The reference MS/

MS spectra are obtained from 23 compounds isolated from that extract and subsequently iden-

tified by NMR [36, 37], some of which were already available in the GNPS spectral library. The

GNPS network revealed that 18 previously identified molecules in this dataset were annotated.

For one molecular family we observed two spectral library matches, both belonging to the

phorboid diterpene esters, while none of the other nodes in the network were annotated with

spectral library search (Fig 5A). Among the candidates proposed by MetFrag (Fig 5B) with the

structure bio-database described above, none of the top ranked were phorboids diterpene

esters, while 11 out of 14 nodes were annotated as phorboid derivatives by network Fusion
based re-ranking (Fig 5C). When Consensus scoring was used without taking in account the

library matches, 8 out of 14 nodes were correctly annotated (Fig M in S1 Text).
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The third data set was obtained from fungus gardens raised by the ant Trachymyrmex sep-
tentrionalis. A 37-nodes molecular family was selected as illustrative example of the network

annotation propagation workflow for this data set (Fig 6). GNPS library matches suggested

oxygenated steroid derivatives present in this cluster. Manual verification allowed confirma-

tion of the annotation for ergosterol peroxide (m/z 429.336) with a parent accurate mass (error

0.4 ppm), while an ergosterol derivative was suggested for the m/z 415.357 node (Fig 6). We

used NAP to search the DNP database for related structures. Consensus scoring provided addi-

tional structural annotation for 32 nodes related to ergosterol peroxides, while MetFrag pro-

vided top ranked annotations for only 18 spectra (S9 Data). Fig 6 shows example annotations

for a cluster of nodes that reproduce the theoretical scenario illustrated in Fig 1F, where spec-

tral library annotations can be propagated to direct neighbor nodes, that aid in the propagation

to more distant nodes with Consensus scoring.

Discussion

One of the exciting developments in the annotation of highly complex samples derived from

an organism or environment, is to take advantage of the relatedness of molecules co-occurring

in the samples, which are often substrates and products of biochemical transformations. The

benefits of using chemical relatedness to improve LC-MS/MS-based annotation using

expected biotransformations was demonstrated by different approaches in the metabolomics

field [17, 42–48]. Herein, we show that annotation propagation using molecular networking

improves the annotations of neighboring nodes, harnessing the expected relationships of

compounds detected in the sample. The process of propagating is often guided by the mass dif-

ference between the precursor ion masses, for example, a difference of 14.0157 Da may corre-

spond to methyl functionalizations, but in many cases the fragmentation spectra alone is not

sufficient to establish with confidence the position of the modification and type of modifica-

tion, and only a partial annotation (isomers) or a molecular class annotation can be proposed.

A 14.0157 could be the result of methylation, or substitution of fatty acids (propionate vs buty-

rate) or amino acids (e.g. Gly vs Ala) due to catalytic promiscuity in the biosynthesis of the

molecule. The use of in silico fragmentation can provide further insights on structure annota-

tion when used to initiate the manual propagation starting from spectral library annotation

[26]. It is important to mention that the connectivity of the network can change if we change

the networking parameters, especially the parameters ‘Min Pairs Cos’ (the Minimum cosine

score that must occur between a pair of consensus MS/MS) and the ‘Minimum Matched Frag-

ment Ions’. This is one of the reasons for which in the ‘Benchmarking NAP with a standard
library’ section we split the dataset in lower spectral similarity only (0.6 to 0.7 cosine score

range) and reanalyzed it, having comparable result from the complete dataset (0.6 to 0.9 cosine

score range). It is also worth mentioning that improvements on data acquisition as well as

preprocessing can drastically optimize the networking, with for example, less redundant

nodes and higher quality fragmentation spectra, and consequently optimize results from NAP

[24, 49, 50].

The results show that NAP improves the rank of correct candidate structure generated by

an in silico tool. The performance of NAP Fusion and Consensus scores were evaluated with

two reference standard datasets (NIST library and CASMI 2016 challenges), and NAP’s use

Fig 4. N-acetyl-sugar metabolite family: Annotations of library match to N-acetylgalactosamine propagates

through network. N-acetylglucosamine containing top-ranked candidates are represented in larger boxes. a) Result

from MetFrag b) Result from network Consensus. Highlighted in green is the maximum common substructure

(MCSS) of each node to the reference library (green border node) for the seven N-acetylglucosamine related

molecules.

https://doi.org/10.1371/journal.pcbi.1006089.g004
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was highlighted with three experimental datasets (fecal samples, plant extracts and fungus gar-

den samples). Overall, both NAP scores improve the rank of the correct structure from Met-

Frag. Moreover, when considering the compound class with ClassyFire, we observed that NAP

Fig 5. Network annotation of the E. dendroides plant extracts with NAP and visualized in Cytoscape with ChemViz2 plug-in. a) Result of the spectral library

annotation using public spectral libraries available on GNPS. b) MetFrag annotation with top scoring molecules from bio-database. c) NAP annotation with top scoring

matches using NAP network Fusion scoring, showing candidate lists associated to two nodes.

https://doi.org/10.1371/journal.pcbi.1006089.g005
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improves the assignment of the correct compound structure in the first position from 29.0%

with Fusion and 19.8% with Consensus to a better class assignment associated with the scoring

to 38% with Fusion and 34% with Consensus (Fig 3), compared to in silico fragmentation per-

formed alone at single spectrum level. With structure similarity clustering and class assign-

ment one can begin to understand if there is an association between higher correct annotation

rates for specific classes or structural motifs. This means that even when the actual structure

may be incorrectly ranked, or absent from the database, the re-ranking annotated many struc-

tures with similar structural motifs instead. This is important as this would support a level 3

annotation and will allow end users to make informed decisions regarding the structural

hypothesis of the molecules that could be detected by mass spectrometry. There is an associa-

tion between lower annotation rates for specific classes or structural motifs, such as flavonoids,

as there are often many isomeric structures possible for flavonoids and flavonoids do annotate

within a structural family (Fig N in S1 Text and S10 Data).

One of the NAP’s challenges relies in the selection of meaningful structure databases. Previ-

ous studies have shown that large databases such as PubChem contain a high number of syn-

thetic molecules that have distinct molecular features from molecules typically produced by

living organisms [51]. For that reason, in silico fragmentation methods have used dedicated

databases to search candidates [52], or used methods that improve natural product likeness in

candidate ranking [10]. Therefore, we have used the largest naturally occurring small molecule

databases, and offer the possibility for the user to select between popular databases (GNPS,

HMDB, SUPER NATURAL, ChEBI) or to upload their own custom database. The PubChem

library is also available to users, as an alternative for instances where no candidate structure is

found in smaller targeted structural libraries, such as DNP, MarinLit or AntiBase for example

[53]. We also provide additional code to guide users on database formatting from a list of

InChI or SMILES (See Methods section).

We have used the combinatorial fragmentation approach (MetFrag) because of its general-

ity and usability reported in recent studies [12, 54], but the network propagation method can

be extended to other classes of in silico fragmentation approaches. We expect that the use of

NAP has the potential to improve the performance of other in silico fragmentation annotation

approaches [9–11, 55]. Tools such as CFM-ID can predict a fragmentation spectrum from a

structure, and offer the flexibility to create in silico spectral libraries. However, the ability to

retrain the classification model and to regenerate new in silico spectral libraries is essential to

keep pace with the growing number of public spectral libraries. Additionally, further develop-

ments in NAP should integrate LC-MS processing tools in order to annotate the adduct type

and predict the molecular formula with confidence. The integration of those tools will limit

the search of candidates in structure databases to only those having the likely molecular for-

mula(s) [56] and/or substructures [17], which will improve the ranking of the in silico tools,

and the performance of NAP annotation. Additionally, alternative ways to propagate informa-

tion or select neighbor candidates should be tested to improve propagation results [57].

The fecal, plant and fungal data sets revealed many expected molecules, the acetylated–sac-

charide family, the phorboid ester family and the sterols family, respectively. Sterol derivatives

are common fungal metabolites, and have been isolated from medicinal fungi [58] and soil

fungi [59–64]. The bioactivity range for this class of compounds include antibiosis [61] and

Fig 6. Network annotation of the T. septentrionalis fungus gardens extracts with NAP and visualized in Cytoscape with ChemViz2 plug-in. a) Group of nodes in

which the annotation can be directly propagated from spectral library matches (top) and other in which the inspection of neighbor candidate structures can improve the

annotation (bottom). Blue background nodes represent the presence of candidate structures from in silico annotation and green background represents candidates from

spectral library annotation. b) MetFrag top ranked candidates. c) NAP consensus top ranked candidates. d) MetFrag top ranked candidates. e) NAP consensus top

ranked candidates.

https://doi.org/10.1371/journal.pcbi.1006089.g006
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anti-cancer, as it has been described for ergosterol peroxide [58]. Since sterols are fungal

metabolites, their identification from this dataset is consistent. Now that the presence of ergos-

terol peroxide and oxygenated sterols has been observed in fungal gardens, and considering

their potent biological activities [58, 61], their ecological role in the T. septentrionalis fungal

gardens symbiotic system need to be elucidated.

We expect that network annotation propagations will increase with the deposit of new ref-

erence MS/MS spectra in searchable public spectral libraries and extensions of structural data-

bases with potential candidate structures. In silico libraries have already been a part of

annotations in Metlin, a metabolomics search engine, since 2005 [65], and more recently

Metlin provides CFM-ID in silico predicted reference spectra as part of their search engine.

LIPID MAPS [66] and LipidBlast [67] use predicted spectra for lipids and mzCloud uses ab
initio predicted spectra. In silico propagated annotations are not yet a part of such search

engines. When these become part of public reference libraries, it is critical that provenance of

annotation is retained so that users can decide to rely on the annotation or not. Moreover,

when associated to in silico fragmentation, annotation propagation has the potential to

improve the structural hypothesis for many MS/MS annotations (both qualitative and quanti-

tatively), especially if those are validated as in silico library entries by experts, and reused dur-

ing future spectral library searches. To facilitate that process, NAP is integrated into the GNPS

web-platform and the functionality allowing the user to add those expert curated putative

annotations will become a part of GNPS public libraries, with provenance clearly indicated for

the user. We anticipate that in silico network based propagation will be one key approach to fill

in the dark matter of metabolomics annotations.

Methods

Experimental data generation

Trachymyrmex septentrionalis fungus garden samples were collected from across the Eastern

USA. Authorization for collecting samples were previously obtained from the corresponding

state department: State of New Jersey Department of Environmental Protection Division of

Parks and Forestry State Park Service unnumbered Letter of Authorization; North Carolina

Division of Parks and Recreation Scientific Research and Collecting Permit 2015_0030; Florida

Department of Agriculture and Consumer Services unnumbered Letter of Authorization;

Georgia Department of Natural Resources State Parks & Historic Sites Scientific Research and

Collection Permit 032015; Department of Natural Resources Wildlife Resources Division

unnumbered Letter of Authorization. Samples were extracted with 2:1 dichloromethane/meth-

anol 3 times and dried under nitrogen. Samples were resuspended in 100% methanol contain-

ing 2µM sulfamethazine as internal standard and LC-MS/MS analysis was performed in an

UltiMate 3000 UPLC system (Thermo Scientific) using a Kinetex 1.7 mm C18 reversed phase

UHPLC column (50 X 2.1 mm) and Maxis Q-TOF mass spectrometer (Bruker Daltonics)

equipped with ESI source. The column was equilibrated with 5% solvent B (LC-MS grade ace-

tonitrile, 0.1% formic acid) for 1 min, followed by a linear gradient from 5% B to 100% B in 8

min, held at 100% B for 2 min. Then, 100%–5% B in 0.5 min and maintained at 5% B for 2.5

min at a flow rate of 0.5 mL/min throughout the run. MS spectra were acquired in positive ion

mode in the range of 100–2000 m/z. A mixture of 10 mg/mL of each sulfamethazine, sulfa-

methizole, sulfachloropyridazine, sulfadimethoxine, amitriptyline, and coumarin-314 was run

after every 24 injections for quality control. An external calibration with ESI-L Low Concen-

tration Tuning Mix (Agilent technologies) was performed prior to data collection and internal

calibrant Hexakis(1H,1H,3H-tertrafluoropropoxy)phosphazene was used throughout the

runs. The capillary voltage of 4500 V, nebulizer gas pressure (nitrogen) of 2 bar, ion source
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temperature of 200˚C, dry gas flow of 9 L/min source temperature. Spectral rate of 3 Hz for

MS1 and 10 Hz for MS/MS, total cycle time range of 0.83 sec consisted of one full MS scan and

up to 5 MS/MS scans; MS/MS active exclusion parameter was enabled, set to 2 and to release

after 30 s, precursor ion was reconsidered for MS/MS if current intensity/previous intensity

ratio >2; CID energies for MS/MS data acquisition were used as in Table 1:

Basic stepping function was used to fragment ions at 50% and 125% of the CID calculated

for each m/z from the above table with timing of 50% for each step. Similarly, basic stepping of

collision RF of 550 and 800 Vpp with a timing of 50% for each step and transfer time stepping

of 57 and 90 μs with a timing of 50% for each step was employed. The mass of internal cali-

brant was excluded from the MS/MS list using a mass range of m/z 921.5–923.5. The data were

deposited in the online repository namely MassIVE (ftp://massive.ucsd.edu/MSV000081671).

Structure database construction

Structures were downloaded from their respective databases GNPS (http://gnps.ucsd.edu/

ProteoSAFe/gnpslibrary.jsp?library=all), HMDB (http://www.hmdb.ca/downloads), SUPER

NATURAL (http://bioinf-applied.charite.de/supernatural_new/) and ChEBI (https://www.ebi.

ac.uk/chebi/downloadsForward.do). The Dictionary of Natural Products (DNP) structures

were downloaded manually using the institutional subscription. All structures were classified

by ClassyFire [33] taxonomy classification using an in house script available at https://github.

com/DorresteinLaboratory/NAP_ProteoSAFe/. An initial user manual is also available for

NAP parameter setting, including ClassyFire classification based database candidates’

selection.

Network calculation and data availability

The NIST17 library .msp file containing 574,826 spectra from various instruments, acquisition

modes and adduct types was parsed with an in house script to recover all [M+H]+ unique

compound spectra. From 11,331 spectra recovered, a subset of 5,467 NIST17 [M+H]+

unique compound presented at least one analog in the networking conditions described

below and were retained for validation. The raw data was retrieved from the public MassIVE

datasets for Euphorbia dendroides (ftp://massive.ucsd.edu/MSV000080502), fecal (ftp://mas

sive.ucsd.edu/MSV000081120) and a fungal data set (ftp://massive.ucsd.edu/MSV000081671).

The CASMI data was downloaded from (http://www.casmi-contest.org/2016/index.shtml).

The networks were calculated using GNPS web interface, and can be accessed with the

following job IDs: for NIST library - http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

Table 1. CID energies for MS/MS data acquisition.

Type Mass Width Collision Charge State

Base 100.00 4.00 22.00 1

Base 100.00 4.00 18.00 2

Base 300.00 5.00 27.00 1

Base 300.00 5.00 22.00 2

Base 500.00 6.00 35.00 1

Base 500.00 6.00 30.00 2

Base 1000.00 8.00 45.00 1

Base 1000.00 8.00 35.00 2

Base 2000.00 10.00 50.00 1

Base 2000.00 10.00 50.00 2

https://doi.org/10.1371/journal.pcbi.1006089.t001
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aa3386fd782e4875b6109fb32a93eb5a, http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=2292

96bd89fc4eb19c4d4cb4e6d50744, http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8ae2cb

f410944c96a269e80670915851, http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ee1233f26

3f94268ac62dc4cd358cd12, http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=00851eb8fb2c4

050b581ab898b9d228e, http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1f905afc070241a58c

74672b40333ac0, http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e6663cf00af64a928def7a

70108a2b19, http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f2f4d89b7dbc4fc0ae78591b3

6f71585, http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c26168effc244aedb95fbea7de289aaf

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=7e45eb1bd3c34cc9a8a27bf20c182f4d; NIST

library subnetwork with cosine score < 0.7 http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

8b0b5a467da9416b81ab4f925a4f4b43; for Fecal, Euphorbia dendroides extracts and Fungal

dataset http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f0cabc92247d44789900944a6987

4e8a, http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ce2a564dbd704c0595494e04798b0233,

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b753797b0dad4f1e84142dd59c84615b; and

finally for CASMI negative mode http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a3f02b1b

648a43b6a210063a4ee2f787 and positive mode http://gnps.ucsd.edu/ProteoSAFe/status.jsp?

task=231902c6d75f41df8403e454c96e8d4a. The parameters can be accessed by cloning the job

or at the link “Networking Parameters and Written Network Description”. The corresponding

NAP jobs can also be accessed through the web interface with the following job IDs: for NIST

library - http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=29d517e67067476bae97a

32f2d4977e0, http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=d270e79876cb48deb

6aabd52a4fc647e, http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=e2125577fe26461

29becc248b96d42ba, http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=81e01fe178d34

24686079903d908b536, http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=daa546b038

604e5f83eaafb811bd0313, http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=61c8a0

d01309408f8ecceb5b31dab1a8, http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=

60fe9f77b3d04789997bf19aa1a0a828, http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?

task=53f8494ff9e8423697eebf4e98d287f0, http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?

task=c93a840100ec49bdbb3c12e5ed1e4790, http://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=5fd60b02f8ab4274bf45fd5b715b5e0b; NIST library subnetwork with cosine score <

0.7 http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=74e04164a8374929a4548655

742c0a4f; for Fecal, Euphorbia dendroides extracts and fungal http://proteomics2.ucsd.edu/

ProteoSAFe/status.jsp?task=9b6bddc2ba154b1397a53c7f7933430a, http://proteomics2.ucsd.

edu/ProteoSAFe/status.jsp?task=8ae3aa45bfe449d7969975189b14f429, http://proteomics2.

ucsd.edu/ProteoSAFe/status.jsp?task=fb02f64992bb4a0fb46b0e4832e69597; for CASMI posi-

tive http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=7c5a16eba2eb42f88647e7d21

e57f1bc and for negative mode http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=

e9745e159f6f433d9efb71e9813df29a. The parameters from NAP can be accessed by cloning

the job through the web interface and S11 Data.

Implementation and availability

The workflow was implemented using R and Python languages. The MetFrag 2.3 command

line tool was downloaded from http://c-ruttkies.github.io/MetFrag/. The scoring Fusion used

was Sc ¼ a � fc þ ð1 � aÞS
M

j¼1
sigðmj � tcjÞ previously described in MetFusion as: where c repre-

sents each MetFrag candidate, fc the MetFrag score and the ‘spectral summary’ represents the

spectral library search cosine scores mj for all neighbor nodes j, the chemical similarity tcj

between MetFrag candidate c and each neighbor node result j. The sig represents the sigmoid

Propagating annotations of molecular networks using in silico fragmentation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006089 April 18, 2018 19 / 26

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=aa3386fd782e4875b6109fb32a93eb5a
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=229296bd89fc4eb19c4d4cb4e6d50744
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=229296bd89fc4eb19c4d4cb4e6d50744
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8ae2cbf410944c96a269e80670915851
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8ae2cbf410944c96a269e80670915851
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ee1233f263f94268ac62dc4cd358cd12
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ee1233f263f94268ac62dc4cd358cd12
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=00851eb8fb2c4050b581ab898b9d228e
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=00851eb8fb2c4050b581ab898b9d228e
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1f905afc070241a58c74672b40333ac0
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1f905afc070241a58c74672b40333ac0
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e6663cf00af64a928def7a70108a2b19
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e6663cf00af64a928def7a70108a2b19
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f2f4d89b7dbc4fc0ae78591b36f71585
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f2f4d89b7dbc4fc0ae78591b36f71585
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c26168effc244aedb95fbea7de289aaf
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=7e45eb1bd3c34cc9a8a27bf20c182f4d
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8b0b5a467da9416b81ab4f925a4f4b43
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8b0b5a467da9416b81ab4f925a4f4b43
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f0cabc92247d44789900944a69874e8a
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f0cabc92247d44789900944a69874e8a
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ce2a564dbd704c0595494e04798b0233
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b753797b0dad4f1e84142dd59c84615b
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a3f02b1b648a43b6a210063a4ee2f787
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a3f02b1b648a43b6a210063a4ee2f787
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=231902c6d75f41df8403e454c96e8d4a
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=231902c6d75f41df8403e454c96e8d4a
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=29d517e67067476bae97a32f2d4977e0
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=29d517e67067476bae97a32f2d4977e0
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=d270e79876cb48deb6aabd52a4fc647e
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=d270e79876cb48deb6aabd52a4fc647e
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=e2125577fe2646129becc248b96d42ba
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=e2125577fe2646129becc248b96d42ba
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=81e01fe178d3424686079903d908b536
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=81e01fe178d3424686079903d908b536
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=daa546b038604e5f83eaafb811bd0313
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=daa546b038604e5f83eaafb811bd0313
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=61c8a0d01309408f8ecceb5b31dab1a8
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=61c8a0d01309408f8ecceb5b31dab1a8
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=60fe9f77b3d04789997bf19aa1a0a828
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=60fe9f77b3d04789997bf19aa1a0a828
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=53f8494ff9e8423697eebf4e98d287f0
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=53f8494ff9e8423697eebf4e98d287f0
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=c93a840100ec49bdbb3c12e5ed1e4790
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=c93a840100ec49bdbb3c12e5ed1e4790
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=5fd60b02f8ab4274bf45fd5b715b5e0b
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=5fd60b02f8ab4274bf45fd5b715b5e0b
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=74e04164a8374929a4548655742c0a4f
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=74e04164a8374929a4548655742c0a4f
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=9b6bddc2ba154b1397a53c7f7933430a
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=9b6bddc2ba154b1397a53c7f7933430a
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=8ae3aa45bfe449d7969975189b14f429
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=8ae3aa45bfe449d7969975189b14f429
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=fb02f64992bb4a0fb46b0e4832e69597
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=fb02f64992bb4a0fb46b0e4832e69597
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=7c5a16eba2eb42f88647e7d21e57f1bc
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=7c5a16eba2eb42f88647e7d21e57f1bc
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=e9745e159f6f433d9efb71e9813df29a
http://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=e9745e159f6f433d9efb71e9813df29a
http://c-ruttkies.github.io/MetFrag/
https://doi.org/10.1371/journal.pcbi.1006089


function. We used as default the optimized parameters α = 0.3, β = -9 and γ = 0.6 [28]. The

Consensus scoring uses the same scoring function, but instead of using the structural similarity

of the spectral library search from the neighbor it uses the maximum structural similarity of up

to n first candidates of each neighbor node.

The molecular fingerprints and structural similarity were calculated with the fingerprint R

package (https://cran.rstudio.com/web/packages/fingerprint/index.html), using CDK version

1.5.13. We have used the ‘extended’ fingerprint type and tanimoto similarity for Fusion and

Consensus scoring. The same fingerprint type and the dissimilarity calculated as 1—tanimoto

similarity were used for clustering.

To group candidate structures we used the Dynamic Tree Cut method for dynamic branch

cutting available in the dynamicTreeCut R package (https://labs.genetics.ucla.edu/horvath/

CoexpressionNetwork/BranchCutting/). Before clustering we create a low dimensional (up to

10 dimensions) projection with Multidimensional Scaling of tanimoto dissimilarity matrices,

and then cluster the new coordinates using hierarchical clustering with euclidean distance and

‘ward’ grouping method. After the creation of a dendrogram, the same is subjected to auto-

mated group detection (dynamicTreeCut) using the following parameters: minClusterSize = 2,

method = "hybrid", deepSplit = 2.

The Workflow was implemented using ProteoSAFe (https://bix-lab.ucsd.edu/display/PS/

XML+Configuration+Overview). The ProteoSAFe web interface can be found at http://

proteomics2.ucsd.edu/ProteoSAFe/, under the workflow name NAP_CCMS and the code is

available at github (https://github.com/DorresteinLaboratory/NAP_ProteoSAFe/).

Evaluation

To create the evaluation, results of each analysis from NAP containing the original MetFrag,

Fusion and Consensus scores were compared. Ranking ties among ranking methods were con-

sidered overlap between the methods. When ties were found inside candidate lists, all candi-

dates were considered to have the same position (e. g. 1, 2, 2, 2, 3, . . . instead of 1, 2, 2, 2, 5, . . .).

The random candidate assignment was determined by sampling from the list of candidates

from each spectrum following a uniform distribution.
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