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Intrinsic phenotypic stability of a  
bi-stable auto regulatory gene
Azim-Berdy Besya & Andreas Grönlund

Even under homogenous conditions clonal cells can assume different distinct states for generations to 
follow, also known as epigenetic inheritance. Such long periods of different phenotypic states can be 
formed due to the existence of more than one stable state in the molecule concentration, where the 
different states are explored through molecular fluctuations. By formulating a single reaction variable 
representing the birth and death of molecules, including transcription, translation and decay, we 
calculate the escape time from the phenotypic states attained from autocatalytic synthesis through a 
Fokker- Planck formulation and integration of an effective pseudo-potential. We calculate the stability 
of the phenotypic states both for cooperative binding feedback and dimer binding feedback, resulting in 
non-linear decay.

The cellular machinery often work with few molecules at hand. A gene may exist as one single copy on the DNA 
and the copy number of the messenger RNA and following protein are typically very low1. Chemical reactions are 
probabilistic – before a reaction can take place the participating molecules first need to find each other through 
random motion, chemical bonds form at random. Molecular decay is also random. Combining low copy number 
and random birth and death of molecules make biochemical reaction networks noisy, even if we eliminate all 
external variations in the environment of a given biochemical process. Two clonal cells placed in the same envi-
ronment may therefore at times exhibit very different behaviour. Fluctuations generated from birth and death of 
molecules in a reaction network are commonly referred to as intrinsic fluctuations whereas extrinsic fluctuations 
are fluctuations of the environment that the studied reaction network are embedded in, i.e. variations in the 
reaction rates of the reaction network2,3. The magnitude of the molecular fluctuations can be altered by a change 
in the reaction rates and by regulatory processes. Negative autoregulation is shown both to reduce noise4 and to 
amplify fluctuations if the feedback mechanism is delayed5–7 or if the feedback is strong8. The fidelity of regulatory 
control is also limited by the molecular noise associated with the process of transmitting biochemical signals9 and 
by finding the regulatory sites10–12. However, there are no a priori reasons to assume molecular fluctuations only 
being detrimental for an organism. In theory noise could be exploited for enhancing the sensitivity of regulatory 
control processes13. Moreover, there are many situations where noise is an essential component of a process. 
Overcoming potential barriers by thermal fluctuations are what drives chemical reactions in the first place and in 
are this respect of course essential, but potential wells and multi-stable states can also be formed by the dynamics 
of molecule synthesis, e.g. if the synthesis is enhanced by its own presence. The consequence of such feedback is 
that there are two or more stable concentrations that the different molecule species of the reaction network may 
attain. Autocatalytic protein synthesis is shown both theoretically and experimentally to generate meta stable 
states and the consequence of such seemingly simple positive feedback is that genetically identical individuals 
may even at identical homogenous conditions attain different phenotypic states14–18. The states are referred to as 
phenotypic states, since the protein concentration may increase (or decrease) by orders of magnitude and last for 
generations. E.g. the spontaneous exit of the lysogenic state for the lambda phage is only about 10−7–10−5 per cell 
and generation18,19 showing that dynamic stability can be on par with the stability of DNA20,21. External pertur-
bations, e.g. by sudden changes in the reaction rates, can push the biochemical reaction network from one meta-
stable state to another. Random switching from one stable state to another may occur from extrinsic fluctuation 
or perturbations but also as a consequence of the intrinsic noise generated from the birth and death of molecules, 
without any external signal preceding the escape of the state. Random switching is exploited in bacteria as a sto-
chastic survival strategy to blindly anticipate variations in the environment, where different rates of switching is 
resulting in different fitness22. Note that the random switching mechanism display an intrinsic time scale which is 
not triggered by changes in the environment. Random switching is also observed to induce antibiotic resistance 
in otherwise identical cells23.
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Traditionally, calculations of the stability of metastable states are done for Brownian particles performing 
random walks in a potential well, or similar systems, where the noise is not a function of the position in space. 
For autocatalytic transcription factors, where metastable states in the concentration can be generated as a result 
of the protein exhibiting positive feedback on its own synthesis, the birth (and death) of molecules also generates 
fluctuations. Thus, not only is the potential a function of the protein concentration but also the noise, which 
makes analytical progress challenging. The analogue of such noise for a brownian particle escaping a potential 
well would be to have noise that is different at different locations in space. In addition, cellular molecules typically 
are synthesised in a series of steps where each intermediate product or state leading to the final product will also 
leave its contribution to the overall fluctuations. To account for the problem just described, the WKB method can 
be exploited to give approximate solutions in leading order up to a constant pre-exponential factor of the escape 
time24–27. We will derive another approximate method to account for the molecule dependent noise by taking 
the classic approach of integrating the Fokker-Planck equation28 where the pre-exponential factor directly will 
be given from the kinetic parameters. We will collapse the dynamics of all chemical components into a single 
variable and describe the noise level of the collapsed variable for concentrations outside of stable states such that 
the escape time can be integrated through a pseudo-potential. The calculations improves the accuracy of what can 
be obtained from a constant noise approximation and in addition accounts for intermediate product noise and 
non-linear degradation as a result of dimer formation.

Results
The necessary criteria for generating two stable phenotypic states from positive transcriptional feedback is that 
the feedback is sufficiently non-linear, which can be quantified by the Hill coefficient29–31. We will restrict the 
calculations to feedback generating a Hill coefficient of two, the smallest coefficient that generates bi-stability. 
This can be achieved when monomers bind cooperative on the promoter to two adjacent binding sites or when 
proteins form dimers that bind on a single binding site.

The biochemical reaction schemes are illustrated in Fig. 1. In Fig. 1a,b cooperative binding feedback and 
dimer binding feedback is illustrated, respectively. Protein synthesis is modeled as a two-step process with mRNA 
as intermediate species. The gene can be either in it basal or activated state, active whenever the promoter is 
bound with protein, with mRNA synthesis rates of km,0 in the un-bound state and km,0 +  km,a in the active state. 
The concentrations of; mRNA m, proteins p and protein dimers p2 decay with rates γm, γp and γ p2

, respectively. 
The autocatalytic positive feedback loop is then a result by the protein enhancing its own synthesis by binding to 
its promoter either in the form of dimers or by two proteins binding cooperatively.

We will derive a stochastic differential equation that describes the evolution of the feedback system through a 
single reaction variable x,

= Φ +dx t x dt B x dW t( ) ( ) ( ) ( ) (1)

The equation contains a concentration drift term Φ (x) that is given by the (ensemble) average rate difference of 
synthesis and decay and a noise term B(x), originating from the small perturbations of birth and death of mole-
cules. The drift term is calculated in the limit of large molecules whereas the noise term is given by the relative 
perturbation at finite molecule numbers. When we have expressed Φ (x) and B(x) we can through a pseudo poten-
tial, ∫Ψ = −

θ
Φx dx( ) x

x
( )
( )

, where θ =x( ) B x( )
2

2
, calculate the average escape time as

Figure 1. Illustration of the regulatory loop of the two studied motifs of positive autoregulation. The 
illustration display synthesis of messenger RNA from DNA, synthesis of proteins from messenger RNA and 
binding of the protein to the promoter to its own gene. The non-linearity of the feedback regulation is the same 
for the two studied motifs but is in (a) achieved by a cooperative binding of two proteins to the promoter and in 
(b) by forming dimers before binding to the promoter. An important difference, which is illustrated in (b), is 
that feedback mediated by dimers also imply that proteins decay not only as monomers but also as dimers. 
Whenever the promoter is occupied by proteins, and active, the synthesis rate of messenger RNA is boosted to 
km,0 +  km,a from the basal rate km,0. Protein translation is proceeding with the rate kp. The dissociation binding 
constants between protein monomers and dimers K1 and the promoter K2 (dimers) and K (monomers). Decay 
rate constants of messenger RNA γm, proteins γp and protein dimers γ p2

.
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where ΔΨ LH,HL =  Ψ (xM) −  Ψ (xL,H). The indices L and H denotes Low and High stable concentration which are 
separated by the potential peak at the Middle unstable point, M. The derivation is given in the Methods Section. 
Thus we need to choose our variable x, calculate Φ (x) and θ(x) and then integrate the pseudo potential Ψ (x) and 
insert into equation 2.

Concentration drift and stability. The concentrations of the molecules illustrated in Fig. 1 will in the 
large molecule limit (for dimer binding feedback) evolve according to the following set of ordinary differential 
equations (ODE)
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Typically, the protein life-time is large compared to the mRNA life-time and the equilibration of monomer and 
dimer concentrations. Under such conditions we can formulate an equation for the concentration drift Φ (ρT) in 
the total scaled protein concentration, ρT =  ρ +  2ρ2 where ρ =i
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 and the dissociation constants K2 =  K1K2. Time is normalized by the protein life-time as τ =  γpt. 

The equations describing cooperative binding feedback, illustrated in Fig. 1a, can be obtained by letting K1 →  ∞  
making α =  0. Moreover, since ρT =  ρ +  2ρ2 and ρ2 =  ρ2K1/K we can formulate equation 4 closed in terms of any 
of the concentrations ρ, ρ2 or ρT. For the rate parameters where the system displays bi-stability there are always 
two stable stationary solutions separated by an unstable one and the region of bi-stability is given by the interval 
(ρ*,1, ρ*,2) where both endpoints are solutions of Φ (ρ*) =  0 and Φ ′ (ρ*) =  0. The region of bi-stability is given by
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where ρ* are the monomer concentrations separating the bi-stable region. The region of bi-stability is displayed 
in Fig. 2a. In the limit of α →  0 the dimer binding feedback give the same region of bi-stability as cooperative 
binding. In the limit of having large (scaled) activated synthesis rate, Sa, the limit for having bi-stability is given by 
S0 =  1/4Sa. Thus a large feedback activation need to be accompanied by a low basal synthesis rate for bi-stability 
to occur. In Fig. 2b we display the potential function, given by the primitive function of the concentration drift 
Φ (ρT), at the three marked points in Fig. 2a.

Intrinsic noise. We will now derive an expression for the intrinsic noise of the total concentration of proteins, 
B(pT), assuming that mRNA turnover and protein dimerization equilibration are both fast compared to protein 
turnover. One species, total protein copy number, PT, and three reactions,
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The function F(pT) in the propensity of the synthesis is given by the two first terms in the first row of equation 3, 
i.e the synthesis rate of proteins. However, we have scaled the propensity of synthesis with the average protein 
synthesised per mRNA and the stoichiometric correction q. The idea is that the average synthesis rate, which is 
the propensity times the stoichiometry, is not dependent on q and that q gives a measure of the burst rate of the 
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protein synthesis in the full reaction system. Increasing q implies that more proteins are produced per synthesis 
event but that the synthesis events appear less frequently. W can calculate the variance C of the total protein con-
centration using the fluctuation dissipation relation (see Methods section), C =  − D/2A, where
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By matching the variance of the total protein concentration for the full system, calculated in the same way as 
above using fluctuation dissipation relation, we obtain the effective stoichiometry for the reduced system 6 to be 
q =  1 +  2b when mRNA decay is assumed to be rapid compared to protein decay (calculations of q is presented in 
the supplementary information). The parameter =

γ
b

k p

m
 is the number of proteins translated per mRNA. We then 

obtain the noise component for the dimer binding feedback by inserting the calculated q in equation 8,

Figure 2. The potential and noise properties as a function of the total protein number PT = ΩKρT. (a) The 
region of bi-stability for cooperative binding feedback (yellow) and dimer binding feedback with the decay rate 
parameter α =  0.5 (grey) and α =  1 (blue). The dashed line is the asymptote S0 =  1/4Sa gives the upper limit of 
the basal synthesis rate S0 generating bi-stability in the limit of large activation synthesis Sa. (b) The potential, 
which is given by the integral of the concentration drift, of the three points marked in (a) as a function of the 
number of proteins. In (c) the noise θ(ρT) needed for calculating the effective quasi-potential 

∫Ψ = −
θ
Φx dx( ) x

x
( )
( )

, de-pictured in (d).
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where we have re-written ρ2 in terms of ρT. For cooperative binding feedback we get θ ρ ρ= +
Ω

b( ) (1 )T K T
1 . Note 

that θ(ρT) is only valid at the two stable fixed points ρT =  ρL and ρT =  ρH, but we now assume that the dependence 
on ρT can be approximated to hold for all concentrations.

Escaping the stable states. Now we know both Φ (ρT) and θ(ρT) are ready to calculate the escape time 
of the phenotypic states by integrating the quasi-potential Ψ (ρT). The integration of Ψ  is presented in the 
Supplementary Information and for brevity we just state the results here. For dimer binding feedback we obtain
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We note that the pseudo potential difference between the stable states and the unstable peak, ΔΨ LH,HL =   
Ψ (xM) −  Ψ (xL,H), scale to first order as ∆Ψ =

−

+LH HL
P P

b,
TM TH L,

3
2

 for dimer binding feedback ∆Ψ =
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for cooperative binding feedback.
We have plotted both the noise component θ and the quasi potential Ψ  in Fig. 2b,c. The escape time is obtained 

by insertion of Ψ (ρT) and θ(ρT) in equation 2 with x =  ρT. In Fig. 3a–c we display escape properties for cooperative 
binding feedback and in panels 3(d)–(f) for dimer binding feedback. The accuracy of the escape time is displayed 
in Fig. 3a,b,d,e where we as a reference also display the escape time calculated for the constant noise approxi-
mation (dashed line). The constant noise approximation is performed by approximating to the noise level at the 
stable concentration from which the escape is taking place, θ(ρT) =  θ(ρL) or θ(ρH)32. The benefit of accurately 
describing the noise is seen when comparing with the constant noise approximation, which is systematically 
underestimating the noise levels whenever going from the low to the high stable concentration, resulting in an 
escape time that is longer than what is obtained from exact stochastic simulations of the reaction network. For 
escaping from the high stable concentrations we see the opposite behaviour, which is natural since the noise is 
overestimated when approximated with the level at the high stable concentration. The stochastic simulations of 
the escape rate is done using Gillespie’s stochastic simulation algorithm33.

Now, since the fluctuations at the stationary points occur with a time-scale much shorter than the time scale 
of switching from one phenotypic state to another, implying that the actual jump from one phenotypic state to the 
another it fast compared to the time spent in either of the phenotypic states, it is reasonable to assume that the 
switching process is memoryless an can be approximated as a one-step process (similar to a regular chemical 
reaction). Under such assumptions the time between switching events can be described by the exponential distri-
bution, with the average rate −mt

1 of switching as the only parameter describing the distribution. We test this 
assumption by measuring the probability of escaping from the low state to the high state during the time interval 
[0, t] from stochastic simulations (Figure 3c and 3f, diamonds and circles), that is the cumulative distribution 
P(≤ t). The cumulative probability of the exponential distribution is given by ≤ = − − ΓP t e( ) 1 t/ LH, where we 
have inserted our calculated mean time of switching mt =  ΓLH. The small insets display the probability density 
function = Γ− − ΓP t e( ) LH

t1 / LH.

Discussion
We have presented a method for calculating the switching kinetics between phenotypic states, formed by auto-
catalytic synthesis, where the switching is driven by intrinsic fluctuations. The method relies on deriving a single 
reaction parameter by a separation of timescales and formulating an effective stoichiometric parameter such that 
both the concentration drift and fluctuations represent what is observed in the full system. Here we have applied 
the results on transcription factors binding to its own promoter and enhancing its own synthesis. Such feedback 
is the most common transcriptional feedback motif in bacteria34 with the possibility of generating meta-stable 
states. The feedback need to be sufficiently sensitive to generate metastable states and this can be achieved either 
by forming multimeric complexes before binding to the promoter or/and having multiple and cooperative bind-
ing sites on the promoter. Typically, transcription factors form multimeric complexes, as dimers or tetramers, 
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and most likely it is not only due to improving the feedback sensitivity but also due to symmetry in the molecule’s 
binding to DNA. The formation of a multimeric complex of the feedback molecule give that the molecule can 
bind in several orientations which makes the search time to the specific binding site shorter, since the binding 
(and re-binding after dissociation) becomes more probable35. Assuming all other reactions parameters fixed, 
faster search kinetics of the transcription factor will increase the equilibrium binding constant. From the method 
in this paper, one may directly investigate such effects since both the pre-exponential factor and the exponential 
rate dependence is directly expressed from the kinetic parameters of the reaction networks. We have also incor-
porated another effect of forming multimeric complexes in the method, the effect of having non-linear decay 
since more than one molecule may be removed at one instant, e.g. by spontaneous decay of a multimer, or by a 
multimer being consumed in some biochemical pathway. Since the time scale of the stability may change orders 
of magnitude between feedback from dimer binding and cooperative binding with otherwise similar reaction 
parameters we conclude that to understand phenotypic switching we need to be careful when formulating a 
model of an existing reaction network.

Methods
Escape rate calculation. Assume that we have a chemical species whose concentration is described by the 
variable x. Assume furthermore that the species are displaying two stable concentrations xL and xH, a low and 
high stable concentration, respectively. The two stable concentrations are separated by the middle unstable con-
centration xM. We want to calculate the intrinsic stability of the two stable phenotypic states xL and xH, that is, for 
how long will the system stay (on average) in a stable state before exit to the other stable state due to the intrinsic 
fluctuations generated from synthesis and decay of molecules. Individual trajectories x(t) evolve according to the 
stochastic differential equation

= Φ +dx t x dt B x dW t( ) ( ) ( ) ( ) (12)

The term Φ (x) gives the average drift in concentration and B(x) the fluctuations, where W(t) is a Wiener Process. 
Notably, both the drift and the fluctuations depend on the concentration since both the drift and fluctuations are 
generated from the biochemical reactions of the system (which typically depends on the concentrations). Since 
the system is time-homogenous, i.e. the conditional probabilities satisfying Π (x′ , t | x, 0) =  Π (x′ , 0 | x, − t), the 

Figure 3. The accuracy of the escape time from the phenotypic low states L and high states H with 
increasing number of molecules. Upper panels show escape properties for cooperative feedback binding and 
lower panels for dimer binding feedback. The rate parameters are given from the yellow and blue points in 
Fig. 2a for cooperative and dimer feedback, respectively. In addition we set the monomer-to-dimer decay rate 
ratio to 10 for dimer binding feedback, making the lifetime of dimers ten times longer than monomers. Errors 
of the stochastic simulations are smaller than the symbols. The panels (a,b,d,e) show the mean escape rate, 
where ΓLH denotes escape from Low to High state and vice versa. In the rightmost panels we display the 
probability of escaping the low state to the high state as a function of increasing time where the lines are the 
theoretical expected probability assuming an cumulative probability of the exponential distribution, 

≤ = − − ΓP t e( ) (1 )LH
t/ LH . The small insets show the probability density function of escaping assuming an 

exponential distribution, = Γ− − ΓP eLH LH
t1 / LH. Errors are smaller that symbols and circles are for the low state 

having 80 proteins and diamonds with the low state having 160 molecules.
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backward Kolmogorov (or Fokker-Planck) equation corresponding to the stochastic process described in equa-
tion 12 can be written

θ
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Introducing the quasi-potential Ψ (x) where = −
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, gives the solution by the integrating factor e−Ψ. The 
escape time from the low state to the high state, Γ LH, is obtained by integrating twice, from 0 to x′  with boundary 
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=
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H . In the same manner we obtain the 
escape time from the high state to the low state, Γ HL. Integrating from ∞  to x′  with boundary condition 
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H . 
In these equations for the escape time, the external integrands get their main contribution near the middle unsta-
ble stationary point, xM, and the internal integrands get their main contribution near the low stable stationary 
point xL for Γ LH, and near high stable stationary point xH for Γ HL. Therefore, a parabolic approximation of the 
integrand functions around the dominant points gives the average escape time as
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where ΔΨ LH,HL =  Ψ (xM) −  Ψ (xL,H).

System size scaling. Since we are interested in analysing the intrinsic, finite-molecule, stochastic proper-
ties of the bistable system it is convenient if the reaction network can be scaled from a system of few molecules 
to a large number of molecules without affecting the bi-stability. This can be achieved by introducing a system 
size parameter Ω36. In this setting we can view the scaled variables as concentrations, e.g. the protein monomer 
concentration p =  P/Ω, such that all fixed point concentrations x =  X/Ω are invariant under a change in Ω. Even 
though changing Ω can be viewed as a change in volume it should primarily be viewed as a scaling parameter that 
gives us additional freedom when choosing the number of molecules in the stable states.

Fluctuation dissipation relation. For a multivariate Ornstein-Uhlenbeck process defined by the stochastic 
differential equation dx(t) =  − Ax(t)dt +  BdW(t), where A and B are constant matrices, the covariance matrix C 
at stationary conditions satisfies a fluctuation-dissipation relation

+ − =AC CA BB 0 (17)T T

If x is sufficiently close to a stationary point xs we can for a more general system dx(t) =  − f(x(t))dt +  BdW(t) 
linearise the drift f(x(t)). The matrix A is then the Jacobian matrix evaluated at the stationary point xs, =

∂

∂
Aij

f

x
i

sj

. 

For a reaction network, the diffusion matrix is given by = = ∑
Ω

D BB a v v( )ij
T

ij k k ki kj
1 , where ak is the propensity 

of reaction k and vki the stoichiometry of species i in reaction k, evaluated at the stationary concentration xs
36. 

Once A and D are calculated we can compute the covariance matrix C through the fluctuation dissipation theo-
rem 17. For a single variable process the variance is = −C A

D2
.
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